高三物理动能定理和机械能守恒定律

动能定理和机械能守恒定律

【命题趋向】

《大纲》对本部分考点均为Ⅱ类要求,即对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。

功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分量重,而且还经常有高考压轴题。考查最多的是动能定理和机械能守恒定律。易与本部分知识发生联系的知识有:牛顿运动定律、圆周运动、带电粒子在电场和磁场中的运动等,一般过程复杂、难度大、能力要求高。本考点的知识还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。 【考点透视】 一、理解功的概念

1.功是力的空间积累效应。它和位移相对应。计算功的方法有两种:

?按照定义求功。即:W=Fscosθ。 在高中阶段,这种方法只适用于恒力做功。当2

θ<≤时F 做正

功,当2πθ=

时F 不做功,当πθπ

≤<2

时F 做负功。 这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。

?用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。

2.会判断正功、负功或不做功。判断方法有:○1用力和位移的夹角α判断;○2用力和速度的夹角θ判断定;○

3用动能变化判断. 3.了解常见力做功的特点:

重力(或电场力)做功和路径无关,只与物体始末位置的高度差h (或电势差)有关:W=mgh (或W=qU ),当末位置低于初位置时,W >0,即重力做正功;反之则重力做负功。

滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。

在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。 二、深刻理解功率的概念

1.功率的物理意义:功率是描述做功快慢的物理量。

2.功率的定义式:t

W

P =

,所求出的功率是时间t 内的平均功率。 3.功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②当v 为某段

位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率。

4.重力的功率可表示为P G =mgV y ,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。 三、深刻理解动能的概念,掌握动能定理。

1.动能22

1

mV E k =

是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。 2.动能定理的表述

合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔE K .

动能定理建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。 四、掌握机械能守恒定律。

1.机械能守恒定律的两种表述

?在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化

时,机械能的总量保持不变。

2.对机械能守恒定律的理解:

①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v ,也是相对于地面的速度。

②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。

③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功或除重力之外的力做功的代数和为零。

2.机械能守恒定律的各种表达形式 ?222

1

21v m h mg mv mgh '+'=+

,即k p k p E E E E '+'=+;

?0=?+?k P E E ;021=?+?E E ;减增E E ?=?

用?时,需要规定重力势能的参考平面。用?时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用ΔE 增=ΔE 减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。

五、深刻理解功能关系,掌握能量守恒定律。

1.做功的过程是能量转化的过程,功是能的转化的量度。

能量守恒和转化定律是自然界最基本的规律之一。而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。本章的主要定理、定律都可由这个基本原理出发而得到。

需要强调的是:功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。

2.复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。突出:“功是能量转化的量度”这一基本概念。

①物体动能的增量由外力做的总功来量度:W外=ΔE k,这就是动能定理。

②物体重力势能的增量由重力做的功来量度:W G= -ΔE P,这就是势能定理。

同理:电场力做功量度电势能的变化,即W电= -ΔE P。

③物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。

④当W其=0时,说明只有重力做功,所以系统的机械能守恒。

⑤一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。Q=fd(d为这两个物体间相对移动的路程)。

【例题解析】

类型一:功和功率的计算

例1.如下图甲所示,质量为m

解析

方法技巧:(1)根据功的定义计算功时一定要明确力的大小、位移的大小和力与位移间的夹角。本

个力是否做功,做正功还是做负功要具体分析。

(2)合力的功一般用各个力做功的代数和来求,因为功是标量,求代数和较简单。如果先求合力再求功,则本题合力为零,合力功也为零。

变式训练1:质量为m=0.5kg 的物体从高处以水平的初速度V 0=5m/s 抛出,在运动t=2s 内重力对物体做的功是多少?这2s 内重力对物体做功的平均功率是多少?2s 末,重力对物体做功的瞬时功率是多少?(g 取2

/10s m )

类型二:机车启动问题

例2.电动机通过一绳子吊起质量为8 kg 的物体,绳的拉力不能超过120 N ,电动机的功率不能超过1200 W ,要将此物体由静止起用最快的方式吊高90 m (已知此物体在被吊高接近90 m 时,已开始以最大速度匀速上升)所需时间为多少?

