高考数学大题突破训练(1-4)

高考数学大题突破训练(一)

1、在△ABC 中,角A 、B 、C 所对应的边为c b a ,, (1)若,cos 2)6sin(A A =+

π

求A 的值; (2)若c b A 3,3

1

cos ==,求C sin 的值.

2、某日用品按行业质量标准分成五个等级,等级系数X 依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:

X 1 2 3 4 5 f a 0.2 0.45

b C (I )若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a 、b 、

c 的

值;

(11)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为

y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。

3、如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1OA =,2OD =,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形。

(Ⅰ)证明直线BC EF ∥;

(Ⅱ)求棱锥F OBED -的体积.

4、成等差数列的三个正数的和等于15,并且这三个数分别加上2、

5、13后成为等比数列{}n b 中的b 、b 、

b 。

(I ) 求数列{}n b 的通项公式; (II ) 数列{}n b 的前n 项和为n

S ,求证:数列54

n S ??

+

???

?

是等比数列。

5、设()3213

f x x mx nx =++.

(1)如果()()23g x f x x '=--在2x =-处取得最小值5-,求()f x 的解析式;

(2)如果()10,m n m n N ++<∈,()f x 的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间(),a b 的长度为b a -)

6、在平面直角坐标系xOy 中,直线:2l x =-交x 轴于点A ,设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足∠MPO=∠AOP

(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;

(2)已知T (1,-1),设H 是E 上动点,求HO +HT 的最小值,并给出此时点H 的坐标; (3)过点T (1,-1)且不平行与y 轴的直线l 1与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k

的取值范围。

高考数学大题突破训练(二)

1、某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5 杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3 杯选对2杯,则评为良好;否则评为及格.假设此人对A 和B 两种饮料没有鉴别能力.

(1)求此人被评为优秀的概率;

(2)求此人被评为良好及以上的概率.

2、已知函数()4cos sin()16

f x x x π

=+-.

(Ⅰ)求()f x 的最小正周期:

(Ⅱ)求()f x 在区间,64ππ??

-????

上的最大值和最小值.

3、如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB 。 (I )求证:CE ⊥平面PAD ;

(11)若PA=AB=1,AD=3,CDA=45°,求四棱锥P-ABCD 的体积

4、已知过抛物线()220y px p =>的焦点,斜率为()12,,A x y ()22,B x y (12x x <)两点,且9AB =. (1)求该抛物线的方程;

(2)O 为坐标原点,C 为抛物线上一点,若OC OA OB λ=+,求λ的值.

5、已知a ,b 是实数,函数,)(,)(2

3bx x x g ax x x f +=+= )(x f '和)(x g '是)(),(x g x f 的导函数,若

0)()(≥''x g x f 在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性一致

(1)设0>a ,若函数)(x f 和)(x g 在区间),1[+∞-上单调性一致,求实数b 的取值范围;

(2)设,0

6、在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.

(Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设1tan tan ,n n n b a a +=求数列{}n b 的前n 项和n S .

高考数学大题突破训练(三)

1、在ABC 中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I )求角C 的大小;

(II cos()4

A B π

-+的最大值,并求取得最大值时角,A B 的大小.

2、设等比数列{}n a 的前n 项和为n S ,已知26,a =13630,a a +=求n a 和n S

3、如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =

1

2

PD . (I )证明:PQ ⊥平面DCQ ;

(II )求棱锥Q —ABCD 的的体积与棱锥P —DCQ 的体积的比值.

4、在某次测验中,有6位同学的平均成绩为75分。用x n 表示编号为n (n=1,2,…,6)的同学所得成绩,且

6(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。

5、已知函数

{}32()3(36)124f x x ax a x a a R =++---∈

(I )证明:曲线()0y f x x ==在处的切线过点(2,2);

(II )若0()f x x x =在处取得极小值,0(1,3)x ∈,求a 的取值范围。

6、已知椭圆2222:1(0)x y G a b a b +=>>),斜率为I 的直线l 与椭圆G 交

与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (I )求椭圆G 的方程; (II )求PAB ?的面积.

高考数学大题突破训练(四)

1、根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,

设各车主购买保险相互独立。

(I )求该地1位车主至少购买甲、乙两种保险中的1种概率;

(II )求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。

2、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A .

