稳定性分析

稳定性分析
稳定性分析

4.5 稳定性分析

4.5 稳定性分析

频率法中对系统稳定性的分析是应用奈奎斯特(Nyquist)判据进行的。奈奎斯特判据是根据控制系统的开环频率特性判断闭环系统是否稳定的判据。应用奈奎斯特判据,不仅能解决系统是否稳定的问题,而且还能了解系统稳定的程度,并找出改善系统动态特性的途径。因此,奈奎斯特判据是频域分析的基础。

4.5.1映射定理

设F(s)是一个单值解析的复变函数。对于s平面上一条不通过任何奇点的封闭曲线C,在F(s)平面上必有一条封闭的曲线与之对应,该封闭曲线是曲线

C的映射。如果s平面上的封闭曲线C 内部包含了F(s)的P 个极点和Z 个零点,且动点s 是沿顺时针方向在封闭曲线上变化的,则在F(s)平面上相应的封闭曲线包围坐标原点的周数和方向可以表示为

(4.40)

式中N 是包围原点的周数,若N>0,则表示顺时针包围F(s) 平面的原点,若N<0 ,则逆时针包围F(s)平面的原点,若N=0,则不包围F(s)平面的原点。这里不对映射原理进行证明。对此有兴趣的读者可以参阅其他有关书籍。

4.5.2 奈奎斯特判据

映射原理为判断控制系统的稳定性提供了依据。设

(4.41)

根据控制系统的稳定的充分必要条件,若系统稳定,则s 平面右半边没有闭环极点,既没有特征方程的根。特征方程的根就是函数F(s)的零点。F(s)的极

点则与开环传递函数的极点相同。若F(s)曲线是已知封闭曲线,则可以确定

F(s)包围原点的周数及包围原点的的方向.又因为F(s)与开环传递函数的极点相同,所以可以根据开环传递函数确定s平面上封闭曲线C所包含的F(s)极点数P。按照映射原理,s平面上的封闭曲线C所包含的F(s)的零点数即可确定。问题的关键是在s平面上找到一条能包围整个s平面的右半边的封闭曲线。这条曲线就是奈奎斯特轨迹。

1. 奈奎斯特轨迹

奈奎斯特轨迹是由整个虚轴和位于s平面右半边的半径为无穷大的半圆构成的

封闭曲线,动点s在曲线上顺时针方向移动。图4.20时奈奎斯特轨迹的示意图。奈奎斯特轨迹不能通过的任何零点和极点。

奈奎斯特轨迹是s 平面上的一条封闭曲线,而与之对应的函数在复平面上是一条什么样的封闭曲线呢?我们把奈奎斯特轨迹划分为两部分:一部分是半径为无穷大的半圆;另一部分是整个虚轴。现在来分析这两部分在平面上的映射。

当s趋近于无穷大时,由于开环传递函数分母的阶次n一般都大于分子的阶次m,所以有

常量

若n>m,则上面的常量为1,若n=m,则为其他常量。总之,s平面上奈奎斯特轨迹的无穷大半圆在平面上的映射是实轴上的一个点。

当动点s在奈奎斯特轨迹上的另一部分,即整个虚轴上由负无穷大向无穷大变化时,由于,所以有

其中的正是开环频率特性。所以,可以说奈奎斯特轨迹在的映射就是开环频率特性。

若已知包围平面原点的周数及方向N,又知道奈奎

斯特轨迹所包围的开环传递函数的极点数P,则位于s平面右半边特征方程的根的个数Z即可根据映射定理计算出来,系统的稳定性也随之确定了。

图 4.20 奈奎斯特轨迹

函数构成的复平面与开环频率特性构成的

复平面,实轴坐标仅差1.平面上封闭曲线对原点的包围就是平

面上对点的包围。为了简便,在我们绘制出开环频率特性以后,不必

再转为函数,直接使用开环频率特性判断系统是否稳定就可以了。

当开环传递函数含有积分环节时,例如

图 4.21 有积分环节情况下的奈奎斯特轨迹

有一个s=0的极点,这个极点正好位于奈奎斯特轨迹上,违反了封闭曲线C 不能有奇点的规定。为了解决这个问题,我们用一个半径为无穷小的半圆从右面绕过原点,如图4.21 所示。这样,除了原点之外奈奎斯特轨迹仍然包围s平面右

