氮掺杂石墨烯催化剂研究获得新进展_

氮掺杂石墨烯催化剂研究获得新进展_

DOI:10.16553/https://www.360docs.net/doc/e312140863.html,ki.issn1000-985x.2013.11.053

2424人工晶体学报第42卷

[13]陈蓓,丁培道.强界面结合层状陶瓷研究现状及增韧机制[J].材料导报,2001,15(6):28-29.

Chen B,Ding P D.Current Status of Strong-binding Interface Laminate Ceramics Study and Toughening Mechanism[J].MaterialsReview,2001,

15(6):28-29(in Chinese).

[14]赵喆,龚江宏,苗赫濯,等.TiC颗粒弥散Al2O3复合材料的阻力曲线行为[J].硅酸盐学报,2000,28(4):371-375.

Zhao Z,Gong J H,Miao H Z,et al.Crack-resistance Curve Behavior of TiC Particle Dispersed Al2O3Composites[J].Journal of the Chinese

Ceramic Society,2000,28(4):371-375(in Chinese).

[15]杨学锋,邓建新,姚淑卿.Al2O3/TiC复合陶瓷拉丝模材料的摩擦磨损性能[J].硅酸盐学报,2005,33(12):1522-1526.

Yang X F,Deng J X,Yao S Q.Friction and Wear Behavior of Al2O3/TiC Ceramic Composites[J].Journal of the Chinese Ceramic Society,2005,

33(12):1522-1526(in Chinese).

[16]杨学锋,宋培龙,王守仁,等.自润滑Al2O3/TiC/CaF2复合陶瓷材料摩擦特性[J].人工晶体学报,2012,41(6):1741-1746.Yang X F,Song P L,Wang SR,et al.Wear Properties of Self-lubricating Al2O3/TiC/CaF2Ceramic Composites[J].Journal of Synthetic

Crystals,2012,41(6):1741-1746(in Chinese).

[17]宋培龙,杨学锋,王守仁,等.Al2O3/TiC-Al2O3/TiC/CaF2自润滑叠层陶瓷材料机械性能和摩擦特性[J].材料研究学报,2012,26(5):539-544.

Song P L,Yang X F,Wang SR,et al.Mechanical and Tribological Properties of Laminated Al2O3/TiC-Al2O3/TiC/CaF2Self-lubrication

Ceramic Material[J].Chinese Journal of MaterialsResearch,2012,26(5):539-544(in Chinese).

[18]Lawn BR,Evans A G,D B Marshall.Elastic/Plastic Indentation Damage in Ceramics:The Median/Radial Crack System[J].Journal of the American Ceramic Society,1980,63(9-10):574-581.

[19]Zhang D Y,Lin P,Dong G N,et al.Mechanical and Tribological Properties of Self-lubricating Laminated Composites With Flexible Design[J].Materials&Design,2013,50:830-838.

[20]包亦望,苏盛彪,黄肇瑞.对称陶瓷层状复合材料中的残余应力分析[J].材料研究学报,2002,16(5):449-457.

Bao Y W,Su S B,Huang Jowlay.Residual Stress and Interface Stress in Symmetric Laminated Composites[J].Chinese Journal of Materials

Research,2002,16(5):449-457(in Chinese)

櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒櫒·信息·

氮掺杂石墨烯催化剂研究获得新进展

石墨烯掺杂氮原子可以在其表面诱导形成高的局域电荷/自旋密度而提高其化学活性。近日,中科院合肥物质科学研究院强磁场中心双聘研究员、中国科学技术大学合肥微尺度物质科学国家实验室(筹)教授陈乾旺课题组发现氮掺杂石墨烯可以催化还原硝基苯酚,这是首次在温和条件下(无光照等影响)非金属催化剂用于催化该反应的报道,其反应动力学为零级反应,有别于之前金属催化剂的一级反应。相关研究成果发表在英国皇家化学会的《能源和环境科学》(Energy&Environmental Science,2013,6:3260-3266,IF:11.653)上。

石墨烯因具有卓越的物理化学性质而得到人们的广泛关注。近年来,陈乾旺课题组一直从事掺杂石墨烯在新领域的研究,曾报道了掺杂石墨烯在表面增强拉曼光谱和氧化还原反应中有好的表现。