解析:此题可以用机车起动类问题的思路,即将物体吊高分为两个过程处理:第一过程是以绳所能承受的最大拉力拉物体,使物体以最大加速度匀加速上升,第一个过程结束时,电动机刚达到最大功率.第二个过程是电动机一直以最大功率拉物体,拉力逐渐减小,当拉力等于重力时,物体开始匀速上升.

在匀加速运动过程中加速度为 a =

8108120m ?-=-m mg F m/s 2=5 m/s 2,末速度V t =120

1200

=m m F P =10 m/s 上升的时间t 1=510=a V t s=2 s ,上升高度为h =5

21022

2

?=a V t =10 m 在功率恒定的过程中,最后匀速运动的速率为 V m =

1081200

?=

=mg P F P m m =15 m/s 外力对物体做的总功W =P m t 2-mgh 2,动能变化量为 ΔE k =

21mV 2m -2

1

mV t 2 由动能定理得P m t 2-mgh 2=

21mV m 2-2

1

mV t 2 代入数据后解得t 2=5.75 s ,所以t =t 1+t 2=7.75 s 所需时间至少为7.75 s.

点评:机车运动的最大加速度是由机车的最大牵引力决定的,而最大牵引力是由牵引物的强度决定的。弄清了这一点,利用牛顿第二定律就很容易求出机车运动的最大匀加速度。

变式训练2:汽车的质量为m ,发动机的额定功率为P ,汽车由静止开始沿平直公路匀加速启动,加速度为a ,假定汽车在运动中所受阻力为f (恒定不变),求汽车能保持作匀加速运动的时间。

类型三:动能定理的应用

例3.如图所示,质量为m 的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F 作用下,以恒定速率v 0竖直向下运动,物体由静止开始运动到绳与水平方向夹角 =45o过程中,绳中拉力对物体做的功为

A .1

4

mv 02 B .mv 02 C .1

2

mv 02 D

.202

解析:物体由静止开始运动,绳中拉力对物体做的功等于物体

增加的动能。

物体运动到绳与水平方向夹角α=45o时的速率设为v ,有:v cos45o=v 0,则:v

0所以绳的拉力对物体做的功为W =

22

012

mv mv = 答案:B 。

题后反思:本题涉及到运动的合成与分解、功、动能定理等多方面知识。要求考生深刻理解动能定理的含义,并能够应用矢量的分解法则计算瞬时速度。

变式训练3:质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为

( )

A .m g L /4

B .m g L /3

C .m g L /2

D .m g L

类型四:机械能守恒定律的应用

例4.如图所示,半径为R 的光滑圆形轨道固定在竖直面内。小球A 、B 质量分别为m 、βm (β为待定系数)。A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度

均为

R 4

1

,碰撞中无机械能损失。重力加速度为g 。试求: (1)待定系数β。

(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的

压力。

解析:(1)由机械能守恒定律得4

4mgR

mgR mgR β+=

故3=β。 (2)设A 、B 第一次碰撞后的速度大小分别为1v 、2v ,则42121mgR mv =,4

212

2mgR mv ββ=,故

21gR

v =

,向左;2

2gR

v =向右; 设轨道对B 球的支持力为N ,B 球对轨道的压力为N ',R

v m mg N 22

ββ=-,由牛顿第三定律知

mg N N 5.4==',方向竖直向下。

点评:对物理问题进行逻辑推理得出正确结论和作出正确判断,并把推导过程正确地表达出来,体

现了对推理能力的考查,希望考生注意这方面的训练。特别是第三问设问有一定的开放性,考生应先弄清题目中的情景和事件,分析出前两次或三次碰撞后的特点再找规律对问题作解答,类似数学归纳思想。 变式训练4:(08江苏卷)如图所示,两光滑斜面的倾角分别为30°和45°,质量分别为2m和m的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放.则在上述两种情形中正确的有

