初三二次函数测试题及答案

初三二次函数测试题及答案
初三二次函数测试题及答案

1

二次函数

一、选择题:

1. 抛物线3)2(2+-=x y 的对称轴是( )

A. 直线3-=x

B. 直线3=x

C. 直线2-=x

D. 直线2=x

2. 二次函数c bx ax y ++=2的图象如右图,则点)

,(a

c

b M 在( )

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,

则一定

有( ) A. 042>-ac b

B. 042=-ac b

C. 042<-ac b

D. ac b 42-≤0

4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,

则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c

D. 9-=b ,21=c

5. 已知反比例函数x

k

y =

的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )

B

x

6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,

有且只有一个是正确的,正确的是( )

D

7. 抛物线322+-=x x y 的对称轴是直线( )

A. 2-=x

B. 2=x

C. 1-=x

D. 1

=x

2

8. 二次函数2)1(2+-=x y 的最小值是( )

A. 2-

B. 2

C. 1-

D. 1

9. 二次函数c bx ax y ++=2的图象如图所示,若

c b a M ++=24c b a N +-=,b a P -=4,则(

A. 0>M ,0>N ,0>P

B. 0N ,0>P

C. 0>M ,0P

D. 0N ,0

二、填空题:

10. 将二次函数322+-=x x y 配方成

k h x y +-=2)(的形式,则y =______________________.

11. 已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的根的情况是

______________________.

12. 已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________. 13. 请你写出函数2)1(+=x y 与12+=x y 具有的一个共同性质:_______________.

14. 有一个二次函数的图象,三位同学分别说出它的一些特点:

甲:对称轴是直线4=x ;

乙:与x 轴两个交点的横坐标都是整数;

丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式:

15. 已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:

_____________________. 16. 如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是

________________.

三、解答题:

1. 已知函数12-+=bx x y 的图象经过点(3,2).

(1)求这个函数的解析式;

3

(2)当0>x 时,求使y ≥2的x 的取值范围.

2. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .

(1)求抛物线的解析式;

(2)P 是y 轴正半轴上一点,且△P AB 是以AB 为腰的等腰三角形,试求点P 的坐标.

3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函

数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).

(1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?

提高题

1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是

10m.

4

(1)求此抛物线的解析式;

(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略

不计). 货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?

2. 某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270

元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).

(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用; (2)求y 与x 之间的二次函数关系式;

(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械

设备?请你简要说明理由;

(4)请把(2)中所求的二次函数配方成a

b a

c a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?

参考答案

一、选择题:

5

二、填空题: 1. 2)1(2

+-=x y

2. 有两个不相等的实数根

3. 1

4. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)

5. 358512+-=

x x y 或358512-+-=x x y 或178712+-=x x y 或17

8

712-+-=x x y 6. 122

++-=x x y 等(只须0c )

7. )0,32(-

8. 3=x ,51<

1. 解:(1)∵函数12

-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解得2-=b . ∴函数解析式为122

--=x x y .

(2)当3=x 时,2=y .

根据图象知当x ≥3时,y ≥2.

∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.

2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .

(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4.

在Rt △OAB 中,172

2

=+=OB OA AB ,且点P 在y 轴正半轴上. ①当PB =P A 时,17=PB . ∴417-=-=OB PB OP . 此时点P 的坐标为)417,

0(-.

②当P A =AB 时,OP =OB =4 此时点P 的坐标为(0,4).

3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2

6

由题意得?????=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或???

??=-=++-=++.0,224,5.1c c b a c b a 解得?

??

????=-==.

0,2,21c b a ∴t t s 2212-=.

(2)把s =30代入t t s 2212-=

,得.22

1

302t t -= 解得101=t ,62-=t (舍去) 答:截止到10月末公司累积利润可达到30万元. (3)把7=t 代入,得.5.107272

1

2=?-?=s 把8=t 代入,得.168282

1

2=?-?=

s 5.55.1016=-. 答:第8个月获利润5.5万元.

4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为10

9

2+=ax y . 因为点)0,25(-

A 或)0,25(

B 在抛物线上,所以109)25(·02+-=a ,得125

18

-

=a . 因此所求函数解析式为

10

9125182+-

=x y (25-≤x ≤25

).

(2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245

±=x .

所以点D 的坐标为)209,245(-,点E 的坐标为)20

9

,245(.

所以22

5

)245(245=--=DE .