课题组博士生孔祥恺和陈昶乐教授利用原位红外和模拟相结合的方法,发现硝基苯酚是通过羟基吸附在石墨烯表面上。因为只有掺杂氮原子邻位上的碳原子才可以被活化,所以其活性位点要少于传统的金属催化剂,改变了其催化的动力学行为。同时,该非金属催化剂因其活性与常用的过渡金属相当,价格便宜和重复使用效果好等优点,有开发应用价值。

该研究得到了国家自然科学基金委大科学装置联合基金等项目的资助。

(来源:中国科学院合肥物质科学研究院)

氮掺杂石墨烯的制备及其氧还原电催化性能

第43卷 第2期2015年3月 河南师范大学学报(自然科学版) Journal of Henan Normal University(Natural Science Edition)  Vol.43 No.2  Mar.2015 文章编号:1000-2367(2015)02-0074-06 DOI:10.16366/j.cnki.1000-2367.2015.02.014氮掺杂石墨烯的制备及其氧还原电催化性能 石 敏,张 庆,牛 璐,晁淑军,黄茹梦,白正宇 (河南师范大学化学化工学院;绿色化学介质与反应教育部重点实验室,河南新乡453007) 摘 要:以三聚氰胺和氧化石墨烯(GO)为原料,经物理研磨和高温热解得到氮掺杂石墨烯(三聚氰胺-NG).扫描电子显微镜(SEM)测量显示,所制备的三聚氰胺-NG厚度和表面褶皱较掺杂前略有增加.X射线光电子能谱(XPS)表明,在三聚氰胺-NG中氮元素以吡咯N、吡啶N和石墨N 3种形式掺杂在石墨烯中,它们的比例分别是14.5%、24.5%和61.0%.同时运用循环伏安法(CV)和旋转圆盘电极技术(RDE)测试了三聚氰胺-NG在碱性介质中的氧还原电催化活性.结果表明,与商业石墨烯和由聚吡咯为氮源制备的氮掺杂石墨烯(ppy-NG)相比,三聚氰胺-NG具有较高的电催化活性和较正的氧还原起始电位(-0.09V),并且电催化还原氧气时主要为4电子反应.由于其较高的氧还原性能和较低的成本,三聚氰胺-NG在碱性燃料电池阴极电催化剂中有良好的应用前景.关键词:氮掺杂石墨烯;三聚氰胺;氧还原;燃料电池 中图分类号:O614文献标志码:A 燃料电池是一种将燃料的化学能按电化学方式等温地转化为电能的发电装置,其中氧还原反应缓慢的动力学过程是影响燃料电池能量转换效率的重要因素之一.到目前为止,最有效的阴极催化剂是贵金属及其合金催化剂[1-2].然而,贵金属价格昂贵,在催化剂成本中占有很大的比重,其催化活性和稳定性也需要进一步提高,极大地影响了低温燃料电池产业化进程[3],因此开发成本低廉的新型非贵金属催化剂,成为燃料电池研究人员近年来努力的重要方向之一[4]. 石墨烯是由sp2杂化碳原子相互连接构成的仅一个原子厚度的二维平面材料,其碳原子构成六角环形蜂窝状,该特殊晶格结构赋予石墨烯优异的物理和化学性质[5-6].目前,石墨烯已成为许多领域的研究热点,如催化剂载体[7]、电池[8]、传感器[9]以及储氢材料[10]等.理论计算和相关实验结果均表明,在石墨烯sp2杂化的碳原子中引入氮原子可以有效提高其电化学活性,这是由于掺杂的氮原子会影响石墨烯中碳原子的自旋密度和电荷分布,使氮原子周围的碳原子带有更多的正电荷,导致石墨烯表面产生“活性位点”,这些“活性位点”可以直接参与氧还原催化反应(ORR)[11].综合文献报道,与商品Pt/C催化剂相比,氮掺杂石墨烯(NG)作为不含金属元素的氧还原催化剂具有较高的催化活性和电化学稳定性,Zhang等[12]利用密度泛函理论对氮掺杂石墨烯上氧还原反应的机理进行理论模拟,所得结果与实验观察一致,即在NG上ORR是一个直接的4电子途径.因此,NG被广泛认为是贵金属催化剂的理想替代材料之一[13]. 本文采用常见且廉价的三聚氰胺为氮源,在不影响石墨烯片层结构的基础上,经过物理研磨后高温煅烧合成出氮掺杂石墨烯(三聚氰胺-NG),对比研究了不同N掺杂形式及不同N含量石墨烯的氧还原反应催化性能,结果表明,吡啶-N和石墨-N含量较高的三聚氰胺-NG催化剂对氧还原反应表现出较高的电催化性能. 1 实验部分 1.1 仪器和试剂 三聚氰胺(分析纯,沈阳化学试剂厂);吡咯(分析纯,国药集团化学试剂有限公司);商业石墨烯(合肥微 收稿日期:2014-11-10;修回日期:2015-03-11. 基金项目:国家自然科学基金(21301051);河南省基础与前沿研究项目(132300410016);河南师范大学青年基金项目.作者简介:白正宇(1979-),女,河南濮阳人,河南师范大学副教授,博士,主要从事燃料电池催化剂的研究. 通信作者:白正宇,河南师范大学化学化工学院,E-mail:baizhengyu2000@163.com.