A.质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的

支持力的作用

B .质量为m的滑块均沿斜面向上运动

C .绳对质量为m滑块的拉力均大于该滑块对绳的拉力

D .系统在运动中机械能均守恒 类型五:功能关系的应用

例5.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间摩擦不计.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,设两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度。对于

m 、M 和弹簧组成的系统

A .由于F 1、F 2等大反向,故系统机械能守恒

B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大

C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动

D .由于F 1、F 2均能做正功,故系统的机械能一直增大

解析:由于F 1、F 2对系统做功之和不为零,故系统机械能不守恒,A 错误;当弹簧弹力大小与F 1、F 2大小相等时,速度达到最大值,故各自的动能最大,B 正确;由于弹力是变化的,m 、M 所受合力是变化的,不会做匀加速运动,C 错误;由于F 1、F 2先对系统做正功,当两物块速度减为零时,弹簧的弹力大于F 1、F 2,之后,两物块再加速相向运动,F 1、F 2对系统做负功,系统机械能开始减少,D 错误。

答案:B 。

题后反思:本题涉及到弹簧,功、机械能守恒的条件、力和运动的关系等较多知识。题目情景比较复杂,全面考查考生理解、分析、解决问题的能力。功能关系与弹簧相结合的考题在近年高考中出现得较多,复习中要加以重视。

变式训练5:一传送带装置示意图如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。已知在一段相当长的时间T 内,共运送小货箱的数目为N 。这装置由电动机带动,传送带与轮子间无相

对滑动,不计轮轴处的摩擦。求电动机的平均输出功率P 。

【专题训练与高考预测】

1.运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说

法正确的是

( )

A .阻力对系统始终做负功

B .系统受到的合外力始终向下

C .重力做功使系统的重力势能增加

D .任意相等的时间内重力做的功相等

2.如图,一轻绳的一端系在固定粗糙斜面上的O 点,另一端

系一小球.给小球一足够大的初速度,使小球在斜面上做 圆周运动.在此过程中 ( ) A .小球的机械能守恒 B .重力对小球不做功 C .绳的张力对小球不做功

D .在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少 3. 如图所示,粗糙的斜面与光滑的水平面相连接,滑块沿水平面以

速度

0v 运动.设滑块运动到A 点的时刻为t=0,

距A 点的水平距

离为x ,水平速度为x v .由于0v 不同,从A 点到B 点的几种可 能的运动图象如下列选项所示,其中表示摩擦力做功最大的是 ( )

4.如图所示.一根不可伸长的轻绳两端各系一个小球a 和b ,跨在两根固定在同一高度的光滑水平细杆上,

质量为3m 的a 球置于地面上,质量为m 的b 球从水平位置静止释放.当a 球对地面压力刚好为零时,b 球摆过的角度为θ.下列结论正确的是 ( ) A .θ=90°

B .θ=45°

C .b 球摆动到最低点的过程中,重力对小球做功

的功率先增大后减小

D .b 球摆动到最低点的过程中,重力对小球做功的功率一直增大

5.一滑块在水平地面上沿直线滑行,t=0时其速度为1 m/s 。从此刻开始滑块运动方向上再施加一水平面

作用F ,力F 和滑块的速度v 随时间的变化规律分别如图a 和图b 所示。设在第1秒内、第2秒内、第3秒内力F 对滑块做的功分别为123W W W 、、,则以下关系正确的是

( )

A .123W W W ==

B .123W W W <<

C .132W W W <<

D .123W W W =<

6. 如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一

小球a 和b .a 球质量为m ,静置于地面;b 球质量为3m , 用手托住,高度为h ,此时轻绳

刚好拉紧.从静止开始释放b 后,a 可能达到的最大高度为( ) A .h B .1.5h C .2h

D .2.5h

7.物体做自由落体运动,E k 代表动能,E p 代表势能,h 代表下落的距离,以

水平地面

为零势能面。下列所示图像中,能正确反映各物理量之间关系的是

( )

8.如图所示,质量m =0.5kg 的小球从距地面高H =5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形

槽壁运动,半圆槽半径R =0.4m 。小球到达槽最低点时速率为10m/s ,并继续沿槽壁运动直到从槽左端边缘飞出……,如此反复几次,设摩擦力恒定不变,小球与槽壁相碰时机械能不损失,求:

(1)小球第一次离槽上升的高度h ;

(2)小球最多能飞出槽外的次数(取g =10m/s 2)。

9.滑板运动是一项非常刺激的水上运动,研究表明,在进行滑板运动时,水对滑板的作用力F x垂直于板面,大小为kv2,其中v为滑板速率(水可视为静止).某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37°时(如图所示),滑板做匀速直线运动,相应的k=54 kg/m,入和滑板的总质量为

108 kg,试求(重力加速度g取10 m/s2,sin 37°取3

5

,忽略空气阻力):

(1)水平牵引力的大小;

(2)滑板的速率;

(3)水平牵引力的功率.

