一起备用电源跳闸原因分析

一起备用电源跳闸原因分析
一起备用电源跳闸原因分析

宁德电厂备用电源保护跳闸原因分析福建大唐国际宁德发电有限责任公司:方浩滕逸鹏孙伟

摘要:本文详细分析了一起备用电源保护跳闸的动作原因,通过分析保护跳闸的动作行为发现了保护装置在设计和接线方面存在的问题,并提出解决方案。

关键词:备用电源故障跳闸

一、故障现象

2008年04月06日12时01分46秒,0号启备变第一套南瑞RCS978EC保护和第二套许继WBH801保护动作,保护装置跳闸出口灯亮,保护动作出口跳启备变各侧开关;3号机6千伏3B段工作进线REF541保护动作出口,3B段全部失电;唐甘线220kV线路南瑞RCS931差动保护动作,差动保护跳闸指示灯点亮,对侧220kV唐甘线开关收远跳信号跳闸。

就地检查3号机6千伏开关柜发现3号机6千伏3B段备用进线PT柜间隔和进线封母连接处发生短路,出现放电烧损痕迹。

二、故障分析:

从保护动作情况分析如下:

进线PT柜间隔和进线封母连接处发生AB相短路,故障电流出现,约40ms后故障发展成为三相短路。0启备变南瑞第一套RCS978EC IV侧过流I、II、III段同时启动,过流I段是限时速断保护,1.2秒跳启备变低压B侧(IV侧)各对应开关;过流II段和III段都为复合电压闭锁过流保护,II段2.0秒跳启备变低压B侧(IV侧)各对应开关,III段2.3秒跳启备变各侧开关,从系统切除启备变。过流I、II段保护动作出口后跳开3B段备用进线工作电源开关(备用进线工作电源开关在发生故障前处于分位状态),由于短路故障发生在备用进线工作电源的上一级,3B备用进线工作电源开关的跳开不能切除短路故障,短路故障仍然存在。2.3秒后过流III段动作出口,跳开启备变各侧开关,短路故障切除。

2、6千伏3B段工作电源进线开关REF541保护动作行为:

REF541保护限时速断I>>保护动作出口,3B段工作电源进线开关跳闸。

由于在上述短路故障发生时,电弧冲开备用进线PT柜间隔隔板进入到3B进线开关,造成了3B段6千伏母线短路故障,从而REF541保护的限时速断保护动作出口,3B段全部失电。

3、220kV唐甘线RCS931保护动作行为:

结合221开关跳闸回路图纸分析,启备变RCS978EC过流III段动作出口后,跳221开关的出口节点起动221开关CZX12R1操作箱内的TJR继电器,由TJR继电器的辅助点出口跳221开关,在TJR继电器起动的同时输出一副常开节点开入到RCS931保护的“远跳”节点,RCS931收到“远跳”开入信号后发“远跳”信号到甘棠变唐甘线对侧,对侧收到该“远跳”信号后发跳闸命令跳甘棠变侧唐甘线开关,220kV唐甘线失电。

4、保护动作时序列表:

从保护动作时序列表可以清晰的了解保护动作过程,有助于分析保护动作情况。

三、保护动作原理剖析:

通过以上分析,不免产生以下疑问?

1、宁德电厂起备变保护动作,经CZX -12R1操作箱TJR 跳本线路边开关,同时TJR 节点引入931AM 保护远跳开入,这种设计是否合理?

2、以上动作行为中,电厂侧发远跳,甘堂侧931AM 远方起动跳闸,动作正确。但对于线路保护来说,是区外故障,为什么电厂侧931AM 在2324ms 电流差动保护会动作?

针对第一点疑问,联系设计与省公司继保处了解,将TJR 节点引入线路保护作为远跳开入是省内的传统设计,鉴于我厂的备用电源线路接线方式(线路带变压器,无母线),我厂作为馈线端,此设计虽有问题,但也是可行的。

针对第二点疑问区外故障差动保护动作,结合两侧931保护的录波图,可以发现两侧的电流在故障开始就有差流存在,在发生区外故障时,以A 相为例,差动电流为1.1A 左右,制动电流为2.5A 左右。差动低定值为1A 。以下为差动方程

C B A I I I I M C

D R CD ,,75.0=Φ??