氮掺杂石墨烯制备及其应用研究进展

Hans Journal of Nanotechnology纳米技术, 2019, 9(1), 17-31 Published Online February 2019 in Hans. https://www.360docs.net/doc/e312140863.html,/journal/nat https://https://www.360docs.net/doc/e312140863.html,/10.12677/nat.2019.91003 Recent Advances in the Synthesis and Applications of Nitrogen-Doped Graphene Wanwen Kang1*, Haiyan Quan1*, Yonghao Huang1, Pin Luo1, Yaoheng Liang1, Biqi Zhong1, Zheng Li1, Wuqing Zhu1, Changyong Mo1, Jiping Wu1, Hongjie Liao1, Xiaowen Wang1, Dongchu Chen1, Min Zhang1, Huawen Hu1,2# 1College of Materials Science and Energy Engineering, Foshan University, Foshan Guangdong 2Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Guangdong Received: Feb. 1st, 2019; accepted: Feb. 15th, 2019; published: Feb. 22nd, 2019 Abstract As the focus of much attention in multi-disciplinary fields such as physics, chemistry, biomedicine, and materials science, graphene has the following limitations which impede their widespread ap-plications: 1) the gapless electronic structure of graphene would retard their optoelectronic ap-plications, 2) the high surface energy of graphene nanosheets causes them to readily aggregate, consequently losing their unique properties, and 3) the inert surface of graphene makes it difficult to combine with other materials. In order to realize more widespread applications of graphene, it is essential to functionalize graphene physically or chemically, and graphene functionalization is a broad subject being undergoing an intense study. This is because the functionalization cannot only retain the unique intrinsic properties of graphene to a certain extent but also impart new struc-tures and properties to the functionalized graphene. Doping with heteroatoms is one of the most hot-topic research areas regarding the functionalization of graphene, which leads to the breakage of the original symmetry and ordered honeycomb structure and to the rearrangement of the crys-tal structure of graphene. Compared to other non-metal heteroatoms, nitrogen has a size closer to carbon, revealing a higher compatibility of nitrogen with the lattice structure of graphene. Hence, nitrogen can be more easily doped into the graphene lattices, producing nitrogen-doped graphene (NG) that is more stable in comparison with other heteroatom-doped graphene. More importantly, the incorporation of nitrogen would enhance the electronegativity of graphene materials, attri-buted to the generated N-C bond where the adjacent carbon atoms are endowed with more posi-tive charges. The enhancement of the electronegativity facilitates catalytic redox reactions. These characteristics of NG lead the research and applications of NG to become an important direction in various fields. This review article summarizes various NG preparation methods in recent years, and compares the merits and demerits of these preparation methods. In addition, the applications of NG in catalysis, supercapacitors, photocatalysis, biosensing, and antibacterial, etc., are reviewed, and the bottleneck in the current stage and the future prospect are also pointed out. The review paper presented here paves the way for the development of more high-performance NG-based materials for addressing both fundamental and technical problems and challenges in both scien-tific and industrial communities. *第一作者。 #通讯作者。