半边,无穷小半原在开环频率特性的复平面上,即平面上的映射唯一无穷大圆弧段。

2. 奈奎斯特判据

奈奎斯特判据是对奈奎斯特轨迹应用映射原理的结果。

奈奎斯特判据:

设开环传递函数位于s平面右半边的极点个数为P。若P=0,闭环系统稳定的充

分必要条件是当从负无穷大连续变化到正无穷大时,平面上的开环频率特

性曲线不包围点,否则系统不稳定。若,闭环系统稳定的充分必

要条件是当从负无穷大变化到正无穷大时,平面上的开环频率特性曲线逆时针方向包围点P周。

例4 控制系统的开环传递函数为

判断该系统的稳定性。

解该系统的开环频率特性如图4.22所示。

图 4.22 控制系统的开环频率特性

开环传递函数在s平面右半边无极点,即P=0,曲线不包围点,所以系统稳定。

例5 控制系统的开环传递函数为

判断当K=2和K=20时系统的稳定性。

解当K=2时,绘出系统的开环频率特性如图4.23所示。

当K=20时,绘出系统的开环频率特性如图4.24所示。

图 4.23 K=2时的开环频率特性

图4.24 K=20时的开环频律特性

由于开环传递函数中含有积分环节,所以奈奎斯特轨迹在原点处增加了无穷小半圆。

s从从原点右侧绕到,当时,该无穷小半圆在开环频率特性上是无

穷大半圆弧,如图中虚线所示。

图4.23的开环频率特性不包围点,而本例中P=0,所以系统稳定。求解特征方程,可得到特征方程的根为

特征根均具有负实部,和应用奈奎斯特判据的结论完全一致。

图4.24的开环频率特性包围了点(顺时针方向,2周)而P=0,根据奈奎斯特判据,系统是不稳定的。求解特征方程可得

特征方程的共轭负数根具有正实部,从而验证了奈奎斯特判据。

例6 系统的开环传递函数为

判断系统的稳定性。

解系统的稳定性与和的取值有关。不同情况下的开环频率特性如图4.25所示。

图 4.25 T值不同情况下的开环频律特性

本例中P=0,时,开环频率特性不包围点,系统稳定。时,开环频率特性正好通过点,说明系统处于临界稳定状态,闭环极点位于虚轴上。时,开环频率特性顺时针方向包围点两周,系统不稳定。

例7 已知控制系统的开环传递函数为

判断闭环系统的稳定性。

解该系统的开环频率特性如图4.26所示。

本例中有一个开环极点s=1位于s平面右半边,P=1,而开环频率特性顺时针包围点一周,根据奈奎斯特判据,此系统稳定。

判断开环频率特性包围点的方法是假设一个起点在点。矢端在开环频率特性曲线上的矢量。当从变化到时,该矢量的副角变化量

与之比即为包围点的周数。

若开环频率特性顺时针包围点,系统总是不稳定的。

图 4.26 例7的开环频律特性

3。用对数频率特性分析系统的稳定性。

系统开环频率特性的极坐标图与开环对数频率图有如下关系

在极坐标图上,以原点为圆心的单位圆,因其模为1,对应于对数幅频特性的零分贝点,其相角均为.所以负实轴对应于对数相频特性的线。

对于开环传递函数在s平面右半边无极点的系统(称为开环稳定),若系统开环对数副频特性在穿越0dB线时,所对应的对数相频特性曲线的相位角大于

(绝对值大于180),则闭环系统稳定,否则不稳定。

4.5.3 相对稳定性

只判断控制系统是否稳定,以稳定和不稳定来区分系统,这种稳定的分析称为绝对稳定分析问题。在更多的情况下,我们还想知道系统的稳定程度如何。只就是相对稳定问题。应用奈奎斯特判据不仅可以判断系统是否稳定,而且可以解决相对稳定性问题。

图4.27是一个控制系统的开环频率特性的局部(P=0).当系统的K较小时,开环

频率特性曲线不包围点。继续增大K,开环频率特性曲线仍未包围

,系统还是稳定的。但开环频率特性曲线更靠近点。我们说它

的稳定程度不如前者。再增大K,开环频率特性曲线通过点,系统处于

临界稳定状态。随着K的继续增大,开环频率特性曲线包围了点,系统变成了不稳定系统。图4.27 表明,对于稳定的系统,开环频率特性曲线越靠近

点,系统的稳定程度越低。对于不稳定的系统,开环频率特性曲线离

点越远,不稳定程度越大。

图4.27 开环频率特性随K的变化

开环频率特性曲线通过点时,必然满足:

(4.42)

(4.43)

开环频率特性曲线靠近点的程度就是系统相对稳定的程度。工程上,我

们采用稳定裕量来具体描述系统相对稳定的大小。稳定裕量是由相位裕量和增益裕量共同决定的。

1.相位裕量

当开环频率特性的幅频特性满足:

时,开环相频特性的相位角与之差,定义为系统的相对裕量,如图4.28(a)所示。

式中为系统的相对裕量。>0,相对裕量为正值,系统稳定。

在开环频率特性的对数坐标图上,满足式(4.42)的是对数幅频特性曲线穿越0dB线的点,这时对应的频率称为幅值穿越频率,在开环相频特性曲线上对应的相位角值即为相对裕量。如图4.28(b)所示。

2. 增益裕量

当开环频率特性的相频特性满足

时,对于该频率下的开环幅频特性的倒数,定义为增益裕量

(4.45)

式中称为增益裕量。增益裕量表示,在相位已达到的条件下,开环频

率特性的幅值在此时还可以放大多少倍系统才变得不稳定。若>1 ,称正的增益裕量。<1,称负的增益裕量。若系统稳定,增益裕量必须为正。极坐标图的增

益裕量如图4.28(a)所示。

开环对数频率特性的增益裕量如图4.28(b)所示。

图 4.28 相位裕量和增益裕量

(a)极坐标图(b)对数坐标图

开环对数相频特性图上,满足式(4.43)时相频特性曲线穿越线,此时对

应的频率称为相位穿越频率,与此频率相对应得开环幅频特性距 0dB线的距离即为幅值的增益裕量。

稳定裕量反映了控制系统在增益和相位方面的稳定储备量。一个控制系统设计出来是稳定的,但在其后的运行中可能,可能面临许多不确定因素。例如元件制造时的偏差,测量的误差,环境等因素对元件参数的影响,运行条件的变化等。这些不确定因素可能会使系统的参数甚至结构产生一些变化。如果系统具有相当的稳定裕量,系统在一些不确定因素的影响下,仍能保持稳定。这样的系统就比较可靠。增益裕量和相位裕量一同使用,才能表示稳定裕量。稳定裕量还可以反映

系统的动态特性。稳定裕量小的系统,震荡比较剧烈,超调量往往较大。稳定裕

量过大,系统动态相应则较慢。工程上一般是系统保持保持的相对裕量和大于6dB的增益裕量。

以上讨论的相对裕量和增益裕量的计算机结论,只适用于最小相位系统。最小相位系统是指开环传递函数在s平面右半边无零极点的系统。控制系统中遇到的多数系统都是最小相位系统。但相对稳定性问题绝不仅仅限于最小相位系统。控制系统在不确定因素影响下的稳定性问题,称为系统的鲁棒性(robustness)问题。对于多输入多输出系统,鲁棒性问题十分复杂而且重要。

性能稳定性分析

性能稳定性分析 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447 (2)t=0.447时,

二阶瞬态响应特性与稳定性分析资料报告

广西大学实验报告纸 组长: 组员: 指导老师: 成绩: 学院:电气工程学院 专业:自动化 班级:163 实验容:实验五 二阶瞬态响应特性与稳定性分析 2018年5月11日 【实验时间】 2018年 5月 11日 【实验地点】 综合808 【实验目的】 1、以实际对象为基础,了解和掌握典型二阶系统的传递函数和模拟电路图。 2、观察和分析典型二阶系统在欠阻尼、临界阻尼、过阻尼的响应曲线。 3、学会用MATLAB 分析系统稳定性。 【实验设备与软件】 1、Multisim 10电路设计与仿真软件 2、labACT 试验台与虚拟示波器 3、MATLAB 数值分析软件 【实验原理】 1、被模拟对象模型描述 永磁他励电枢控制式直流电机如图1(a )所示。根据Kirchhoff 定律和机电转换原理,可得如下方程 u k Ri dt di L e =++ω (1) l t T i k b dt d J -=+ωω (2) ωθ =dt d (3) 式中,各参数如图1(a )所示:L 、R 为电机和负载折合到电机轴上的转动惯量,Tl 是折合到电机轴上的总的负载转矩,b 是电机与负载折合到电机轴上的粘性摩擦系数;kt 是转矩系数(Nm/A ),k e 是反电动势 系数(Vs/rad )。令R L /e =τ(电磁时间常数),b J /m =τ(机械时间常数) ,于是可由这三个方程 画出如图1(b )的线性模型框图。 将Tl 看成对控制系统的扰动,仅考虑先行模型框图中()()s s U Θ→的传递函数为 ()()()()()s Rb k k s s Rb k s U s s G t e m e t 1 /11/?+++=Θ= ττ (4) 考虑到电枢电感L 较小,在工程应用中常忽略不计,于是上式转化为