?>?>ΦΦΦ

可以看出,差动门槛满足,但由于比率制动方程不满足,因此故障发生时差动保护不会

动作。当对侧远方跳闸后,931AM 中有一个差动联跳逻辑(这一点931保护装置说明书中没有介绍此逻辑,事后联系厂家得知),即:当本侧任意保护元件跳闸的同时,会给对侧发一个跳闸相的差动联跳令,对侧保护收到差动联跳令后,结合低比率制动系数(0.15)的稳态差动选相元件和差动允许信号,如同时满足以上条件则跳对应相。报文显示“电流差动保护”动作。以下为低比率制动系数的稳态差动元件:

??

?>?>ΦΦΦM

15.0I I I I CD R CD

本侧事件中,甘堂侧三跳后,给电厂侧发三相内部联跳令,电厂侧低比率制动系数的差动方程满足,所以差动保护动作。

附:波形

两侧故障开始时的电流

两侧故障开始时的差动电流和制动电流有效值

后经检查发现造成差流原因为我厂线路CT分接头引入错误,使本来变比为1200/5的CT接成600/5引入保护装置中,造成两侧CT配置不一致出现的差流。

四、处理建议

1、建议取消开入到931保护的TJR接点,因为此设计只要起备变保护动作,就直接远跳

对侧开关,存在不合理性。

2、3号机6千伏备用进线PT柜间隔和进线封母连接处发生短路时,只能靠起备变后备保

护,动作时间较长,不满足速动性要求。建议扩大起备变保护范围,使起备变保护的主保护能保护到6千伏备用分支进线开关处。

3、由于备用电源线路很少带负荷,即使带负荷时,负荷电流也比较小,平时运行时也不容

易监测到差流,所以这就要求在基建及检修期间一定要认真核对CT配置及接线,确保CT配置正确。

参考文献:

RCS-931系列超高压线路成套保护装置技术和使用说明书

RCS-978变压器保护装置技术和使用说明书

CZX-12R型操作继电器装置技术说明书

备用电源自动投入装置设计及应用的注意事项

备用电源自动投入装置设计及应用的注意事项 备用电源自动投入装置设计及应用的注重事项 摘要:备用电源自动投入(以下简称备自投)装置在电网中的使用,是保证电网安全、稳定、可靠运行的有力技术手段。备自投装置的逻辑是否完善和接线是否正确,直接影响着备自投装置动作的可靠性。本文从备自投的基本原则展开来讨论备自投装置的一些注重事项,希望能对装置的设计和应用起到必定的指引作用。 要害字:备自投;应用;设计 电力系统很多重要场合对供电可靠性要求很高,采纳备用电源自动投入装置是提高供电可靠性的重要方法之一。所谓备用电源自动投入装置,就是当工作电源因故障被断开后,能自动将备用电源迅速投入工作的装置。 1.基本备自投方式: 1)变压器备自投 2)分段断路器备自投 3)桥断路器备自投 4)进线断路器备自投 对更复杂的备自投方式,都可以看成是上述典型方式的组合。 2.备自投的逻辑分析 备自投逻辑尽管很复杂,但仍有规律可循。一般说来,备自投的逻辑分为以下4个逻辑进程: 1)备自投充电。当工作电源运行在正常供电状态、备用电源工作在热备用状态(明备用),或两者均在正常供电状态(暗备用)时,备自投装置按照所采集的电压、电流及开关位置暗号来判定一次设备是否处于这一状态,经过10s~15s延时后,完成充电过程。 2)备自投放电。当备自投退出运行;工作断路器由人为操作跳开;备用断路器不在备用状态;断路器拒跳、拒合;备用对象故障等不认可备自投动作的情况下,将备自投放电,使其行为终止。 3)备自投充电后,满足其启动条件,经或不经延时执行其跳闸逻辑(可能断路器已跳开),跳闸对象可能有多个。 4)备自投执行完跳闸逻辑后,满足其合闸条件,经或不经延时执行其合闸逻辑,合闸对象也可能有多个。 3.备自投的设计和应用的事项 1)母线有电压、无电压的判定 母线有电压:指接入的三个相(线)电压至少有一个大于检有电压定值,三个有电压条件相或可以防止TV一相或两相断线时备自投误动。 母线无电压:指接入的三个相(线)电压均小于检无电压定值,即用逻辑与门来判定母线无电压,可以幸免工作电源TV一相或两相断线时备自投的误动。 2)当工作母线上的电压低于检无电压定值,并且持续时间大于给按时间定值时,备自投装置方可起动。 备自投延时是为了躲母线电压短暂下降,故备自投延时应大于最长的外部故障切除时间。因母线的进线断路器跳开而引起的母线失压,且进线无重合闸功能时,可不经过延时直接跳开断路器,以加速合备用电源。如主变差动庇护或本体庇护动作全跳主变时,可加速低压侧分段备自投和变压器备自投动作。备自投的时间定值应与相关的庇护及重合闸的时间定值相配合。 3)备用电源的电压应工作于正常范围,或备用设备应处于正常的预备状态,备自投装