(I )求

b a

(II )若c 2=b 22,求B .

3、已知等差数列{a n }中,a 1=1,a 3=-3. (I )求数列{a n }的通项公式;

(II )若数列{a n }的前k 项和35k S =-,求k 的值.

4、如图,在AC 于 点D,现将'',PDA .PDA PD PDA PBCD ??⊥沿翻折至使平面平面 (1)当棱锥9AB =的体积最大时,求PA 的长; (2)若点P 为AB 的中点,E 为O

5、设 3.2()21f x x ax bx =+++的导数为()f x ',若函数()y f x '=的图像关于直线1

2

x =-

对称,且(1)0f '=.

(Ⅰ)求实数,a b 的值 (Ⅱ)求函数()f x 的极值

6、已知O 为坐标原点,F 为椭圆2

2

:12

y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C

交与A 、B 两点,点P 满足0.OA OB OP ++=

(Ⅰ)证明:点P 在C 上;

(II )设点P 关于O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上。

高考数学大题突破训练(一)参考答案

1、

2、解:(I )由频率分布表得0.20.451,a b c ++++=即a+b+c=0.35,

因为抽取的20件日用品中,等级系数为4的恰有3件, 所以3

0.15,20

b =

= 等级系数为5的恰有2件,所以2

0.120

c ==, 从而0.350.1a b c =--= 所以0.1,0.15,0.1.a b c ===

(II )从日用品1212,,,x x y y 中任取两件, 所有可能的结果为:

12131112232122313212{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}x x x x x y x y x x x y x y x y x y y y ,

设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其等级系数相等”,则A 包含的基本事件为:

12132312{,},{,},{,},{,}x x x x x x y y 共4个,

又基本事件的总数为10, 故所求的概率4

()0.4.10

P A =

= 3、(I )证明:设G 是线段DA 与EB 延长线的交点. 由于△OAB 与△ODE 都是正三角形,所以 OB ∥1

2

DE ,OG=OD=2,

同理,设G '是线段DA 与FC 延长线的交点,有 2.OG OD '== 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.

在△GED 和△GFD 中,由OB ∥12DE 和OC ∥1

2

DF ,可知B 和

C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF. (II )解:由OB=1,OE=2

,60,EOB EOB S ∠=?=知△OED 是边长为2

的正三角形,故OED S

所以OEFD EOB OED S S S =+= 过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,

13

.32

F OBED OBED V FQ S -=?=

4、解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+ 依题意,得15, 5.a d a a d a -+++==解得

所以{}n b 中的345,,b b b 依次为7,10,18.d d -+

依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的第3项为5,公比为2。 由2231115

2,52,.4

b b b b =?=?=即解得

所以{}n b 是以

54为首项,2为以比的等比数列,其通项公式为135

2524

n n n b --=?=? (Ⅱ)数列{}n b 的前n 项和25

(12)

54

52124n n n S --==?--,即25

524

n n S -+=?

所以1112

5

55524, 2.542524

n n n n

S S S -+-+

?+===?+ = = = =

因此55{}42

n S +是以为首项,公比为2的等比数列。

5、解:(1)已知()321

3

f x x mx nx =++,()'22f x x mx n ∴=++ 又

()()()'223223g x f x x x m x n =--=+-+-在2x =-处取极值,

则()()()'2222203g m m -=-+-=?=,又在2x =-处取最小值-5. 则()()()2

2224352g n n -=-+-?+-=-?=

()321

323

f x x x x ∴=++

(2)要使()3213

f x x mx nx =++单调递减,则()'220f x x mx n ∴=++< 又递减区间长度是正整数,所以()'220f x x mx n =++=两根设做a ,b 。即有:

b-a 为区间长度。又),b a m n N +-=

=∈

又b-a 为正整数,且m+n<10,所以m=2,n=3或,3,5m n ==符合。 6、解:(1)如图1,设MQ 为线段OP 的垂直平分线,交OP 于点Q , ,,||||.MPQ AOP MP l MO MP ∠=∠∴⊥=且

|2|,x +即

24(1)(1).y x x =+≥- ①

另一种情况,见图2(即点M 和A 位于直线OP 的同侧)。

MQ 为线段OP 的垂直平分线, .MPQ MOQ ∴∠=∠

又,.MPQ AOP MOQ AOP ∠=∠∴∠=∠

因此M 在x 轴上,此时,记M 的坐标为(,0).x

为分析(,0)M x x 中的变化范围,设(2,)P a -为l 上任意点().a R ∈

由||||MO MP =

(即||x = 21

1 1.4

x a =--≤-

故(,0)M x 的轨迹方程为 0,1y x =≤-

综合①和②得,点M 轨迹E 的方程为

24(1),1,

0, 1.x x y x +≥-?=?