稳定性分析答案

稳定性分析 2009-10-14 14:18 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ 是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ 能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=S2 δ=δ0+δ/dt2 所以PI=*2PI*f/10t方 t=更号10/50=

控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分 析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示:

对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。

当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示:

根据所连接的电路图可以知道其开环传递函数为: 其中,R x的单位为kΩ。系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为012,调节R x可以调节K,从而调节系统的性能。具体实验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为0.6s左右。 取,程序为:G=tf(50,[1,2*sqrt(2),50]); step(G)

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析 一·实验目的 1学习和掌握动态性能指标的测试方法。 2研究典型系统参数对系统动态性能和稳定性的影响。 二·实验要求 1观测二阶系统的阶跃响应测出其超调量和调节时间并研究其参数变化对动态性能和稳定性的影响。 2观测三阶系统的阶跃响应测出其超调量和调节时间并研究其参数变化对动态性能和稳定性的影响。 三·实验步骤 1熟悉实验箱利用实验箱上的模拟电路单元参考本实验附录中的图2.1.1和图2.1.2设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路如用U9、U15、U11和U8连成。注意实验接线前必须对运放仔细调零。接线时要注意对运放锁零的要求。 2利用实验设备观测该二阶系统模拟电路的阶跃特性并测出其超调量和调节时间。 3改变该二阶系统模拟电路的参数观测参数对系统动态性能的影响。 4利用实验箱上的模拟电路单元参考本实验附录中的图2.2.1和图2.2.2设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路如用U9、U15、U11、U10和U8连成。 5利用实验设备观测该三阶系统模拟电路的阶跃特性并测出其超调量和调节时间。 6改变该三阶系统模拟电路的参数观测参数对系统稳定性与动态指标的影响。 7分析实验结果完成实验报告。注意以上实验步骤中的2、3与5、6的具体操作方法请参阅“实验一”的实验步骤2实验步骤7的具体操作方法请参阅“实验一”的实验步骤3这里不再赘述。 附录 1典型二阶系统 典型二阶系统的方块结构图如图 2.1.1所示 其开环传递函数为 其闭环传递函数为其中 取二阶系统的模拟电路如图2.1.2所示该系统的阶跃响应如图2.1.3所示Rx接U4单元的220K电位器改变元件参数Rx大小研究不同参数特征下的时域响应。2.1.3a 2.1.3b 2.1.3c 分别对应二阶系统在过阻尼临界阻尼欠阻尼三种情况下的阶跃响应曲线

原料药稳定性试验报告

L- 腈化物稳定性试验报告 一、概述 L-腈化物是L- 肉碱生产过程中的第一步中间体(第二步中间体: L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L- 肉碱生产工艺为 间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存 入中间体仓库,以备下一步生产投料所需。根据本公司L- 肉碱产品的 整个生产周期,L- 腈化物入库后可能存放的最长时间为4 周(约28 天)。以此周期为时间依据制定了L- 腈化物稳定性试验方案,用于验 证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符 合L- 腈化物的质量标准,此次稳定性试验的整个周期为28 天,具体 的稳定性试验方案以ICH 药物稳定性指导原则为基础制定,以确保L- 腈化化物稳定性试验的可操作性。 二、验证日期 2010 年1 月13 日- 2010 年2 月10 日 三、验证方案 1)样品储存和包装: 考虑到L- 腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品 批次与最终规模生产所用的L- 腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与 最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13 起,每隔7 天取样一次,共取五次,具体日期为:2010.1.13 、2010.1.20 、2010.1.27 、 2010.2.3 、2010.2.10 ,以确保试验次数足以满足L- 腈化物的稳 定性试验的需要。。 4)检测项目:根据L- 腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这 些指标在L- 腈化物的储存过程中可能会发生变化,且有可能影响 其质量和有效性。 5)试样来源和抽样:L- 腈化物由公司102 车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L- 腈化物均取自于该中间体仓 库,其抽样方法和抽样量均按照L- 腈化物抽样方案进行抽样。抽 样完毕后直接进行检测分析,并对检测结果进行登记,保存,作为稳 定性数据评估的依据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L- 腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L- 腈化物是否适用 现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