备用电源自动投切装置定期实验切换制度

设备定期投切试验制度 为了使运行设备安全可靠地长期运行,保证备用设备处于良好状态,对一些设备进行定期切换运行或试验,是确保机组安全运行的重要措施。 1.运行人员应在规定的时间内,按要求,严格认真的做好有关项目的定期切换和实验工作,并将执行情况记入交接班簿和定期切换实验簿,以备查考。 2.由于某些原因,不能执行(或未执行)定期切换工作或实验时,应注明其具体原因。不得随意改变执行时间或不执行。 3.例行实验的具体内容及要求详见集控运行例行试验表。本表中已列出的实验监护项目,必须严格执行操作监护制度。 4.本定期实验制度未列出实验的具体操作程序,因此其操作必须遵循各运行规程的有关规定。 5.操作员应熟悉场用电气运行方式,有较强的处理事故的应变能力。 6.本制度是运行基本技术管理制度之一,自公布日起执行。

集控运行例行试验表

备用电源自动投入装置定期切换实验制度为贯彻反事故措施,确保场用电的连续安全运行,决定进行备用电源自动投入装置(简称BZT)做定期切换试验。为使该项工作顺利进行,特制定本措施: 一、组织措施: 1.参加人员:风场场长、电气专工、安全员、技术员、运行组、检修组。 2.担任切换试验的操作员,应熟悉场用电气运行方式,有较强的处理事故的应变能力。 3.在进行备用电源自动投入装置(简称BZT)切换试验前,应根据运行方式做好事故预想,充分协调,明确分工,并将分工情况汇报场长。 4.在备用电源自动投入装置切换试验过程中,如果发生事故,各参加人员要立即中止试验操作,在值长的统一指挥下处理事故。 5.风场运行值长负责本分场检修及运行人员的协调工作。 二、备用电源自动投入装置切换试验的范围: 400V配电室 三、备用电源自动投入装置切换试验的周期: 切换周期原则为一个月。切换时机应选择在重要设备备用(或非工作)状态,如在试验周期内发现BZT工作异常,经修复后也应做切换试验。其试验时机的选择,参加试验的人员,与做定期试验时相同。其试验周期亦应从本次试验算起;若本月某段的BZT动作成功过,

备用电源自投策划

备用电源自投方案 摘要:电源自动投切装置在电力系统中的应用非常广泛,如压变电源自动投切、备用电源自动投切等,该文就压变电源自动投切、站用电源自动投切提出几种方案,进行分析、比较,并从安全性、可靠性、维护性的角度提出一些建议。 关键词:自动投切装置备用电源压变电源站用电源 电力系统备用电源自动投切装置是为提高电网的安全、可靠运行所采取的一种重要措施。压变可提供控制、保护、测量、信号等回路的电源;站用电可提供控制、测量、变电站站内照明、检修、动力,以及通过整流装置,提供直流系统电源和蓄电池充电电源等。由此可见,保持压变及站用电电源的不间断显得尤为重要。 现将几种压变电源、站用电源的自动投切方案,从运行角度对其原理进行分析比较。 1 压变电源自动投切 压变电源自动投切方案大致有以下几种。 1.1 电磁型自动投切装置 1.1.1有优先级别的两电源单向自动投切 如图1所示,1YH有电时,1ZJ线圈得电,101、103处两对1ZJ 常开接点闭合,105、107处两对常闭接点打开,控制信号等电源由