10.如图所示,竖直平面内的轨道ABCD由水平轨道AB与光滑的四分之一圆弧轨道CD组成,AB恰与圆弧CD在C点相切,轨道固定在水平面上。一个质量为m的小物块(可视为质点)从轨道的A端以初动能E冲上水平轨道AB,沿着轨道运动,由DC弧滑下后停在水平轨道AB的中点。已知水平轨道AB长为L。求:

(1)小物块与水平轨道的动摩擦因数 。

(2)为了保证小物块不从轨道的D端离开轨道,圆弧轨道的半径R至少是多大?

(3)若圆弧轨道的半径R取第(2)问计算出的最小值,增大小物块的初动能,使得小物块冲上轨道后可以达到最大高度是1.5R处,试求物块的初动能并分析物块能否停在水平轨道上。如果能,

将停在何处?如果不能,将以多大速度离开水平轨道?

11.图中有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调.起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L,现有一质量也为m的物体从距地面2L处自由落下,与滑块

碰撞后粘在一起向下运动.为保证滑块做匀减速运动,且下移距离为2mg

k

时速度减为0,ER流体对滑

块的阻力须随滑块下移而变。试求(忽略空气阻力):

(1)下落物体与滑块碰撞过程中系统损失的机械能; (2)滑块向下运动过程中加速度的大小;

(3)滑块下移距离d 时ER 流体对滑块阻力的大小.

12.如图所示,光滑坡道顶端距水平面高度为h ,质量为m 的小物块A 从坡道顶端由静止滑下,进入水平

面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端恰位于滑道的末端O 点。已知在OM 段,物块A 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求: (1)物块速度滑到O 点时的速度大小;

(2)弹簧为最大压缩量d 时的弹性势能 (设弹簧处于原长时弹性势能为零) (3)若物块A 能够被弹回到坡道上,则它能够上升的最大高度是多少?

参考答案

变式训练

1.解:t=2s 内,物体在竖直方向下落的高度202102

1

2122=??==

gt h m , 所以有0.51020100G W mgh J J ==??=,平均功率50==t

W

P W 。 在t=2s 末速度物体在竖直方向的分速度s m gt V yt /20==,所以t=2s 末瞬时功率

100==yt mgV P W 。

2.解:汽车运动过程中受牵引力F 和阻力f 共同作用,由牛顿定律知

3.答案:C

解析:由牛顿运动定律得,小球经过最低点时7m g-mg =mv 12/L ,小球恰好能通过最高点的条件是重力提供向心力,即mg =mv 22/L ,由动能定理得,mv 12/2- mv 22/2=2mgL -W f ,解以上各式得,W f = m g L /2,故选项C 正确。

4.解析:考查受力分析、连接体整体法处理复杂问题的能力。每个滑块受到三个力:重力、绳子拉力、

斜面的支持力,受力分析中应该是按性质分类的力,沿着斜面下滑力是分解出来的按照效果命名的力,A 错;对B 选项,物体是上滑还是下滑要看两个物体的重力沿着斜面向下的分量的大小关系,由于2m 质量的滑块的重力沿着斜面的下滑分力较大,故质量为m 的滑块必定沿着斜面向上运动,B 对;任何一个滑块受到的绳子拉力与绳子对滑块的拉力等大反向,C 错;对系统除了重力之外,支持力对系统每个滑块不做功,绳子拉力对每个滑块的拉力等大反向,且对滑块的位移必定大小相等,故绳子拉力作为系统的内力对系统做功总和必定为零,故只有重力做功的系统,机械能守恒,D 对。 答案:BD