实验二:系统稳定性和稳态性能分析

实验二:系统稳定性和稳态性能分析 主要内容: 自动控制系统稳定性和稳态性能分析上机实验 目的与要求: 熟悉 MATLAB 软件对系统稳定性分析的基本命令语句 熟悉 MATLAB 软件对系统误差分析的 Simuink 仿真 通过编程或 Simuink 仿真完成系统稳定性和稳态性能分析 一 实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二 实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用 MA TLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 (2)已知单位负反馈控制系统的开环传递函数为( 2.5)()(0.5)(0.7)(3)k s G s s s s s +=+++,当取k =1,10,100用MA TLAB 编写程序来判断闭环系统的稳定性。 只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。 2、稳态误差分析 (1)已知如图所示的控制系统。其中2(5)()(10) s G s s s +=+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。 从 Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如右上图所示: (2)若将系统变为I 型系统,5()(10) G s s s =+,在阶跃输入、斜坡输入和加速度信

整车操纵稳定性仿真分析报告分析解析

L11整车操纵稳定性仿真分析报告 (HB11A/HB12A) 编制(日期) 校对(日期) 审核(日期) 批准(日期) 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A) 1.定半径稳态圆周试验 试验方法 HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。 数据处理 “方向盘转角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图1 方向盘转角—侧向加速度(左转) 从图1 计算得到左转不足转向梯度为137o/g

图2 方向盘转角—侧向加速度(右转) 右转不足转向梯度为g,则HB11A平均不足转向梯度为g。 HB11A的角传动比约为,则不足转向梯度/转向系角传动比为g。 “质心侧偏角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图3 质心侧偏角——侧向加速度(左转) 左转侧偏角梯度为g。 图4 质心侧偏角——侧向加速度(右转) 右转侧偏角梯度为g,则HB11A平均侧偏角梯度为g。 “车身侧倾角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图5 车身侧倾角——侧向加速度(左转) 左转侧倾角梯度为g。 图6 车身侧倾角—侧向加速度(右转) 右转侧倾角梯度为g,则HB11A平均侧倾角梯度为g。 2.方向盘转角阶跃输入试验 试验方法 HB11A处于满载状态,以70km/h的车速稳定直线行驶,开始记录数据,以尽可能快的速度(阶跃时间为转动方向盘,达到预定的转角,保持方向盘转角不变直至汽车恢复稳定状态,试验过程中油门踏板开度应尽可能保持不变。方向盘转角初始值是10°,每次增加5°,直到车辆达到附着极限,试验分为向左、向右两个方向进行。 数据处理 —方向盘转角滞后时间 横摆角速度达到50%稳态值时相对于方向盘转角达到50%阶跃值时的滞后时间。 图7 时横摆角速度—方向盘转角滞后时间 左转时,横摆角速度——方向盘转角滞后时间为

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

原料药稳定性试验报告

L-腈化物稳定性试验报告 一、概述 L-腈化物是L-肉碱生产过程中的第一步中间体(第二步中间体:L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L-肉碱生产工艺为间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存入中间体仓库,以备下一步生产投料所需。根据本公司L-肉碱产品的整个生产周期,L-腈化物入库后可能存放的最长时间为4周(约28天)。以此周期为时间依据制定了L-腈化物稳定性试验方案,用于验证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符合L-腈化物的质量标准,此次稳定性试验的整个周期为28天,具体的稳定性试验方案以ICH药物稳定性指导原则为基础制定,以确保L-腈化化物稳定性试验的可操作性。 二、验证日期 2010年1月13日----2010年2月10日 三、验证方案 1)样品储存和包装: 考虑到L-腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品批次与最终规模生产所用的L-腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13起,每隔7天取样一次,共取五次,具体日期为:2010.1.13、2010.1.20、2010.1.27、2010.2.3、2010.2.10,以确保试验次数足以满足L-腈化物的稳定性试验的需要。。 4)检测项目:根据L-腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这些指标 在L-腈化物的储存过程中可能会发生变化,且有可能影响其质量和有效 性。 5)试样来源和抽样:L-腈化物由公司102车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L-腈化物均取自于该中间体仓库,其抽 样方法和抽样量均按照L-腈化物抽样方案进行抽样。抽样完毕后直接进 行检测分析,并对检测结果进行登记,保存,作为稳定性数据评估的依 据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L-腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L-腈化物是否适用现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的L-腈化物在再试验期内是否仍符合其质量规范。本次试验数据以表格、图解的形式给出,从而对L-腈化物的稳定性数据进行有效的评估。