1YH提供。1YH失电时,1ZJ线圈失电,101、103处两对1ZJ常开接点打开,105、107处两对常闭接点闭合。2YH有电时,控制信号等电源由2YH提供。此时,若1YH恢复有电,1ZJ线圈得电,同上原理,控制信号等电源仍改由1YH提供。 此方案的特点是两电源单向自动投切,有电源优先级别之分。 1.1.2无优先级别的两电源双向自动投切

如图2所示,1YH有电时,1ZJ线圈得电,A1、A2处两对1ZJ 常开接点闭合,2ZJ线圈回路中1ZJ常闭接点打开,控制、信号回路电源由1YH提供。1YH失电时,1ZJ线圈失电,A1、A2处两对1ZJ 常开接点打开,2ZJ线圈回路中1ZJ常闭接点闭合,此时若2YH有电,2ZJ线圈得电,A3、A4处两对2ZJ常开接点闭合,1ZJ线圈回路中2ZJ常闭接点打开,控制、信号回路电源由2YH提供。 同样的原理,当2YH失电时,若此时1YH有电,控制、信号电源则通过自动投切装置改由1YH提供。 此方案的特点是两电源双向自动投切,互为备用,无优先级别之分。 1.2 微机型自动投切装置

备 用 电 源 自 动 投 入 装 置

备用电源自动投 入装置 本章要点 1.备用电源自动投入装置的作用。 2.对备用电源自动投入装置的要求。 3.备用电源自动投入装置的原理接线图及动作行为分析。 第一节备用电源自动投入装置的作用 电力系统许多重要场合对供电可靠性要求很高,采用备用电源自动投入装置是提高供电可靠性的重要方法。所谓备用电源自动投入装置,就是当工作电源因故障被断开后,能自动将备用电源迅速投入工作的装置,简称AAT装置。 图2-1所示为电力系统使用AAT装置的几种典型一次接线图。 图2-1 (a)所示为备用变压器自动投入的典型一次接线图。图中T1为工作变压器,T0为备用变压器。正常情况下1QF、2QF闭合,T1投入运行,3QF、4QF 断开,T0不投入运行,工作母线由T1供电;当工作变压器T1发生故障时,T1的继电保护动作,使1QF、2QF断开,然后AAT装置动作将3QF、4QF迅速闭合,使工作母线上的用户由备用变压器T0重新恢复供电。 又如图2-1(f)所示的接线,正常情况下变电所的I段和II段母线分别由线路L-1和L-2供电,分段断路器3QF断开。当线路L-l发生故障时,线路L-1的继电保护动作将断路器4QF, 2QF断开,然后AAT装置动作将分段断路器3QF迅速闭合,使接在I段母线上的用户由线路L-2重新恢复供电。