<-?

(2)由(1)知,轨迹E 的方程由下面E 1和E 2两部分组成(见图3):

21:4(1)(1)E y x x =+≥-;

2:0, 1.E y x =<-

当1H E ∈时,过T作垂直于l 的直线,垂足为T ',交E 1于3,14D ??-- ???

再过H 作垂直于l 的直线,交.l H '于 因此,||||HO HH '=(抛物线的性质)。

||||||||||3HO HT HH HT TT ''∴+=+≥=(该等号仅当H T ''与重合(或H 与D 重合)时取得)。

当2H E ∈时,则||||||||1 3.HO HT BO BT +>+>

综合可得,|HO|+|HT|的最小值为3,且此时点H 的坐标为3,1.4??

-- ???

(3)由图3知,直线1l 的斜率k 不可能为零。

设1:1(1)(0).l y k x k +=-≠

故11(1)1,x y E k =

++代入的方程得:24480.y y k k ??

--+= ???

因判别式2

21644482280.k k k ????

?=++=++> ? ?????

所以1l 与E 中的E 1有且仅有两个不同的交点。

又由E 2和1l 的方程可知,若1l 与E 2有交点,

则此交点的坐标为12111,0, 1.0,2k k k l E k k ++??<--<<

???且即当时与有唯一交点1,0k k +??

???

,从而1l 表三个不同的交点。

因此,直线1l k 斜率的取值范围是1

(,](0,).2

-∞-?+∞

高考数学大题突破训练(二)参考答案

1、解:(1)员工选择的所有种类为35C ,而3杯均选中共有33

C 种,故概率为33351

10

C C =.

(2)员工选择的所有种类为35C ,良好以上有两种可能①:3杯均选中共有3

3C 种;

②:3杯选中2杯共有2

132

C C 种。故概率为321

3323

57

10

C C C C +=. 2、解:(Ⅰ)因为()4cos sin()16

f x x x π

=+-

1

4cos cos )12

x x x =+-

22cos 1x x +-

2cos2x x =+

2sin(2)6

x π

=+

所以()f x 的最小正周期为π

(Ⅱ)因为2,2.6

4

6

6

3

x x π

π

π

π

π-

≤≤-

≤+

所以 于是,当2,6

2

6

x x π

π

π

+=

=

即时,()f x 取得最大值2;

当2,,()666

x x f x πππ

+

=-=-即时取得最小值—1. 3、(I )证明:因为PA ⊥平面ABCD ,CE ?平面ABCD ,

所以.PA CE ⊥

因为,//,.AB AD CE AB CE AD ⊥⊥所以

又,PA AD A =

所以CE ⊥平面PAD 。

(II )由(I )可知CE AD ⊥,

在Rt ECD ?中,DE=CD cos451,sin 451,CE CD ??==??= 又因为1,//AB CE AB CE ==, 所以四边形ABCE 为矩形,

所以1151211.222

ECD ADCE ABCD S S S AB AE CE DE ?=+=?+?=?+??=矩形四边形 又PA ⊥平面ABCD ,PA=1,

所以11551.3326

P ABCD ABCD V S PA -=?=??=四边形四边形

4、解析:(1)直线AB 的方程是222),y 2px 4x 50,

2

p

y x px p =-=-+=与联立,从而有 所以:1254

p

x x +=

,由抛物线定义得:129AB x x p =++=,所以p=4, 抛物线方程为:28y x =

(2)、由p=4,,05x 422=+-p px 化简得2540x x -+=,从而121,4,x x ==12

y y =-=从而

A:(1,-

设3,3()(1,OC x y λ→

==-+=(14,)λ+-,又2338y x =,即)2

21λ??-=??

8(41λ+),即2(21)41λλ-=+,解得0,2λλ==或 5、

6、解:(I )设122,,,n l l l +构成等比数列,其中121,100,n t t +==则

1212,n n n T t t t t ++=???? ① 1221,n n n T t t t t ++=??