自动控制实验报告一-控制系统的稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中K1=R3/R2,R2=100K,R3=0~500K;T=RC,R=100K,C=1f或C=0.1f两种情况。 四、实验步骤

1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电 路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50K,100K,200K,此时相应的K=10,K1=5,10,20。观察 不同R3值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200k,100k,50k,观察不同R3值时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K 值,并观察U2的输出波形。 五、实验数据 1模拟电路图

2.画出系统增幅或减幅振荡的波形图。C=1uf时: R3=50K K=5: R3=100K K=10

R3=200K K=20: 等幅振荡:R3=220k:

增幅振荡:R3=220k: R3=260k:

C=0.1uf时:R3=50k:

稳定性评价报告

福鼎市白琳玄武岩矿山北坡地质灾害点治理后斜坡 稳定性评价报告 1、概况 1.1矿区概况 福鼎大嶂山玄武岩矿山位于福鼎城关193°方向,平距20km 处,隶属福鼎市白琳镇山后山村管辖。地理坐标:东经120°09′48.3″--120°10′24.6″,北纬27°9′16.3″--27°9′39″。矿山到白琳镇约5公里。由白琳镇到福鼎八尺门约10公里可与国道主干线沈海高速福鼎至宁德段高速公路相连;温州至福州铁路经过白琳;交通便利(详见交通位置图1)。 福鼎市 27° 省 20km 寿宁 泰顺 柘荣 周宁 往福州 福安市 宁德市 120° 120° 霞浦江 浙 交 通 位 置 图 图1 10 溪潭 南阳 三沙 下白石赛岐 溪南 沙江 长春 下浒 27° 三都澳 福 宁 高 速 路 福安连接线 湾坞 往古田 往屏南 白琳 秦屿 沙埕 苍南 往政和 嵛山 白岩 东海 弃渣场位置 温福 铁路

1.2矿山北坡地质灾害点概况 福鼎白琳玄武岩矿山开发建设始于20世纪80年代初期,由3家公司于不同位置分别对白琳玄武岩体进行掠夺性开采。采区按地理位置分为北坡采场、东坡采场和南坡采场。1997年以前,由于无序开采和监管缺失,北坡采场剥离层剥离后形成的大量废石土就地堆弃于邻近采场的北坡冲沟内。随着时间的推移,无序开采造成白琳玄武岩矿山北坡的废石土超量排放。期间最大排放的废石土总量超过200万m3,大大超出北坡地质环境承载能力。由于北坡废石土的超量排放,致使北坡内及边缘曾多次发生小规模滑坡地质灾害。最为严重是于1998年2月18日受强降雨影响,北坡地质灾害点发生大面积的山体滑坡,滑坡规模在100万m3以上,由于大规模滑坡堵塞沟谷,影响场地内大气降水的自然排泄,并由于进一步引发大规模的泥石流地质灾害,造成18人员死亡、村落毁灭和公路毁坏交通中断的重大事故。泥石流的流通区长度达1km以上,堆积区长度达1km。此后,通过福鼎市政府干预,对矿山无序开采进行整顿,对3个采场进行整合,由福建白琳玄武石材有限公司通过组织白琳玄武岩的开采、经营,并择址建设南坡排土场,集中排放矿山建设、开采所形成的废石土。由于北坡弃碴系历史原因形成,福鼎玄武石材有限公司成立后未对北坡碴进行根本性治理。 2010年12月,受持续强降雨影响,白琳玄武岩矿山北坡临近采场的陡坡坡顶面以及矿山道路路面等出路弃碴的地段出现多道长30~50m,宽度5~15cm,深度0.3~1.5m的裂缝,局部裂缝下错约0.2~0.3m。陡坡坡底的缓坡地段也出现多道长20~30m,宽度5~10cm,深度0.3~1.5m的裂缝,局部裂缝下错约0.1~0.3m。随后裂缝灾害的空间进一步发展,于北坡西侧的冲