因此卢浦大桥拱内实际桥长为385227501.0110022

5

≈=??(米).

5. 解:(1)∵AB =3,21x x <,∴312=-x x . 由根与系数的关系有121=+x x .

∴11-=x ,22=x . ∴OA =1,OB =2,2·21-==

a

m

x x . ∵1tan tan =∠=∠ABC BAC ,∴1==OB

OC

OA OC . ∴OC =2. ∴2-=m ,1=a .

∴此二次函数的解析式为22

--=x x y .

(2)在第一象限,抛物线上存在一点P ,使S △P AC =6.

解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y

轴于N ,连结P A 、

7

PC 、MC 、NA .

∵MN ∥AC ,∴S △MAC =S △NAC = S △P AC =6. 由(1)有OA =1,OC =2. ∴

612

1

221=??=??CN AM . ∴AM =6,CN =12. ∴M (5,0),N (0,10).

∴直线MN 的解析式为102+-=x y .

由??

?--=+-=,

2,

1022

x x y x y 得??

?==;4311y x ??

?=-=18,

42

2y x (舍去) ∴在 第一象限,抛物线上存在点)4,3(P ,使S △P AC =6. 解法二:设AP 与y 轴交于点),0(m D (m >0) ∴直线AP 的解析式为m mx y +=.

?

?

?+=--=.,22m mx y x x y ∴02)1(2

=--+-m x m x . ∴1+=+m x x P A ,∴2+=m x P . 又S △P AC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(2

1

P x AO CD +. ∴

6)21)(2(2

1

=+++m m ,0652=-+m m ∴6=m (舍去)或1=m .

∴在 第一象限,抛物线上存在点)4,3(P ,使S △P AC =6.

提高题

1. 解:(1)∵抛物线c bx x y ++=2

与x 轴只有一个交点,

∴方程02

=++c bx x 有两个相等的实数根,即042

=-c b . ① 又点A 的坐标为(2,0),∴024=++c b . ② 由①②得4-=b ,4=a .

8

(2)由(1)得抛物线的解析式为442

+-=x x y . 当0=x 时,4=y . ∴点B 的坐标为(0,4).

在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB . ∴△OAB 的周长为5265241+=++.

2. 解:(1)76)34()10

710710(1022++-=--?++-

?=x x x x x S . 当3)1(26

=-?-

=x 时,16)

1(467)1(42=-?-?-?=最大S . ∴当广告费是3万元时,公司获得的最大年利润是16万元.

(2)用于投资的资金是13316=-万元.

经分析,有两种投资方式符合要求,一种是取A 、B 、E 各一股,投入资金为13625=++(万元),收益为

0.55+0.4+0.9=1.85(万元)>1.6(万元);

另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万

元).

3. 解:(1)设抛物线的解析式为2

ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B .

∴???--=-=.3100,25h a h a 解得?????

=-=.

1,

251h a

∴抛物线的解析式为2

25

1x y -=.

(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时), 货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=?+x 时,60=x .

∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为

10

270

-x 套,所有未出租设备的支出为)5402(-x 元. (2)5406510

1

)5402()1027040(2++-=----=x x x x x y . ∴5406510

12

++-

=x x y .(说明:此处不要写出x 的取值范围) (3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公

司的月收益为11040元,此时出租的设备为32套.

因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有

率,应选择出租37套. (4)5.11102)325(10

1

5406510122+--=++-

=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故

租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁

公司的月收益最大,最大月收益均为11100元.

9

九年级数学二次函数测试题含答案精选5套

九年级数学 二次函数 单元试卷(一) 时间90分钟 满分:100分 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( ) A.y=(x -1)(x+2) B.y= 2 1(x+1)2 C. y=1-3x 2 D. y=2(x+3)2 -2x 2 2. 函数y=-x 2 -4x+3图象顶点坐标是( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2, 1) 3. 抛物线()122 1 2++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1) 4. y=(x -1)2 +2的对称轴是直线( ) A .x=-1 B .x=1 C .y=-1 D .y=1 5.已知二次函数)2(2 -++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定 6. 二次函数y =x 2 的图象向右平移3个单位,得到新的图象的函数表达式是( ) A. y =x 2+3 B. y =x 2-3 C. y =(x +3)2 D. y =(x -3)2 7.函数y=2x 2 -3x+4经过的象限是( ) A.一、二、三象限 B.一、二象限 C.三、四象限 D.一、二、四象限 8.下列说法错误的是( ) A .二次函数y=3x 2 中,当x>0时,y 随x 的增大而增大 B .二次函数y=-6x 2 中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大 D .不论a 是正数还是负数,抛物线y=ax 2 (a ≠0)的顶点一定是坐标原点 9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15 x 2 +3.5的一部分,若命中篮 圈中心,则他与篮底的距离l 是( ) A .3.5m B .4m C .4.5m D .4.6m 10.二次函数y=ax 2 +bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0. (第9题) (第10题) 3.05m x y