比较图2-1中各种使用AAT装置的典型一次接线图可知,其备用电源的备用方式有所不同,其中第一种备用方式是装设正常情况下断开着的备用电源(用备用变压器或备用线),如图2-1 (a)、(b)、(c)、(d)所示,称明备用方式。其特点是备用可靠性高,广泛用于发电厂厂用电和变电所所用电。为提高备用电源的利用率,一个备用电源可同时作为两段或几段工作电源的备用。另外一种备用方式是不装设正常情况下断开着的备用电源,而是在正常情况下工作的分段母线间,靠分段断路器取得相互备用,如图2-1(e)、(f)所示,称暗备用方式。在暗备用方式中,每个工作电源的容量应根据两个分段母线的总负荷来考虑,否则在AAT动作后,要减去相应负荷。 从图2-1所示接线的工作情况可以看出,采用AAT装置后有以下优点: (1)提高用户供电可靠性。 (2)简化继电保护。采用AAT装置后,环形供电网可以开环运行,见图2-1 (f),变压器可以解列运行,见图2-1(e),继电保护的方向性等问题可不考虑。 (3)限制短路电流,提高母线残余电压。在受端变电所,如果采用变压器解列运行或环网开环运行,显然出线故障时短路电流要减小,供电母线残余电压相应提高一些。这对保护电气设备、提高系统稳定性有很大意义。 由于AAT装置在提高供电可靠性方面作用显著,装置本身接线简单、可靠性高、造价低,所以在发电厂、变电所及工矿企业中得到了广泛的应用。 第二节对备用电源自动投入装置的基本要求 在发电厂和变电所,装设在不同场合下AAT装置的接线可以有各种不同的接线方案,但对其接线的基本要求却相同,分述如下: 1.明备用接线特征:接线图中一定可以找到专用的备用电源或备用设备(例备用变压器)或备用线路,而且这里的备用电源或备用设备(例备用变压器)正常时一定与所连接负荷的母线是断开的。 暗备用接线的特征:接线图中找不到专用的备用电源或备用设备(例备用变压器)或备用线路,但至少有两段负荷母线,且负荷母线之间一定有正常时断开的分段断路器。 2.基本要求 对AAT的基本要求是针对装置在工程应用时应该满足的要求,每一个要求应该对应一个实际问题,包括: (1)应保证在工作电源或设备断开后,才投入备用电源或备用设备; (2)工作母线电压不论因任何原因消失,AAT装置均应动作; ( 3) AAT装置应保证只动作一次; (4)发电厂厂用备用电源自投入装置,应同时满足几个工作电源的备用要求; (5)发电厂厂用备用电源自投入装置应满足切换方式的要求; (6)应校验备用电源和备用设备自动投入时过负荷的情况,以及电动机自起动的情况,必要时,应有AAT动作于自动减负荷; (7)当AAT装置动作时,如果备用电源或备用设备投于故障,应使继电保护加速动作。 学习时可以将以上基本要求分为两类: 3.起动条件 工作母线或设备上电压不论因任何原因消失,AAT装置均应起动。以图2-1(c)为例,工作母线I段或II段失去电压的原因如下:工作变压器T1或T2发生故障;I段或II段母线发生短路故障;I段或II段母线上的出线发生短路故障

双电源切换应用电路

双电源切换应用电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功率P-FET控制器LTC4414 LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。 图1 LTC4414的引脚排列引脚排列及功能 LTC4414的引脚排列如图1所示,各引脚功能如表1所示。 图2 LTC4414结构及外围器件框图 基本工作原理 这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源()、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL内部有μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。 图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。 1 主电源单独供电

主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GATE 端的电压降到地电平或到栅极箝位电压(保证-VGS≤),使外接P-MOSFET 导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET 导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET导通)。 2 加上辅电源 当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GATE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。 在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。 在上述两种供电方式时,CTL端是接地或悬空的。CTL的控制功能将在下面的应用电路介绍。 典型应用电路 1主、辅电源自动切换电路

备用电源自动投入装置及接线方式

洛阳理工学院 备用电源自动投入装置原理及接线方式 专业:电气工程及其自动化专业班级:电气35班 学号:B12043506 学生姓名:皇甫晓晓 完成时间: 2013年11月15日