控制实验报告二典型系统动态性能和稳定性分析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示: 对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 因此,调整R x 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调

的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。 当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示: 根据所连接的电路图可以知道其开环传递函数为: 其中,R 的单位为kΩ。系统特征方程为,根据 x 劳斯判据可以知道:系统稳定的条件为012,调节R 可以调节K,从而调节系统的性能。具体实 x 验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为左右。

实验一控制系统地稳定性分析报告

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++, 用MATLAB编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。在MATLAB命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc)

dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 + 0.0000i -1.0000 + 0.0000i -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) Grid 运行结果如下: z = -2.5000 p = -3.0297 + 0.0000i

手动作稳定性实验报告

手动作稳定性实验报告 摘要本研究以大学生为被试,学习测定手动作的稳定性,并通过比赛一正常情境下检测了情绪对手动作的稳定性的影响。结果发现,无论是正常情境还是比赛情境,5个被试间的手稳定性个体差异并不明显。并且正常情境和比赛情境下每个被试手动作稳定指标不存在显著差异。 关键词手动作稳定情境情绪 1 引言 手动作的稳定性是衡量手部动作质量的重要指标。他受个体自身和外界很多因素的影响,其中情绪就是一个重要的影响因素。情绪的波动会引起手臂肌肉的震颤。当一个人尽量控制自己的身体、手臂和手指等保持不动时,往往仍有明显的不由自主的细微颤动,身体某部位的这种颤动范围可作为控制运动能力的指标。颤动范围越大,控制运动的能力越低;反之,控制运动的能力越强。而当一个人出于某种情绪状态时,这种身体的不自主颤动会比心平气和时明显,所以这种颤动范围又可作为情绪强度的指标。本实验所用的九洞动作稳定器就是一种通过测定手的动作稳定程度来间接测量情绪波动程度的仪器。 本次实验目的是学习测定手动作的稳定性,检测情绪对手动作的稳定性的影响。 2 方法 2.1被试 被试为5名盐城师范学院大学生,平均年龄21岁。 2.2仪器 JWG-B心理实验台计时 计数单元 九洞仪 2.3实验程序 1.准备工作。 (1)用导线将九洞仪的计时、计数输出与心理实验台的计时、计数输入接好,将测试笔的插头插入九洞仪的探笔插口。 (2)将电源插头插入实验台主试侧右方插座内,接通电源。开启计时、计数器电源开关,计时屏幕显示为:“0.000”秒,正确次数和错误次数均显示为“0”,工作方式选择“计时、计数” (3)指导语:“请你用优势手握住测试笔,悬肘使测试笔与九洞仪面垂直的伸入洞内,直到与洞底接触(这时九洞仪上方源灯亮)再取出。笔进出洞不得碰洞边,先进大洞完成三次不碰洞边算通过,每次完成一个洞三次,你就用测试笔点击九洞仪,结束点一次,然后向我报告完成哪一个洞。如果对同一洞连续碰边两次,该洞就算没有通过,当笔碰边时九洞仪上方红灯亮并有警报声。完成大洞再依次进入较小的洞。” (4)主试发出“预备”口令后,按动实验台操作箱内左侧“启动”按钮,被试开始试验,按上述要求做完试验后,另换一被试按同法进行测试,主试分别记录各被试通过洞地直径和时间,并以三次通过最小洞的直径的平均数的倒数作

测量系统分析作业指导书(稳定性、偏移和线性研究)分析报告

有限公司作业文件 文件编号:版号:A/0 (MSA)测量系统分析 稳定性、偏移和线性研究 作业指导书 批准:吕春刚 审核:尹宝永 编制:邹国臣 受控状态:分发号: 2010年11月15日发布2010年11月15日实施