二次函数测试题及答案

-- 二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x ? B. 直线3=x ? C. 直线2-=x ?D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点) ,(a c b M 在( ) A. 第一象限??? B. 第二象限 C. 第三象限 ? D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a , 则一定有( ) A. 042>-ac b B. 042=-ac b ? C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是 532+-=x x y ,则有( ) A . 3=b ,7=c ??? B. 9-=b ,15-=c C. 3=b ,3=c ????D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( ) x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( )

B D 7.抛物线3 2 2+ - =x x y的对称轴是直线() A. 2 - = x??B. 2 = x C. 1 - = x? D. 1 = x 8.二次函数2 )1 (2+ - =x y的最小值是( ) A. 2-?? B. 2 ??C. 1-???D. 1 9.二次函数c bx ax y+ + =2的图象如图所示,若 c b a M+ + =2 4c b a N+ - =,b a P- =4,则( A. 0 > M,0 > N,0 > P B.0 < M,0 > N,0 > P C. 0 > M,0 < N,0 > P D. 0 < M,0 > N,0 < P 二、填空题: 10.将二次函数3 2 2+ - =x x y配方成 k h x y+ - =2) (的形式,则y=_______________ _______. 11.已知抛物线c bx ax y+ + =2与x轴有两个交点,那么一元二次方程0 2= + +c bx ax的根的情况是______________________. 12.已知抛物线c x ax y+ + =2与x轴交点的横坐标为1 -,则c a+=_________. 13.请你写出函数2)1 (+ =x y与1 2+ =x y具有的一个共同性质:_______________. 14.有一个二次函数的图象,三位同学分别说出它的一些特点: 甲:对称轴是直线4 = x; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: --

二次函数单元测试卷(含答案)

二次函数单元测试卷 一、选择题(每小题3分,共30分) 1. 当-2≤ x ≦1,二次函数y=-(x-m )2 + m 2 +1有最大值4,则实数m 值为( ) A.-4 7 B. 3或-3 C.2或-3 D. 2或3或- 4 7 2. 函数 2 2y mx x m =+-(m 是常数)の图像与x 轴の交点个数为( ) A. 0个 B .1个 C .2个 D .1个或2个 3. 关于二次函数 2 y ax bx c =++の图像有下列命题:①当0c =时,函数の图像经过原点;②当0c >,且函数の图像开口向下时,方程2 0ax bx c ++=必有两个不相等の实根;③函数图像最高点の纵坐标是 2 44ac b a -;④当0b =时,函数の图像关于y 轴对称.其中正确命题の个数是( ) A. 1个 B .2个 C .3个 D .4个 4. 关于x の二次函数 2 2(81)8y mx m x m =+++の图像与x 轴有交点,则m の范围是( ) A . 1 16m <- B . 116m - ≥且0m ≠ C . 1 16m =- D . 1 16m >- 且0m ≠ 5. 下列二次函数中有一个函数の图像与x 轴有两个不同の交点,这个函数是( ) A .2 y x = B .24y x =+ C .2325y x x =-+ D .2 351y x x =+- 6. 若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( ) A .a c + B .a c - C .c - D .c 7. 下列二次函数中有一个函数の图像与坐标轴有一个交点,这个函数是( ) A .1x y 2 —= B .24y x =+ C .1x 2x y 2+=— D .2 351y x x =+- 8. 抛物线2 321y x x =-+-の图象与坐标轴交点の个数是( ) A .没有交点 B .只有一个交点 C .有且只有两个交点 D .有且只有三个交点 9. 函数2 y ax bx c =++の图象如图所示,那么关于x の一元二次方程2 30ax bx c ++-=の根の情况是( ) A .有两个不相等の实数根 B .有两个异号の实数根

二次函数测试卷(含答案)