《电力系统自动装置》课程论文评分表

摘要 随着经济建设的发股,我国电力系统的规模日益扩大,发电设备的容量也相应增大.系统运行方式的变化越来越频繁。为了更好地保证电力系统的安全、经济运行并保证电能质量,电力系统自动装置及其技术得到广泛应用并日益发展,同时也促进电力系统自动控制技术的不断提高。 与其他产品不同,电能的生产、传输、分配和消耗在同一时刻完成,遵循功率平衡原则。所以发电厂、变电所、输配电线路和用户构成的电力系统是一个有机的整体,在运行中任何一个环节出现问题,都会影响到电力系统的稳定运行,严重时会造成恶性事故,导致整个系统崩溃。 为了取得更大的经济效益,电力网规模越来越庞大、发电机容量也越来越大,因此为了满足电力系统运行的要求,电力系统必须借助于自动装置来完成别电力系统及其设备监视、控制、保护和信息传递。因此自动化技术就成了必不可少的手段。 二、电力系统自动控制的总目标和主要内容 电力系统自动控制酌总目标是:保证供电质量,提高供电的可靠性,实现电力系统的安全经济运行。为了实现这个总目标,电力系统自动控制的任务有以下几个方面。 1.电力系统自动监视和控制 2.电厂动力机械自动控制 3.电力系统主要电力设备的自动控制 近年来,由于控制理论、信息沦等方面的成就,大规模、超大规模集成电子器件不断推出;计算机技术和数据通信技术的发展,自动控制技术正发生着日新月异的变化;计算机控制技术在电力系统自动装置中得到广泛应用。 关键词:电力系统自动控制可靠性

备用电源自投原理

备用电源自动投入装置 (一)备用电源自动投入装置的作用与类型 在要求供电可靠性较高的变配电所中,通常设有两路及以上的电源进线。如果装设备用电源自动投入装置(APD),则当工作电源线路突然断电时,在APD作用下,自动将工作电源断开,将备用电源投入运行,从而大大提高供电可靠性,保证对用户的不间断供电。工作电源与备用电源的接线方式可分为两大类:明备用接线方式和暗备用接线方式。 明备用方式是指在正常工作时,备用电源不投入工作,只有在工作电源发生故障时才投入工作,如图a所示。 暗备用方式是指在正常时,两电源都投入工作,互为备用,如图b所示。 在图a中,APD装设在备用电源进线断路器QF2上。在正常情况下,断路器QF1闭合,QF2断开,负荷由工作电源供电。当工作电源故障时,APD动作,将QF1断开,切除故障电源,然后将QF2

闭合,使备用电源投入工作,恢复供电。 暗备用方式:在图b中,APD装设在母联断路器上QF3。在正常情况下,断路器QF1,QF2闭合,母联断路器QF3断开,两个电源分别向两段母线供电。若电源A(B)发生故障,APD动作,将QF1(QF2)断开,随即将母联断路器QF3闭合,此时全部负荷均由B(A)电源供电。 明备用方式:APD装设在QF2处,电源A为工作电源,电源B 为备用电源,正常运行QF1,QF3闭合,QF2断开,当工作电源发生故障,APD动作,将QF1断开,随即QF2闭合,此时全部负荷均由备用电源供电。

(二)对备用电源自动投入装置的基本要求 1)不论什么原因失去工作电源,APD都能迅速起动并投入备用电源;2)必须在工作电源确已断开、而备用电源电压也正常时,才允许投入备用电源; 3)APD应只动作一次,以免将备用电源重复投入永久性故障回路中;4)当电压互感器二次回路断线时,APD不应误动作。 5)工作电源正常停电操作时,APD不应投入。 (三)备用电源自动投入装置的原理 →触点QF13-4断开→KT断电、触点延时断开→触点QF11-2闭合(延时触点还未打开)→KO通电动作→YC通电→QF2合闸→备用电源投入、供电恢复。 若备用电源合于故障回路上,则保护动作、使其立即跳闸后,触点QF21-2闭合,但KT触点延时后已经断开,保证QF2不会重新合闸。