?? ②

①×②并利用2131210(12),n i n t t t t i n +-+==≤≤+得

22(2)12211221()()()()10,lg 2, 1.n n n n n n n n T t t t t t t t t a T n n +++++=????=∴==+≥

(II )由题意和(I )中计算结果,知tan(2)tan(3), 1.n b n n n =+?+≥

另一方面,利用tan(1)tan tan1tan((1)),1tan(1)tan k k

k k k k

+-=+-=

++?

得tan(1)tan tan(1)tan 1.tan1

k k

k k +-+?=

-

所以2

1

3

tan(1)tan n

n n k k k S b k k +====+?∑∑

2

3

tan(1)tan (

1)

tan1tan(3)tan3.

tan1n k k k

n n +=+-=-+-=-∑

高考数学大题突破训练(三)参考答案

1、解析:(I )由正弦定理得sin sin sin cos .C A A C =

因为0,A π<<所以sin 0.sin cos .cos 0,tan 1,4

A C C C C C π

>=≠==从而又所以则

(II )由(I )知3.4

B A π

=

-于是

cos()cos()

4

cos 2sin().

6

3110,,,,

46612623

A B A A A A A A A A A π

ππ

πππππππ

-+=--=+=+

<<∴<+<+==从而当即时

2sin()6

A π

+

取最大值2.

cos()4

A B π

-+

的最大值为2,此时5,.3

12

A B π

π

=

=

2、解:设{}n a 的公比为q ,由题设得

12

116,630.

a q a a q =???+=?? 解得113,2,

2, 3.

a a q q ==????

==??或 当113,2,32,3(21);n n n n a q a S -===?=?-时 当112,3,23,3 1.n n n n a q a S -===?=-时

3、解:(I )由条件知PDAQ 为直角梯形

因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.

又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.

在直角梯形PDAQ 中可得

,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .

由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a = 由(I )知PQ 为棱锥P —DCQ 的高,而

,△DCQ

2

, 所以棱锥P —DCQ 的体积为321

.3

V a =

故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.

4、解:(1)6

11756n n x x ===∑

5

61

6675707672707290,n n x x x =∴=-=?-----=∑

6

22222222111

()(5135315)4966

n n s x x ==

-=+++++=∑,

7.s ∴= (2)从5位同学中随机选取2位同学,共有如下10种不同的取法: {1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},

选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种取法: {1,2},{2,3},{2,4},{2,5},

故所求概率为2.5

5、解:(I )2'()3636.f x x ax a =++-

…………2分

由(0)124,'(0)36f a f a =-=-得曲线()0y f x x ==在处的切线方程为 由此知曲线()0y f x x ==在处的切线过点(2,2) …………6分

(II )由2'()02120.f x x ax a =++-=得 (i

)当11,()a f x ≤≤时没有极小值; (ii

)当11,'()0a a f x <=或时由得

12x a x a =-=-

故02.x x =

由题设知1 3.a <-<

当1a >

时,不等式13a <-无解。

当1a <

时,解不等式5

13 1.2

a a <--<<得 综合(i )(ii )得a

的取值范围是5(,1).2

- 6、解:

(Ⅰ)由已知得c c a ==

解得a =

又222

4.b a c =-=所以椭圆G 的方程为22 1.124

x y +

= (Ⅱ)设直线l 的方程为.y x m =+

由221124

y x m x y =+??

?+

=??得22463120.x mx m ++-=

设A 、B 的坐标分别为112212(,),(,)(),x y x y x x

=-004

m

y x m =+= 因为AB 是等腰△PAB 的底边,所以PE ⊥AB.