二次函数单元测试卷 、选择题(每小题 3分,共30 分) 4ac - b 2 4a ;④当b = 0时,函数的图像关于 y 轴对称.其中正确命题的个数是( A. 1 个 B. a — c F 列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是( 2 抛物线y - -3x - 2x -1的图象与坐标轴交点的个数是( B .只有一个交点 C .有且只有两个交点 D .有且只有三个交点 1.当-2 < x = 1,二次函数 y=- (x-m ) 2 2 + m +1 有最大值4,则实数 m 值为( 7 A.- 4 B. ,3 或-..3 C.2 或-..3 D. 2 或3或-- 4 2.函数y = mx ? x - 2m ( m 是常数) 的图像与 X 轴的交点个数为( A. 0 个 1个或2个 3.关于二次函数 2 y = ax bx c 的图像有下列命题:①当c = 0时, 函数的图像经过原点;②当 c 0,且 函数的图像开口向下时,方程 2 ax bx 必有两个不相等的实根;③函数图像最高点的纵坐标是 2 9.函数y 二ax bx c 的图象如图所示,那么关于 x 的一元二次方程 A .有两个不相等的实数根 B.有两个异号的实数根 4. 关于X 的二次函数 2 y =2mx (8 m 1)x 8m 的图像与x 轴有交点,则 m 的范围是( 1 m - 一 16 1 1 m > m 二一一 B . 16 且 m=0 C . 16 D . 1 m 空一 16且 m^O 5. F 列二次函数中有 个函数的图像与 x 轴有两个不同的交点,这个函数是 C. 2 y 二 3x -2x 5 D. y 二 3x 2 5x 「1 6. 若二次函数 2 =ax c ,当x 取 X 1、 x 2 (Xi = X2 )时,函数值相等, 则当 x 取X 1 X 2时,函数值为 _c 7. 2 .y =x — 1 2 B . y =x 4 C. y =X 2 — 2X 1 2 D. y = 3x 5x -1 8. A .没有交点

初三二次函数专题测试卷

初三二次函数专题测试卷 一、选择题 1.已知抛物线2 1y x x =--与x 轴的一个交点为(0)m ,,则代数式2 2008m m -+的值为( )A .2006 B .2007 C .2008 D .2009 2. 如图,抛物线)0(2 >++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则 c b a +-的值为( ) A. 0 B. -1 C. 1 D. 2 3.抛物线y=x 2-8x+c 的顶点在x 轴上,则c 等于( ) B.-4 C.8 、 4.若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2 +bx+c ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴平行于y 轴 C.开口向上,对称轴平行于y 轴 D.开口向下,对称轴是y 轴 5.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( ) 6.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( ) ,4 ,-4 ,-4 ,0 7.对于函数y=-x 2+2x-2使得y 随x 的增大而增大的x 的取值范围是 ( ) : >-1 ≥0 ≤0 <-1 8.抛物线y=x 2-(m+2)x+3(m-1)与x 轴( ) A.一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点 9.二次函数y=2x 2+mx-5的图像与x 轴交于点A (x 1, 0)、B(x 2,0), 且x 12+x 22= 29 4 ,则m 的值为( ) B.-3 或-3 D.以上都不对 10. 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形 ABCD 的顶点上, 且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ) 二、填空题 11.抛物线y=-2x+x 2+7的开口向 ,对称轴是 ,顶点是 . 12.若二次函数y=mx 2-3x+2m-m 2的图像过原点,则m 的值是 . ( 13. 已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则 x A . D C B y x 1O ~ 100 y x 1O 100 ( y x 1O 100 5 y ` x 1O 100

二次函数测试题及答案

1. 2. 3. 4. 5. 6. 、选择题: 二次函数 抛物线y =(x-2)2 3的对称轴是( A.直线x = —3 B.直线x =3 二次函数y 二ax 2 在( ) A.第一象限 C.第三象限 已知二次函数 则一定有( 2 A. b —4ac 0 bx c 的图象如右图,则点 = ax 2 把抛物线y =x 2 ? bx B.第二象限 D.第四象限 C. M bx c ,且 a ::: 0,a -b c .0, 2 B. b -4ac =0 C. b 2 -4ac :: 2 D. b —4ac < 0 c 向右平移3个单位,再向下平移 2个单位,所得图象的解析式是 2 y =x -3x 5,则有( A. b = 3 , c -1 C. b =3 , c =3 B. b = -9 , c = -15 D. b = —9 , c =21 下面所示各图是在同 一直 角 坐标 系内,二次 函数y 二ax 2 (a c)x c 与一次 函数 k 已知反比例函数y 的图象如右图所示,则二 x y =ax c 的大致图象,有且只有一个是正确的,正确的是(