WGB-57微机备用电源自投装置使用说明书

WGB-57微机备用电源自投装臵 1 装臵简介 WGB-57系列微机备用电源自投装臵(以下简称装臵)是功能完善、先进的微机型备用电源自投装臵,主要用于35kV及以下电压等级的进线开关和内桥开关的自投。 1.1保护功能配臵: 1.2 产品主要特点 a. 本产品为微机保护装臵,其元器件采用工业品,稳定性、可靠性高,可以在高压开关柜等恶劣的环境中工作;宽范围使用环境温度-25℃~+55℃。 b. 抗干扰性能强,产品硬件设计中采用了多种隔离、屏蔽措施,软件设计采用数字滤波技术和良好的保护算法及其它抗干扰措施,使得产品抗干扰性能大大提高; c. 硬件、软件设计标准化、模块化,便于现场维护; d. 产品的人机接口功能强大,符合人机工程设计要求,菜单化设计,全中文显示,操作、调试方便,一般运行人员参考本说明书就能熟练操作; e. 可独立整定10套保护定值,定值区切换安全方便; e. 可保存最近发生的20个故障报告,掉电保持,便于事故分析; f. 工业级RS-485总线网络,组网经济、方便,可直接与微机监控或保护管理机联网通信; g. 产品通过通讯上传故障信息、实时状态量、实时模拟量、并可进行实时校时、定值调用和修改、定值区切换等操作。

2 技术参数 2.1 产品额定数据 a.额定辅助电压:直流或交流:220V或110V(交直流通用); b.额定交流数据:交流电流: 5A; 交流电压: 100/3V,100V; 额定频率:50Hz; c.热稳定性: 交流电流回路:长期运行 2In; 10s 10In; 1s 40In; 交流电压回路:长期运行 1.2Un; 10s 1.4Un; d.动稳定性:半周波: 100In。 2.2功率消耗(额定状态下) a.辅助电压回路:正常工作时不大于10W,动作时不大于15W; b.交流电流回路:In=5A时,每相不大于1VA; In=1A时,每相不大于0.5VA; c.交流电压回路:每相不大于0.5VA 2.3 环境条件 a. 环境温度: 工作: -25℃~+55℃。 储存: -25℃~+70℃,相对湿度不大于80%,周围空气中不含有酸性、碱性或其它腐蚀性及爆炸性气体的防雨、防雪的室内;在极限值下不施加激励量,产品不出现不可逆转的变化,温度恢复后,产品应能正常工作。 b. 相对湿度:最湿月的月平均最大相对湿度为90%,同时该月的月平均最低温度为 25℃且表面不凝露。最高温度为+40℃时,平均最大湿度不超过50%。 c.大气压力:80kPa~110kPa(相对海拔高度2km以下)。 2.4 抗干扰性能 a. 产品能承受GB/T 14598.14-1998第4章规定的严酷等级为Ⅲ级的静电放电干扰试验; b. 产品能承受GB/T 14598.9-2002第4章规定的严酷等级的辐射电磁场干扰试验; c. 产品能承受GB/T 14598.10-2007第4章规定的严酷等级为A级的电快速瞬变脉冲群抗扰度试验;

SchneiderBA电源自动切换控制器说明书

BA/UA BA/UA controller Compact NS100-630 Masterpact MT Merlin Gerin Installation manual

This equipment should only be mounted by professionals.The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual RISK OF ELECTROCUTION,BURNS OR EXPLOSION the device should only be installed and serviced by professionals switch off the general power supply to the device prior to any work on or in the device always use an appropriate voltage detection device to confirm the absence of voltage replace all interlocks,doors and covers before energising the device. Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

(整理)备用电源自动投入装置问答题.

第一章备用电源自动投入装置问答题 1、BZT装置在什么情况下动作? 答:当备用电源有电压时,在以下几种情况下动作:1)工作电源失去电压;2)工作变压器或线路发生故障,继电保护动作将断路器跳开;3)工作电源断路器由于操作回路或保护回路出现故障以及误碰而跳闸;4)工作母线电压互感器的一次或二次熔断器全部熔断引起的误动作。 2、为什么备用电源自动投入装置的起动回路需要串接反映备用电源有电压的电压继电器接点? 答:这是为了防止在BZT装置动作时,将无电压的备用电源投入,用以保证BZT装置的动作有实际意义。 3、变电站一般有哪些BZT装置? 答:一般有备用母线或母线分段断路器的BZT装置,备用变压器的BZT装置及备用线路的BZT装置。 4、停用接有BZT装置低电压起动元件的电压互感器时,应注意什么? 答:应先将BZT装置退出运行,然后停低电压起动回路的电压互感器,以防BZT装置误动。 5、对备用电源自动投入的基本要求是什么? 答:工作电源因任何原因消失时,BZT装置都应起动;工作电源先切,备用电源后投;BZT只动作一次;BZT动作要快;工作母线YH熔断器熔断时BZT不误动;正常停电操作或备用电源无电时,BZT不应动作。 6、试拟定图示3DL的备用电源自动投入原理接线。 7、图为变压器的备用电源自动投入装置接线图。试求保证备用变压器一次合闸的闭锁中间继电器BSJ,检查被投入母线无电压继电器、检查备用母线有电压继电器和时间继电器的整定值。备用变压器断路器3的合闸时间为0.3秒,断路器4的合闸时间为0.25秒,变压器B1和B2的过电流保护装置动作时间为1秒,当6Kv出线电抗器后短路时备用的6Kv母线上残压为4.2Kv。