所以PE 的斜率24 1.334

m

k m -

=

=--+

解得m=2。 此时方程①为24120.x x +=

解得123,0.x x =-=所以121, 2.y y =-=所以

|AB|=. 此时,点P (—3,2)到直线AB :20x y -+=

的距离d =

=

所以△PAB 的面积S=

19||.22

AB d ?= 高考数学大题突破训练(四)参考答案

1、解:记A 表示事件:该地的1位车主购买甲种保险;

B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;

C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;

D 表示事件:该地的1位车主甲、乙两种保险都不购买;

E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。 (I )()0.5,()0.3,,P A P B C A B ===+

()()()()0P C P A

B P A P B =+=+= (II ),()1()10.80.2,D

C P

D P C ==-=-=

1

23()0.20.80.384.P E C =??=

2、.解:(I

)由正弦定理得,22sin sin cos A B A A +,即

22sin (sin cos )B A A A +

故sin ,b

B A a

所以

(II

)由余弦定理和222,cos c b B ==

得 由(I )知222,b a =

故22(2.c a =

可得21cos ,cos 0,cos 4522

B B B B =>=

=又故所以 3、解:(I )设等差数列{}n a 的公差为d ,则1(1).n a a n d =+- 由121,312 3.a a d ==-+=-可得 解得d=-2。

从而,1(1)(2)32.n a n n =+-?-=-

(II )由(I )可知32n a n =-,所以2[1(32)]

2.2

n n n S n n +-==-

进而由2135235,S k k =--=-可得

即22350k k --=,解得7 5.k k ==-或又*,7k N k ∈=故为所求。

4、(1)设PA x =,则2

-11(2)33A PBCD PDCB x V PA S x x

'=?=-底面

令2312()(2),(0)3236x x x f x x x =-=-> 则2

2()32

x f x '=-

证明:

(2)作A B '得中点F ,连接EF 、FP

由已知得:1

//////2

EF BC PD ED FP ?

A P

B '?为等腰直角三角形,A B PF '⊥ 所以A B DE '⊥. 5、解:(I )因322()21,()62.f x x ax bx f x x ax b '=+++=++故

从而2

2()6(),66

a a f x x

b '=++-

即()y f x '=关于直线6

a

x =-对称,从而由题设条件知1, 3.62a a -=-=解得

又由于(1)0,620,12.f a b b '=++==-即解得 (II )由(I )知32()23121,f x x x x =+-+

2()6612f x x x '=+-6(1)(2).x x =-+

令12()0,6(1)(2)0.2, 1.f x x x x x '=-+==-=即解得 当(,2),()0,()(,2)x f x f x '∈-∞->-∞-时故在上为增函数; 当(2,1),()0,()(2,1)x f x f x '∈-<-时故在上为减函数; 当(1,),()0,()(1,)x f x f x '∈+∞>+∞时故在上为增函数;

从而函数1()2f x x =-在处取得极大值2(2)21,1f x -==在处取得极小值(1) 6.f =- 6、解:(I )F (0,1),l

的方程为1y =+,

代入2

2

12

y x +=

并化简得2410.x --= 设112233(,),(,),(,),A x y B x y P x y

则12x x =

121212)21,x x y y x x +=

+=++=

由题意得312312()() 1.2x x x y y y =-+==-+=- 所以点P

的坐标为(1).-经验证,点P

的坐标为(1)-满足方程 22

1,2y x +=故点P 在椭圆C 上。

(II

)由(1)P -和题设知,

Q PQ 的垂直一部分线1l

的方程为.y =① 设AB 的中点为M

,则1)2M ,AB 的垂直平分线为2l

的方程为1.4

y +② 由①、②得12,l l

的交点为1

()88

N -

21||||||||||||8

NP AB x x AM MN NA ==-==

=

故|NP|=|NA|。又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|MQ|, 由此知A 、P 、B 、Q 四点在以N 为圆心,NA 为半径的圆上