【CN109941989A】一种水热法制备氮掺杂石墨烯量子点的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910347538.2 (22)申请日 2019.04.28 (71)申请人 中国药科大学 地址 211198 江苏省南京市江宁区龙眠大 道639号 (72)发明人 陈金龙 肖璐 王炳熙  (74)专利代理机构 南京苏高专利商标事务所 (普通合伙) 32204 代理人 柏尚春 (51)Int.Cl. C01B 32/184(2017.01) C09K 11/65(2006.01) B82Y 20/00(2011.01) (54)发明名称 一种水热法制备氮掺杂石墨烯量子点的方 法 (57)摘要 本发明公开了一种水热法制备氮掺杂石墨 烯量子点的方法,该方法加入丁二胺和过氧化 氢,采用水热切割氧化石墨烯,制备了一种新型 氮掺杂石墨烯量子点。本发明公开的制备方法具 有操作简便,反应温度较低等优点。制得的氮掺 杂石墨烯量子点分散性良好,颗粒均匀,荧光性 能较为稳定,在较宽的pH范围、较高的离子强度 与粘度、以及较长的光照时间下发光强度均不受 明显影响。权利要求书1页 说明书3页 附图3页CN 109941989 A 2019.06.28 C N 109941989 A

权 利 要 求 书1/1页CN 109941989 A 1.一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于包括以下步骤: (1)向经超声剥离后的氧化石墨烯溶液中加去离子水搅拌,使其分散均匀; (2)向分散均匀的氧化石墨烯溶液中加入丁二胺; (3)向(2)中得到的混合物溶液中逐滴缓慢加入20-40%过氧化氢,最后加入去离子水,持续搅拌至无明显气泡; (4)向(3)中得到的混合物溶液转移至水热反应釜中进行反应; (5)将(4)中得到的产物冷却至室温后,通过微孔滤膜过滤除去未反应完全的氧化石墨烯,得到含有氮掺杂氧化石墨烯量子点的混合溶液; (6)将(5)得到的含有氮掺杂石墨烯量子点的混合溶液在透析袋中透析得到氮掺杂石墨烯量子点水溶液; (7)将(6)得到的氮掺杂石墨烯量子点水溶液进行冷冻干燥得到氮掺杂石墨烯量子点。 2.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(1)中所用的氧化石墨烯为改良Hummers法制得的氧化石墨烯。 3.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(1)中的超声剥离时间为0.5-1.5h。 4.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(1)中的搅拌时间为0.5-1.5min。 5.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(4)中所用的水热反应釜为20-40ml聚四氟乙烯高压反应釜,加热温度为150-170℃,加热时间为4-8h。 6.根据权利要求1所述的一种水热法制备氮掺杂石墨烯量子点的方法,其特征在于所述步骤(6)中的透析次数为2-5次,每次20-40min。 2

氮掺杂石墨烯海绵的可控合成及其 在锂硫电池中的应用

Material Sciences 材料科学, 2019, 9(4), 361-367 Published Online April 2019 in Hans. https://www.360docs.net/doc/e312140863.html,/journal/ms https://https://www.360docs.net/doc/e312140863.html,/10.12677/ms.2019.94048 Controllable Synthesis of N-Doped Reduced Graphene Oxide Sponge and Its Application in Li-S Batteries Huizhen Zhang, Meng Feng, Hongbin Feng Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao Shandong Received: Apr. 1st, 2019; accepted: Apr. 15th, 2019; published: Apr. 22nd, 2019 Abstract In this study, N-doped reduced graphene oxide sponges (N-RGOS) with adjustable sizes and vari-ous morphologies were successfully fabricated by hydrothermal and pyrolysis methods, using melamine sponge as template for assisted assemble of GO. The N-RGOS@S composites were pre-pared by loading elemental sulfur on N-RGOS. The samples were characterized by XRD, TG, SEM and XPS. The electrochemical performance of N-RGOS@S as a cathode material for lithium-sulfur batteries was tested. The composites delivered a stable cyclic stability with a specific capacity of 549.8 mAh?g?1 maintained after 100 cycles at 0.1 C. And they also showed an excellent rate capa-bility that can reach 495.5 mAh?g?1 at 2 C. The excellent electrochemical performance is mainly at-tributed to the three-dimensional graphene network structure and nitrogen doping, which im-proves the conductivity of the electrode materials and hinders the diffusion of polysulfides during charging and discharging and reduces the shuttle effect. Keywords Assisted Assemble, Nitrogen-Doped Reduced Graphene Oxide, Lithium-Sulfur Battery, Cathode Materials 氮掺杂石墨烯海绵的可控合成及其 在锂硫电池中的应用 张慧珍,冯梦,冯红彬