5.解:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动

摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有2

2

1at s =

① at v =0② 在这段时间内,传送带运动的路程为t v s 00= ③ 由以上可得s s 20= ④

用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为

202

1mv fx A =

= ⑤ 传送带克服小箱对它的摩擦力做功2

0002

12mv fx A ?== ⑥ 两者之差就是克服摩擦力做功发出的热量 202

1mv Q =

⑦ 可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。 T 时间内,电动机输出的功为 :

T P W = ⑧

此功用于增加小箱的动能、势能以及克服摩擦力发热,即

NQ Nmgh Nmv W ++=

202

1 ⑨ 已知相邻两小箱的距离为L ,所以

NL T v =0 ⑩

联立⑦⑧⑨⑩,得][22

2gh T

L N T Nm P += ⑾

专题训练与高考预测

1.答案:A 2.答案:C

解析:斜面粗糙,小球受到重力、支持力、摩擦力、绳子拉力,由于除重力做功外,摩擦力做负功,机械能减少,A 、B 错;绳子张力总是与运动方向垂直,故不做功,C 对;小球动能的变化等于合外力做功,即重力与摩擦力做功,D 错。 3.答案:D

解析:考查平抛运动的分解与牛顿运动定律。从A 选项的水平位移与时间的正比关系可知,滑块做平抛运动,摩擦力必定为零;B 选项先平抛后在水平地面运动,水平速度突然增大,摩擦力依然为零;对C 选项,水平速度不变,为平抛运动,摩擦力为零;对D 选项水平速度与时间成正比,说明滑块在斜面上做匀加速直线运动,有摩擦力,故摩擦力做功最大的是D 图像所显示的情景,D 对。本题考查非常灵活,但考查内容非常基础,抓住水平位移与水平速度与时间的关系,然后与平抛运动的思想结合起来,是为破解点。 4.答案:AC

解析:考查向心加速度公式、动能定理、功率等概念和规律。设b 球的摆动半径为R ,当摆过角度θ

时的速度为v ,对b 球由动能定理:mgRsinθ= 1

2

mv 2,此时绳子拉力为T=3mg ,在绳子方向由向心力

公式:T -mgsinθ = m 2

v R

,解得θ=90°,A 对B 错;故b 球摆动到最低点的过程中一直机械能守恒,

竖直方向的分速度先从零开始逐渐增大,然后逐渐减小到零,故重力的瞬时功率P b = mgv 先增大后减小,C 对D 错。 5.答案:B

解析:本题考查v-t 图像、功的概念。力F 做功等于每段恒力F 与该段滑块运动的位移(v-t 图像中图像与坐标轴围成的面积),第1秒内,位移为一个小三角形面积S ,第2秒内,位移也为一个小三角形面积S ,第3秒内,位移为两个小三角形面积2S ,故W1=1×S ,W2=3×S ,W3=2×2S ,W1<W2<W3 。 6.答案:B

解析:在b 落地前,a 、b 组成的系统机械能守恒,且a 、b 两物体速度大小相等,根据机械能守恒定

律可知:

gh v v m m mgh mgh =?+=

-2)3(21

3,b 球落地时,a 球高度为h ,之后a 球向上做竖

直上抛运动,过程中机械能守恒,222

122h

g v h h mg mv =

=???=,所以a 可能达到的最大高度为1.5h,B 项正确。

7.答案:B

解析:由机械能守恒定律:E P =E -E K ,故势能与动能的图像为倾斜的直线,C 错;由动能定理:E K =mgh=

1

2mv 2=12mg 2t 2,则E P =E -mgh ,故势能与h 的图像也为倾斜的直线,D 错;且E P =E -1

2mv 2,故势能与

速度的图像为开口向下的抛物线,B 对;同理E P =E -1

2mg 2t 2,势能与时间的图像也为开口向下的抛物

线,A 错。

8.解:(1)小球从高处至槽口时,由于只有重力做功;由槽口至槽底端重力、摩擦力都做功。由于对称

性,圆槽右半部分摩擦力的功与左半部分摩擦力的功相等。 小球落至槽底部的整个过程中,由动能定理得

22

1)(mv W R H mg f =

-+ 解得221)(2

=-+=mv R H mg W f J

由对称性知小球从槽底到槽左端口克服摩擦力做功也为2=f W J ,则小球第一次离槽上升的高度h ,由

22

1

)(mv W R H mg f -=-+-

得mg

mgR

W mv h f --=2

21=4.2m

(2)设小球飞出槽外n 次,则由动能定理得

02≥?-f W n mgH

∴25.64

25

2==≤

f W mgH n 即小球最多能飞出槽外6次。

9.解:(1)以滑板和运动员为研究对象,其受力如图所

示,由共点力平衡条件可得

cos N F mg θ=

sin N F F θ=

由①、②联立,得F =810N

(2)/cos N F mg =θ 2

N F k v = 得5v =

=m/s

(3)水平牵引力的功率P =Fv=4050 W

10.解:(1)小物块最终停在AB 的中点,在这个过程中,由动能定理得

E L L mg -=+-)5.0(μ

得 m g L

E

32=μ

(2)若小物块刚好到达D 处,速度为零,同理,有E mgR mgL -=--μ

解得CD 圆弧半径至少为 mg

E

R 3=

(3)设物块以初动能E ′冲上轨道,可以达到的最大高度是1.5R ,由动能定理得 E mgR mgL '-=--5.1μ 解得6

7E

E =

' 物块滑回C 点时的动能为25.1E mgR E C =

=,由于3

2E mgL E C =<μ,故物块将停在轨道上。 设到A 点的距离为x ,有 C E x L mg -=--)(μ 解得 L x 4

1

=

即物块最终停在水平滑道AB 上,距A 点

L 4

1

处。

11.解:(1)设物体下落末速度为v 0,由机械能守恒定律2

012

mgL mv =

,得0v =

设碰后共同速度为v 1,由动量守恒定律2mv 1=mv 0得1v =

碰撞过程中系统损失的机械能力22

011112222

E mv mv mgL ?=-=

(2)设加速度大小为a ,有 2

12as v =得 8kL a m

=

(3)设弹簧弹力为F N ,ER 流体对滑块的阻力为F ER ,受力分析如图所示

22S ER F F mg ma +-= F S =kx x=d+mg/k

得4

ER kL

F mg kd =+

- 12.解:(1)由机械能守恒定律得2

2

1mv mgh =

,解得gh v 2= (2)在水平滑道上物块A 克服摩擦力所做的功为mgd W μ=

由能量守恒定律得

mgd E mv P μ+=2

2

1 以上各式联立求解得mgd mgh E P μ-=

(3)物块A 被弹回的过程中,克服摩擦力所做的功仍为mgd W μ= 由能量守恒定律得 mgd E h mg P μ-='

解得物块A 能够上升的最大高度为:d h h μ2-='

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

物理必修动能和动能定理专题复习资料

物理必修动能和动能定理专题复习资料 Revised as of 23 November 2020

高一物理重点突破(1) 动能和动能定理 辅导教师:林裕光 知识链接 一、动能 1.定义式: 2.动能是描述物体运动状态的一种形式的能,它是标量. 二、动能定理 1.表达式: 2.意义:表示合力功与动能改变的对应关系. 3.应用动能定理解题的基本步骤 (1)确定研究对象,研究对象可以是一个单体也可以是一个系统. (2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速率关系”问题. (3)若是,根据W合=E k2-E k1列式求解. 与牛顿定律观点比较,动能定理只需考查一个物体运动过程的始末两个状态有关物理量的关系,对过程的细节不予细究,这正是它的方便之处;动能定理还可求解变力做功的问题. 重点、难点、疑点突破 1 一架喷气式飞机,质量m=5×103kg,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的倍(k=),求飞机受到的牵引力。 2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g取10m/s2)

3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W= 4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220 + D. gh v 220- 5 一质量为m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 6 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。已知工件与传送带间的动摩擦因数2 3 = μ,g 取10m/s 2。 (1)试通过计算分析工件在传送带上做怎样的运动 2-7-3