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数学难点突破_难点41__应用问题

难点41 应用性问题 数学应用题是指利用数学知识解决其他领域中的问题.高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求. ●难点磁场 1.(★★★★★)一只小船以10 m/s 的速度由 南向北匀速驶过湖面,在离湖面高20米的桥上, 一辆汽车由西向东以20 m/s 的速度前进(如图), 现在小船在水平P 点以南的40米处,汽车在桥上 以西Q 点30米处(其中PQ ⊥水面),则小船与汽车间的最短距离为 .(不考虑汽车与小船本 身的大小). 2.(★★★★★)小宁中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜6分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开10分钟;(5)煮面条和菜共3分钟.以上各道工序除(4)之外,一次只能进行一道工序,小宁要将面条煮好,最少用分钟. 3.(★★★★★)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足 R (x )=???>≤≤-+-)5( 2.10)50( 8.02.44.02x x x x .假定该产品销售平衡,那么根据上述统计规律. (1)要使工厂有盈利,产品x 应控制在什么范围? (2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少? ●案例探究 [例1]为处理含有某种杂质的污水,要制造一个底宽为2 米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从 B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水 中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料 60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该 杂质的质量分数最小(A 、B 孔的面积忽略不计)? 命题意图:本题考查建立函数关系、不等式性质、最值求法等基本知识及综合应用数学知识、思想与方法解决实际问题能力,属★★★★级题目. 知识依托:重要不等式、导数的应用、建立函数关系式. 错解分析:不能理解题意而导致关系式列不出来,或a 与b 间的等量关系找不到. 技巧与方法:关键在于如何求出函数最小值,条件最值可应用重要不等式或利用导数解决. 解法一:设经沉淀后流出的水中该杂质的质量分数为y ,则由条件y = ab k (k >0为比例系数)其中a 、b 满足2a +4b +2ab =60 ① 要求y 的最小值,只须求ab 的最大值. 由①(a +2)(b +1)=32(a >0,b >0)且ab =30–(a +2b )

高考数学之概率大题总结

1(本小题满分12分)某赛季, 甲、乙两名篮球运动员都参加了7场比赛, 他们所有比赛得分的情况用如图所示的茎叶图表示 (1)求甲、乙两名运动员得分的中位数; (2)你认为哪位运动员的成绩更稳定? (3)如果从甲、乙两位运动员的7场得分中各随 机抽取一场的得分, 求甲的得分大于乙的得分的概率. (参考数据:2222222981026109466++++++=, 236112136472222222=++++++) 2在学校开展的综合实践活动中, 某班进行了小制作评比, 作品上交时间为5月1日至30日, 评委会把同学们上交作品的件数按5天一组分组统计, 绘制了频率分布直方图(如图), 已知从左到右各长方形的高的比为2:3:4:6:4:1, 第三组的频数为12, 请解答下列问 题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?共有多少件? (3)经过评比, 第四组和第六组分别有10件、2件作品获奖, 问这两组哪组获奖率高? 3已知向量()1,2a =-r , (),b x y =r . (1)若x , y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次时第一次、第二次出现的点数, 求满足1a b =-r r g 的概率; (2)若实数,x y ∈[]1,6, 求满足0a b >r r g 的概率.

4某公司在过去几年内使用某种型号的灯管1000支, 该公司对这些灯管的使用寿命(单位:小时)进行了统计, 统计结果如下表所示: (1)将各组的频率填入表中; (2)根据上述统计结果, 计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管2支, 若将上述频率作为概率, 试求恰有1支灯管的使用寿命不足1500小时的概率. 5为研究气候的变化趋势, 某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度, 如下表: (1)若第六、七、八组的频数t 、m 、 n 为递减的等差数列, 且第一组与第八组 的频数相同, 求出x 、t 、m 、n 的值; (2)若从第一组和第八组的所有星期 中随机抽取两个星期, 分别记它们的平均 温度为x , y , 求事件“||5x y ->”的概率. 6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5 所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1)问各班被抽取的学生人数各为多少人? (2)在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 频率 分数 90100110120130 0.05 0.100.150.200.250.300.350.4080 70

2020高考理科数学冲刺—压轴大题高分练一

1.(本小题满分12分)(2019陕西咸阳一模)已知椭圆C :x 2a 2+y 2 =1(a >1)的上顶点为B , 右顶点为A ,直线AB 与圆M :(x -2)2+(y -1)2 =1相切. (1)求椭圆C 的方程. (2)过点N (0,-1 2 )且斜率为k 的直线l 与椭圆C 交于P ,Q 两点,求证:BP ⊥BQ . 1.(1)解:由题意知,A (a ,0),B (0,1),则直线AB 的方程为x +ay -a =0. 由直线AB 与圆M :(x -2)2+(y -1)2=1相切,得圆心M 到直线AB 的距离d =2 1+a 2 =1,求得a =3, 故椭圆C 的方程为x 23 +y 2 =1. (2)证明:直线l 的方程为y =kx -1 2 ,P (x 1,y 1),Q (x 2,y 2), 联立? ??y =kx -1 2 , x 23 +y 2=1,消去y 整理得(4+12k 2)x 2-12kx -9=0. ∴x 1+x 2=12k 4+12k 2,x 1x 2 =-9 4+12k 2 . 又BP →=(x 1,y 1-1),BQ → =(x 2,y 2-1), ∴BP →·BQ → =x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(kx 1-32)·(kx 2-32)=(1+k 2)x 1x 2-32k (x 1+x 2)+94 = -9(1+k 2)4+12k 2-18k 24+12k 2 +94=0,∴BP ⊥BQ . 2.(本小题满分12分)(2019内蒙古一模)已知函数f (x )=2ax +bx -1-2ln x (a ∈R ). (1)当b =0时,确定函数f (x )的单调区间. (2)当x >y >e -1时,求证:e x ln(y +1)>e y ln(x +1). 2.(1)解:当b =0时,f ′(x )=2a -2x =2(ax -1) x (x >0). 当a ≤0时,f ′(x )<0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递减.