N.S共掺杂的石墨烯量子点

Cite this:New J.Chem.,2014,38,4615 Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots ? Ben-Xing Zhang,a Hui Gao*a and Xiao-Long Li b Strong blue luminescence and water-soluble nitrogen (N)and sulfur (S)co-doped graphene quantum dots (NS-GQDs)were fabricated via a one-step hydrothermal method using oxidized graphene.Ammonia and powdered S were selected as the source of N and S,respectively.The results indicated that both N and S atoms were successfully incorporated into the sp 2-hybridized carbon framework of graphene.Under the excitation of 365nm,the maximum emission intensity could be obtained with a 1:1.2atomic ratio of N/S.The as-prepared NS-GQDs exhibited brighter luminescence compared with N-doped graphene quantum dots (N-GQDs).S-doping plays an important role in enhancing the emission intensity of NS-GQDs.In addition,the luminescence was exceptionally resistant to high salt concentration.Because of these virtues,there are extensive potential applications for NS-GQDs in bio-imaging,solar cells,and ion detection. 1Introduction Graphene quantum dots (GQDs),as the latest member of the carbon (C)family,are drawing tremendous research interest due to their unique properties,including abundant availability,excellent water solubility,robust chemical inertness,low cytotoxicity,excellent biocompatibility,and resistance to photobleaching.GQDs have been exploited in a wide range of applications:ion detection,1,2photovoltaic devices,3bio-sensing,4,5bio-imaging,6and deoxyribo-nucleic acid (DNA)cleavage,7to name a few.However,when contrasted with semiconductor quantum dots,GQDs possess insu?cient luminescence.8Loh and co-workers 9demonstrated that isolated clusters with numbered atoms were closely related to the absorption of photons,and structural defects are crucial to the creation of these clusters.Therefore,when there are relatively low defects (active sites)of undoped GQDs,deficient optical properties will result.Doping heteroatoms including boron,10nitrogen (N),10,11fluorine,12and sulfur (S)13is among the most practical strategies to introduce more defects,modify the electron density,and tailor the photic properties of GQDs.It will be highly interesting to explore what will happen when a doped element (N,S)has a similar radius (radius of C:0.77?,N:0.75?)or electronegativity (electronegativity of C:2.55,S:2.58)to C. To date,various strategies have been proposed for the synthesis and doping of GQDs and mainly include the top-down and the bottom-up methods.The top-down approach refers to cutting high dimensional carbon materials into zero dimensional GQDs via hydrothermal methods,14electrochemi-cal strategies,15oxygen (O)plasma treatment,16and stripping of oxidized debris.17The microwave-assisted hydrothermal method,18thermal pyrolysis 19and cage opening of fullerenes 20are classified as bottom-up routes,in which designated organic precursors are carbonized.So far,research attention has mainly been given to N-doped graphene quantum dots (N-GQDs),while little attention has been paid to NS-GQDs.Recently,Qu et al.13synthesized N and S co-doped graphene quantum dots (NS-GQDs)using the bottom-up approach,obtaining a high quan-tum yield (71%)of NS-GQDs that were outstanding visible light photocatalysts.Nevertheless,compared with the top-down approaches,the bottom-up methods usually su?er from severe synthetic conditions and requirements for special precursors.To our knowledge,the top-down method for preparing NS-GQDs has rarely been researched.Herein,we present a feasible process to synthesize NS-GQDs in an autoclave using oxidized graphene (GO),ammonia (as a N source and passivation agent 21),and powdered S (as a S source).The results show that S can successfully be introduced into the framework.NS-GQDs with di?erent photoluminescence (PL)intensity were prepared by varying the mass ratios of GO,the powdered S,and the ammonia solution.The as-prepared N-GQDs and NS-GQDs show excited wavelength-dependent PL behavior.It is implied that N-GQDs and NS-GQDs may have the same PL origin according to the functional relationship between the excitation and emission wavelength of both GQDs. a School of Physical Science and Technology,Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University, Lanzhou 730000,P.R.China.E-mail:hope@https://www.360docs.net/doc/e312140863.html,;Fax:+819318913554;Tel:+819318912772b Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201204,P.R.China ?Electronic supplementary information (ESI)available.See DOI:10.1039/c4nj00965g Received (in Montpellier,France)11th June 2014, Accepted 3rd July 2014DOI:10.1039/c4nj00965g https://www.360docs.net/doc/e312140863.html,/njc NJC P u b l i s h e d o n 03 J u l y 2014. D o w n l o a d e d b y D a l i a n P o l y t e c h n i c U n i v e r s i t y o n 15/10/2014 15:14:48.

相关文档
最新文档