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理题20套(带答案)及解析

高中物理动能与动能定理题20套(带答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求: (1)物块第一次通过C 点时的速度大小v C . (2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置. 【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】 由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】 (1)BC 长度tan 530.4m l R ==o ,由动能定理可得 21 ()sin 372 B mg L l mv -=o 代入数据的 32m/s B v = 物块在BC 部分所受的摩擦力大小为 cos370.60N f mg μ==o 所受合力为 sin 370F mg f =-=o 故 32m/s C B v v == (2)设物块第一次通过D 点的速度为D v ,由动能定理得 2211 (1cos37)22 D C mgR mv mv -= -o

高中物理《动能和动能定理(3)》优质课教案、教学设计

7.动能和动能定理 教学目标】 1、知识与技能 ①.知道动能的定义式,会用动能的定义式进行计算; ②.理解动能定理及其推导过程,知道动能定理的适用范围。 2 、过程与方法 ①.运用归纳推导方式推导动能定理的表达式;②.对比分析动力学知识 与动能定理的应用。 3、情感态度与价值观 通过动能定理的归纳推导,培养学生对科学研究的兴趣。教学重难点】 1 、重点:动能的概念和表达式。 2、难点:动能定理的理解和应用。 授课类型】新授课 主要教学方法】讲授法 直观教具与教学媒体】多媒体投影、ppt 课件、黑板、粉笔课时安排】 1 课时【教学过程】

一、复习引入 通过本章第一节伽利略理想斜面实验复习重力势能的表达式和动能的定义。 重力势能:E P mgh 动能:物体由于运动而具有的能量。例如:跑动的人、下落的重物。 二、新课教学 思考:物体的动能与哪些量有关? 情景1 :让滑块A 从光滑的导轨上滑下,与木块B 相碰,推动木块做功。A 滑下时所处的高度越高,碰撞后B 运动的越远。 情景2 :质量不同的滑块从光滑的导轨上同一高度滑下,与木块B 相碰,推动木块做功。滑块质量越大,碰撞后木块运动的越远。 师:根据以上两个情景,说明物体动能的大小与物体的速度和质量有关,且随着速度和质量的增大而增大。所以动能的表达式应该满足这样的特征。

另外,物体能量的变化一定伴随着力对物体做功,所以我们还是从 力对物体做功来探究物体动能的表达式。 (一)动能的表达式首先我们来看这样一个问题。设物体的质量为m ,在与运动方向 相同的恒定外力 F 的作用下发生一段位移所 示。试用牛顿运动定律和运动学公式,推导出力 F 对物体做功的表达式(用m 、v1、v2 表示)。 分析:根据牛顿第二定律有 F ma 又根据运动学规律v22v122al 得 v2 2 2a 则力F 对物体所做的功为: 从这个式子可以看出,“12mv2”是一个具有特定意义的物理量,它的特殊意义在于:①与力对物体做的功密切相关;②随着物体质量的增大、 1 2 速度的增大而增大。这满足物体动能的特征,所以“21 mv2” 就是我们要寻 找的动能的表达式,动能用E k 来表示,则 E 1 mv 2 k2 1、定义:物体由于运动而具有的能量; 1 2 2 、表达式:E k 2mv; 3、单位:焦耳,简称焦,有符号J 表示; 2 2 1kg m2/ s21N m 1J w Fl 2 2 2 2 v v m(v v ) 2 1 ma 2 1 2a 2 1 2 1 2 mv2 mv1 2 2 2 1 1) l ,速度由v1 增加到v2,如图

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高一物理动能定理经典题型汇总(全)

高一物理动能定理经典题型汇总(全)

————————————————————————————————作者:————————————————————————————————日期:

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵 S L V V

高中物理动能定理的综合应用试题经典及解析

高中物理动能定理的综合应用试题经典及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B

点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求: (1)物块与传送带间的动摩擦因数; (2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3 5 (2) -3.75 J 【解析】 解:(1)由图象可知,物块在前0.5 s 的加速度为:21 11 a =8?m/s v t = 后0.5 s 的加速度为:222 22 2?/v v a m s t -= = 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得: 1mgsin mgcos ma θμθ+= 物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得: 2mgsin mgcos ma θμθ-= 联立解得:3μ= (2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11 12 v t x = 则摩擦力对物块做功:11· W mgcos x μθ= 在后0.5 s ,物块对地位移为:12 122 v v x t += 则摩擦力对物块做功22· W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J 3.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)

相关文档
最新文档