量具的稳定性、偏移、线性研究作业指导书JT/C-7.6J-003 1目的 为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。 2适用范围 适用于公司使用的所有测量仪器的稳定性、偏移和线性的测量分析。3职责 3.1检验科负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。 3.2工会负责根据需要组织和安排测量系统技术应用的培训。 3.3生产科配合对测量仪器进行测量系统分析。 4术语 4.1偏倚 偏倚是测量结果的观测平均值与基准值(标准值)的差值。 4.2稳定性(飘移) 稳定性是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。 4.3线性 线性是在量具预期的工作量程内,偏倚值的变差。 4.4重复性 重复性是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性获得的测量值的变差。 4.5再现性 再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。 5测量系统分析作业准备 5.1确定测量过程需要使用的测量仪器以及测量系统分析的范围。 a)控制计划有要求的工序所使用的测量仪器; b)有SPC控制要求的过程,特别是有关键/特殊特性的产品及过程; c)新产品、新过程; d)新增的测量仪器; e)已经作过测量系统分析,重新修理后。 5.2公司按GB/T10012标准要求,建立公司计量管理体系,确保建立的测

实验二 典型系统动态性能和稳定性分析

实验二典型系统动态性能和稳定性分析一.实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二.实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2.观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三.实验步骤 1.熟悉实验装置,利用实验装置上的模拟电路单元,参考本实验附录中的图2.1.1和图2.1.2,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路(如用U9、U15、U11和U8连成)。注意实验接线前必须对运放仔细调零(出厂已调好,无需调节)。信号输出采用U3单元的O1、信号检测采用U3单元的I1、运放的锁零接U3单元的G1。 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。 3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。 4.利用实验装置上的模拟电路单元,参考本实验附录中的图2.2.1和图2.2.2,设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路(如用U9、U15、U11、U10和U8连成)。 5.利用实验设备观测该三阶系统模拟电路的阶跃特性,并测出其超调量和调节时间。 6.改变该三阶系统模拟电路的参数,观测参数对系统稳定性与动态指标的影响。 7.分析实验结果,完成实验报告。 软件界面上的操作步骤如下: ①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的 信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。 ②硬件接线完毕后,检查USB口通讯连线和实验装置电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

第五章稳定性分析

第五章:控制系统的稳定性分析 3.3.5 控制系统的稳定性分析 ?稳定性的概念 ?线性系统稳定的充要条件 ?线性系统稳定的必要条件 ?代数判据(一般情况,特殊情况,劳斯,赫尔维茨) ?劳斯判据的应用(确定稳定域判断稳定性,求系统的极点,设计系统中的参数 3.3.5.1 稳定性的概念 分析小球平衡点的稳定性 定义:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称稳定。反之,若在初始扰动 的影响下,系统的过渡过程随时间的推移而发散,则称该系统不稳定。

3.3.5.2线性系统稳定性的充要条件 设系统的微分方程模型为: 分析系统的稳定性是分析在扰动的作用下,当扰动消失后系统是否能回到原来的平衡状态的性能,亦系统在作用下的性能,亦与系统的输入信号无关,只与 系统的内部结构有关。对上述微分方程描述的系统亦只与等式的左端有关,而与右端无关,亦:系统的稳定性是由下列齐次方程所决定: 其稳定性可转化为上述齐次方程的解c(t)若则系统稳定, 则 系统不稳定。分析齐次方程的解的特征。 由微分方程解的知识,上述方程对应的特征多项式为: 设该方程有k个实根(i=1,2,…k) r对复根(i=1,2,…r) k+2r=n 且各根互异(具有相同的根时分析方法相同,推导稍繁琐) 则上述齐次方程的一般解为: 其中为常数,由式中的决定,分析可见:只有当 时,否则。

注:只能是小于零,等于或大于均不行。等于零的情况为临界稳定,属不稳定。综: 线性系统稳定的充要条件(iff)是: 其特征方程式的所有根均为负实数或具有负的实部。 亦:特征方程的根均在根平面(复平面、s平面)的左半部。 亦:系统的极点位于根平面(复平面、s平面)的左半部。 从上面的充要条件可以看出:系统稳定性的判断只需计算上系统的极点,看其在s平面上的位置,勿需去计算齐次方程的解(当系统复杂时的计算可能很繁),勿需去计算系统的脉冲响应。 3.3.5.3 线性系统稳定的必要条件 设系统特征方程式中所有系数均为实数,并设(若,对特征方程两端乘(-1)),可以证明上述特征方程中所有系数均大于零(即)是该特征方程所有根在s平面的左半平面的必要条件。也就是说,()特征根有可能在左半s平面,否则()特征根中有在虚轴上或右半平面的。 证明: 设 有n个根 k个实根(i=1,2,…k) r对复根(i=1,2,…r) k+2r=n

相关文档
最新文档