高考数学前三道大题练习

1 A B C D S E F N B 高考数学试题(整理三大题) (一) 17.已知0αβπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且?a b m =.求 2 2cos sin 2() cos sin ααβαα ++-的值. 18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜 甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. 19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。已知∠ABC =45°,AB =2,BC=22,SA =SB =3。 (Ⅰ)证明:SA ⊥BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小; (二) 17.在ABC △中,1tan 4A =,3 tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △ 18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率; (II )连续抛掷2次,求向上的数之和为6的概率; (III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。 19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是 AB 、SC 的中点。 求证:EF ∥平面SAD ; (三) 17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ?? =+ ??? π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19. 在Rt AOB △中,π 6 OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角 的大小; (III )求CD 与平面 AOB 所成角的最大值 (四) 17.已知函数2 π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42 x ??∈???? ,上恒成立,求实数m 的取值范围. 18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。 (Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。 O C A D B E

高考数学难点突破_难点34__导数的运算法则及基本公式应用

难点34 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-= x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 2222222222 22222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(] ))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+' +--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·21 v -21·2x =f ′(12+x )·211 1 2+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′ =f ′(12+x )·21(x 2+1)21- ·(x 2+1)′

全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版

高考数学一轮复习: 概率与统计 高考大题专项(六) 概率与统计 考情分析 一、考查范围全面 概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法. 二、考查方向分散 从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查. 三、考查难度稳定 高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调. 典例剖析 题型一相关关系的判断及回归分析 【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图. x50100150200300400 t906545302020

2017年高考理科数学试题及答案

2017年普通高等学校招生全国统一考试(xx卷)数学(理科) 第Ⅰ卷(共50分) 一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年xx,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D) 【答案】D 【解析】由得,由得,,故选D. (2)【2017年xx,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D) 【答案】A 【解析】由得,所以,故选A. (3)【2017年xx,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是() (A)(B)(C)(D) 【答案】B 【解析】由时有意义,知是真命题,由可知是假命题, 即,均是真命题,故选B. (4)【2017年xx,理4,5分】已知、满足约束条件,则的最大值是()(A)0(B)2(C)5(D)6 【答案】C 【解析】由画出可行域及直线如图所示,平移发现,

当其经过直线与的交点时,最大为 ,故选C. (5)【2017年xx,理5,5分】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为() (A)160(B)163(C)166(D)170 【答案】C 【解析】,故选C. (6)【2017年xx,理6,5分】执行两次如图所示的程序框图,若第一次输入的值为7,第 二次输入的值为9,则第一次、第二次输出的值分别为()(A)0,0(B)1,1(C)0,1(D)1,0 【答案】D 【解析】第一次;第二次,故选D. (7)【2017年xx,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D) 【答案】B 【解析】,故选B. (8)【2017年xx,理8,5分】从分别标有1,2,…,9的9xx卡片中不放回地随机抽取2次,每次抽取1xx,则抽到在2xx卡片上的数奇偶性不同的概率是() (A)(B)(C)(D)

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学难点突破 难点22 轨迹方程的求法

难点22 轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论. 技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系. 解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有