11. 已知抛物线y =ax2 bx c与x轴有两个交点,那么一元二次方程ax2 bx 0的根的 情况是_______________________ 12. __________________________________________________________________ 已知抛物线 y=ax2+x+c与x轴交点的横坐标为-1,则a+c= _______________________________ 13. 请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质:_____________________ . 14. 有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线x =4 ; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为 3. 请你写出满足上述全部特点的一个二次函数解析式: 15. 已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函 数的解析式:________________________. A.x 二-2 B. x =2 C. 8. 二 欠 函 1 数y :=(x -1)2'2的最小值是() A.-2 B. 2 C. D. 1 9. - 二- 次函数y =ax2bx c的图象如图所 M=4 a 2b c N = a —b c , P = 4a-b ,则( A.M0 , N 0, P 0 B.M<0 ,N 0, P 0 C.M0, N :: 0, P 0 D.M0 , N 0, P :::0 、 填空题: 7.抛物线y=x2 -2x 3的对称轴是直线( )x = —1 D. x =1 10.将二次函数y =x2 -2x 3配方成y =(x -h)2? k的形式,则y= ____________________

二次函数专题测试卷

o x 13二次函数专题测试卷 一、选择题 1.已知抛物线2 1y x x =--与x 轴的一个交点为(0)m ,,则代数式2 2008m m -+的值为( ) A .2006 B .2007 C .2008 D .2009 2. 如图,抛物线)0(2 >++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( ) A. 0 B. -1 C. 1 D. 2 3.抛物线y=x 2-8x+c 的顶点在x 轴上,则c 等于( ) A.-16 B.-4 C.8 D.16 4.若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax 2+bx+c ( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴平行于y 轴 C.开口向上,对称轴平行于y 轴 D.开口向下,对称轴是y 轴 5.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( ) 6.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( ) A.2,4 B.-2,-4 C.2,-4 D.-2,0 7.对于函数y=-x 2+2x -2使得y 随x 的增大而增大的x 的取值范围是 ( ) A.x>-1 B.x ≥0 C.x ≤0 D.x<-1 8.抛物线y=x 2-(m+2)x+3(m -1)与x 轴( ) A.一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点 9.二次函数y=2x 2+mx -5的图像与x 轴交于点A (x 1, 0)、B(x 2,0), 且x 12+x 22= 29 4 ,则m 的值为( ) A.3 B.-3 C.3或-3 D.以上都不对 10. 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ) 二、填空题 11.抛物线y=-2x+x 2+7的开口向 ,对称轴是 ,顶点是 . 12.若二次函数y=mx 2-3x+2m-m 2的图像过原点,则m 的值是 . 13. 已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 . 14. 抛物线在y=x 2-2x-3在x 轴上截得的线段长度是 . 15.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 . 16. 已知函数2 2y x x c =-++的部图象如图所示,则c=______, 当x______时,y 随x 的增大而减小. 17.设矩形窗户的周长为6m ,则窗户面积S(m 2)与窗户宽x (m)之间的函数关系式是 ,自变量x 的取值范围是 . 18. 如图,小明的父亲在相距2x A D C B y x 10 O 100 y x 10 O 100 y x 10 O 100 5 y x 10 O 100

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数专题测试题及详细答案(超经典)

复习二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 =x D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值范围.

二次函数测试题及详细答案(绝对有用)

砺智教育二次函数 一、选择题:(共30分) 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点), (a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )

B x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 7. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x 8. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 9. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

数学二次函数的专项培优练习题(含答案)含详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C. (1)求该抛物线的函数表达式; (2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标; (3)将点A绕原点旋转得点A′,连接CA′、BA′,在旋转过程中,一动点M从点B出发,沿线段BA′以每秒3个单位的速度运动到A′,再沿线段A′C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少? 【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式是S= 25 2 m m - -,S的最大值是 25 8,此时动点M的坐标是( 5 2 , 7 4 );(3)点M在整个运动过程中用时最少是 82 3 秒. 【解析】 【分析】 (1)首先求出B点的坐标,根据B点的坐标即可计算出二次函数的a值,进而即可计算出二次函数的解析式; (2)计算出C点的坐标,设出M点的坐标,再根据△ABM的面积为S=S四边形OAMB﹣S△AOB =S△BOM+S△OAM﹣S△AOB,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA′∽△OA′B,再结合A′H+A′C≥HC即可计算出t的最小值. 【详解】 (1)将x=0代入y=﹣3x+3,得y=3, ∴点B的坐标为(0,3), ∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B, ∴3=a+4,得a=﹣1, ∴抛物线的解析式为:y=﹣x2+2x+3; (2)将y=0代入y=﹣x2+2x+3,得x1=﹣1,x2=3, ∴点C的坐标为(3,0),

二次函数单元测试题A卷(含答案)

第22章二次函数单元测试题(A卷) (考试时间:120分钟满分:120分) 一、选择题(每小题3分,共30分) 1.下列函数不属于二次函数的是() A.y=(x﹣1)(x+2)B.y=(x+1)2 C.y=2(x+3)2﹣2x2D.y=1﹣x2 2.二次函数y=2(x﹣1)2+3的图象的顶点坐标是() A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)3.若将函数y=3x2的图象向左平行移动1个单位,再向下平移2个单位,则所得抛物线的解析式为() A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2﹣2 4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是() A.b2﹣4ac>0 B.a>0 C.c>0 D. 5.给出下列函数:①y=2x;②y=﹣2x+1;③y=(x>0);④y=x2(x<﹣1).其中,y随x 的增大而减小的函数是() A.①②B.①③C.②④D.②③④6.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是() A.B. C.D.

7.二次函数y=ax2+bx+c图象上部分的对应值如下表,则y>0时,x的取值范围是() A.﹣1<x<2 B.x>2或x<﹣1 C.﹣1≤x≤2D.x≥2或x≤﹣1 8.抛物线y=x2﹣2x+1与坐标轴交点为() A.二个交点B.一个交点C.无交点D.三个交点9.在半径为4cm的圆中,挖去一个半径为xcm的圆面,剩下一个圆环的面积为ycm2,则y 与x的函数关系式为() A.y=πx2﹣4 B.y=π(2﹣x)2C.y=﹣(x2+4)D.y=﹣πx2+16π10.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是() A.B.C.D. 二、填空题(每小题3分,共18分) 11.已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的解析式是. 12.二次函数y=x2﹣4x+5的最小值为. 13.抛物线y=x2+x﹣4与y轴的交点坐标为. 14.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价元,最大利润为元.

(完整版)二次函数测试题及答案

二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 =x D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点) ,(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数 c bx ax y ++=2,且0+-c b a , 则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是 532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( ) x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( )

B D 7.抛物线3 2 2+ - =x x y的对称轴是直线() A. 2 - = x B. 2 = x C. 1 - = x D. 1 = x 8.二次函数2 )1 (2+ - =x y的最小值是() A. 2- B. 2 C. 1- D. 1 9.二次函数c bx ax y+ + =2的图象如图所示,若 c b a M+ + =2 4c b a N+ - =,b a P- =4,则() A. 0 > M,0 > N,0 > P B. 0 < M,0 > N,0 > P C. 0 > M,0 < N,0 > P D. 0 < M,0 > N,0 < P 二、填空题: 10.将二次函数3 2 2+ - =x x y配方成k h x y+ - =2) (的形式,则y=______________________. 11.已知抛物线c bx ax y+ + =2与x轴有两个交点,那么一元二次方程0 2= + +c bx ax的根的情况是______________________. 12.已知抛物线c x ax y+ + =2与x轴交点的横坐标为1 -,则c a+=_________. 13.请你写出函数2)1 (+ =x y与1 2+ =x y具有的一个共同性质:_______________. 14.有一个二次函数的图象,三位同学分别说出它的一些特点: 甲:对称轴是直线4 = x; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: 15.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函 数的解析式:_____________________.