高中数学概率大题经典一

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

最新史上最难的全国高考理科数学试卷

创难度之最的1984年普通高等学校招生全国统一考试理科数学试题 (这份试题共八道大题,满分120分 第九题是附加题,满分10分,不计入总分) 一.(本题满分15分)本题共有5小题,每小题选对的得3分;不选,选错或多选得负1分1.数集X = {(2n +1)π,n 是整数}与数集Y = {(4k ±1)π,k 是整数}之间的关系是 ( C ) (A )X ?Y (B )X ?Y (C )X =Y (D )X ≠Y 2.如果圆x 2+y 2+Gx +Ey +F =0与x 轴相切于原点,那么( C ) (A )F =0,G ≠0,E ≠0. (B )E =0,F =0,G ≠0. (C )G =0,F =0,E ≠0. (D )G =0,E =0,F ≠0. 3.如果n 是正整数,那么)1]()1(1[8 1 2---n n 的值 ( B ) (A )一定是零 (B )一定是偶数 (C )是整数但不一定是偶数 (D )不一定是整数 4.)arccos(x -大于x arccos 的充分条件是 ( A ) (A )]1,0(∈x (B ))0,1(-∈x (C )]1,0[∈x (D )]2 ,0[π∈x 5.如果θ是第二象限角,且满足,sin 12sin 2cos θ-=θ-θ那么2 θ ( B ) (A )是第一象限角 (B )是第三象限角 (C )可能是第一象限角,也可能是第三象限角 (D )是第二象限角 二.(本题满分24分)本题共6小题,每一个小题满分4分

1.已知圆柱的侧面展开图是边长为2与4的矩形,求圆柱的体积 答:.84π π或 2.函数)44(log 25.0++x x 在什么区间上是增函数? 答:x <-2. 3.求方程2 1 )cos (sin 2=+x x 的解集 答:},12|{},127|{Z n n x x Z n n x x ∈π+π -=?∈π+π= 4.求3)2| |1 |(|-+x x 的展开式中的常数项 答:-205.求1 321lim +-∞→n n n 的值 答:0 6.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法(只要求写出式子,不必计算) 答:!647?P 三.(本题满分12分)本题只要求画出图形 1.设???>≤=, 0,1,0,0)(x x x H 当当画出函数y =H (x -1)的图象 2.画出极坐标方程)0(0)4 )(2(>ρ=π -θ-ρ的曲线 解(1) (2)

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

高考数学难点突破__函数中的综合问题含答案

高考数学难点突破 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点磁场 (★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4. (1)求证:f (x )为奇函数; (2)在区间[-9,9]上,求f (x )的最值. ●案例探究 [例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,2 1 ],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f ( 21)、f (4 1); (2)证明f (x )是周期函数; (3)记a n =f (n +n 21 ),求).(ln lim n n a ∞→ 命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力. 知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口. 错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形. 技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为) 2 ()2()2()22()(x f x f x f x x f x f ??=+=是解决问题的关键. (1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2 ()22(x f x x f =+≥ 0, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (2 1 )]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21 ,f (4 1)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R .

高考数学理科大题公式(最全版)

高考数学17题(1):解三角形 1.正弦定理:______________________ 2.余弦定理:______________________ ______________________ ______________________ 3.三角形面积公式: S=____________________________ 4.三角形中基本关系:A+B+C=_____ sin(A+B)=___________ cos(A+B)=___________ tan(A+B)=___________ 注:基本不等式:若________,则______________ 重要不等式:若________,则______________

高考数学17题(2):数列 1.知S n 求a n:( 这个关系式对任意数列均成立) a n= _________________ 2.等差数列的有关概念 (1)定义:___________(n∈N*,d为常数). (2)等差中项:_____________, (3)通项公式:a n=_____________=______________ (4)前n项和公式:S n=____________=_______________ (5)等差数列性质:若_____________,则__________________3.等比数列的有关概念 (1)定义:___________(n∈N*,q为常数). (2)等比中项:_____________, (3)通项公式:a n=_____________=______________ (4)前n项和公式:S n=____________=_______________ (5)等比数列性质:若_____________,则__________________

高考数学难点突破 难点38 分类讨论思想

难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” ●难点磁场 1.(★★★★★)若函数514121)1(31)(23+-+-= x ax x a x f 在其定义域内有极值点,则a 的取值为 . 2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究 [例1]已知{a n }是首项为2,公比为 21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目. 知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质. 错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-22 3. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案. 解:(1)由S n =4(1–n 21),得 221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>- =--k k k S S S ,(k ∈N *) 故只要2 3S k –2<c <S k ,(k ∈N *)

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

相关文档
最新文档