最新二次函数单元测试题及答案

二次函数单元测评 (试时间:60分钟,满分:100分) 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是() A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限 () A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图 象交x轴于点A(m,0)和点B,且m>4,那么AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的 图象只可能是() 9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线 x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1

二次函数测试题及答案

二次函数 一、 选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( ) x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( )

D 7.抛物线3 2 2+ - =x x y的对称轴是直线() A. 2-=x B. 2=x C. 1-=x D. 1=x 8.二次函数2 )1 (2+ - =x y的最小值是() A. 2- B. 2 C. 1- D. 1 9.二次函数c bx ax y+ + =2的图象如图所示,若 c b a M+ + =2 4c b a N+ - =,b a P- =4,则() A. 0> M,0> N,0> P B. 0< M,0> N,0> P C. 0> M,0< N,0> P D. 0< M,0> N,0< P 二、填空题: 10.将二次函数3 2 2+ - =x x y配方成 k h x y+ - =2) (的形式,则y=______________________. 11.已知抛物线c bx ax y+ + =2与x轴有两个交点,那么一元二次方程0 2= + +c bx ax的根的情况是______________________. 12.已知抛物线c x ax y+ + =2与x轴交点的横坐标为1-,则c a+=_________. 13.请你写出函数2)1 (+ =x y与1 2+ =x y具有的一个共同性质:_______________. 14.有一个二次函数的图象,三位同学分别说出它的一些特点: 甲:对称轴是直线4=x; 乙:与x轴两个交点的横坐标都是整数;

二次函数经典测试题附答案

二次函数经典测试题附答案 一、选择题 1.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ). A .①②④ B .②③④ C .③④⑤ D .①③⑤ 【答案】C 【解析】 【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ①由抛物线交y 轴于负半轴,则c<0,故①错误; ②由抛物线的开口方向向上可推出a>0; ∵对称轴在y 轴右侧,对称轴为x=2b a ->0, 又∵a>0, ∴b<0; 由抛物线与y 轴的交点在y 轴的负半轴上, ∴c<0, 故abc>0,故②错误; ③结合图象得出x=?1时,对应y 的值在x 轴上方,故y>0,即a?b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2?4ac>0,故④正确; ⑤由图象可知:对称轴为x=2b a -=12 则2a=?2b ,故⑤正确; 故正确的有:③④⑤. 故选:C 【点睛】 本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件. 2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +

=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=2 22ax bx +, 且1x ≠2x ,则12x x +=2.其中正确的有( ) A .①②③ B .②④ C .②⑤ D .②③⑤ 【答案】D 【解析】 【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】 解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则- 2b a =1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0; 由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确) :b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误) ⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=2 11ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1- x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b a a a -=-=2 (故⑤正确) 故选D . 考点:二次函数图像与系数的关系. 3.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4 C .-12<t ≤4 D .-12<t <3

二次函数专项测试卷及答案

第二十二章 二次函数 专项综合测试卷 求二次函数解析式 类型一 利用“一般式”求二次函数解析式 1.(2018福建龙岩上杭月考)已知二次函数的图象经过点(0,3)、(-3,0)、(2,-5). (1)试确定此二次函数的解析式; (2)请你判断点P (-2,3)是否在这个二次函数的图象上. 2.(2020广东惠州博罗期中)已知抛物线2y ax bx c =++经过A (0,2),B (4,0), C (5,-3)三点,当x ≥0时,图象如图所示. (1)求抛物线的解析式,并写出抛物线的顶点坐标; (2)画出抛物线2y ax bx c =++在y 轴左侧的部分.

3.(2019广东广州越秀月考)已知抛物线2y ax bx c =++过点A (-1,1),B (4,-6), C (0,2). (1)求此抛物线的函数解析式; (2)该抛物线的对称轴是_________,顶点坐标是__________; (3)选取适当的数据,并在直角坐标系内描点画出该抛物线. 类型二 利用“顶点式”求二次函数解析式 4.(2019四川广安月考)某抛物线的对称轴为直线3x =,y 的最大值为-5,且与212 y x =的图象开口大小相同,则这条抛物线的解析式为( ) A. 21(3)52y x =-++ B. 21(3)52 y x =--- C. 21(3)52y x =++ D. 21(3)52y x =-- 5.(2020山东济宁任城期中)已知一个二次函数有最大值4.当x >5时,y 随x 的增大而减小,当x <5时,y 随x 的增大而增大,且该函数图象经过点(2,1),求该函数的解析式. 6.(2020浙江宁波鄞州期中)已知二次函数2y ax bx c =++的图象顶点坐标为(1,4),且经过点C (3,0). (1)求该二次函数的解析式; (2)当x 取何值时,y 随x 的增大而减小? (3)当3y x ≤-+时,直接写出x 的取值范围.

相关文档
最新文档