备用电源自投方案

备用电源自投方案摘要:电源自动投切装置在电力系统中的应用非常广泛,如压变电源 自动投切、备用电源自动投切等,该文就压变电源自动投切、站用电源自动投切提出几种方案,进行分析、比较,并从安全性、可靠性、维护性的角度提出一些建议。 关键词:自动投切装置备用电源压变电源站用电源 电力系统备用电源自动投切装置是为提高电网的安全、可靠运行所采 取的一种重要措施。压变可提供控制、保护、测量、信号等回路的电 源;站用电可提供控制、测量、变电站站内照明、检修、动力,以及 通过整流装置,提供直流系统电源和蓄电池充电电源等。由此可见,保持压变及站用电电源的不间断显得尤为重要。 现将几种压变电源、站用电源的自动投切方案,从运行角度对其原理进行分析比较。 1 压变电源自动投切 压变电源自动投切方案大致有以下几种。 电磁型自动投切装置 有优先级别的两电源单向自动投切 如图1所示,1YH有电时,1ZJ线圈得电,101、103处两对1ZJ 常开接点闭合,105、107 处两对常闭接点打开,控制信号等电源由

1YH 提供。1YH 失电时,1ZJ 线圈失电,101、103处两对1ZJ 常开接 点打开,105、107处两对常闭接点闭合。2YH 有电时,控制信号等电 源由2YH 提供。此时,若1YH 恢复有电,1ZJ 线圈得电,同上原理, 控制信号等电源仍改由1YH 提供。 此方案的特点是两电源单向自动投切,有电源优先级别之分 无优先级别的两电源双向自动投切 HP!幷E 二生財审 电心I B 】 有优光議别的两电源单向自动投切原理图

4 MEV 电压亘翦許 二曲圍為 申氾灾珏日 tEWCEfi 至氏*1佑斗国托 戏;;无优先级刑的两电源収佝自动役切原婪图 如图2所示,1YH有电时,1ZJ线圈得电,A1、A2处两对1ZJ常开接点闭合,2ZJ线圈回路中1ZJ常闭接点打开,控制、信号回路电源由1YH提供。1YH失电时,1ZJ线圈失电,A1、A2处两对1ZJ常开接点打开,2ZJ线圈回路中1ZJ常闭接点闭合,此时若2YH有电,2ZJ 线圈得电,A3 A4处两对2ZJ常开接点闭合,1ZJ线圈回路中2ZJ常闭接点打开,控制、信号回路电源由2YH提供。 同样的原理,当2YH失电时,若此时1YH有电,控制、信号电源则通过自动投切装置改由1YH提供。 此方案的特点是两电源双向自动投切,互为备用,无优先级别之 微机型自动投切装置

新型智能备用电源自投装置_任祖怡

新型智能备用电源自投装置 任祖怡,窦乘国,许华乔 (国电自动化研究院,江苏省南京市210003) 摘要:备用电源自投装置作为提高供电可靠性的一种有效手段,在变电站中得到广泛应用。文中分 析了备用电源自投在实际应用中存在的问题,提出了一种新型的智能备用电源自投装置。装置引入了“逻辑库”的设计思想,内部集成了大量的逻辑模块与时间继电器模块,可根据实际应用进行灵活组态。装置根据组态的不同而自动配置定值,可同时投入多种备自投方式,并自动识别系统运行方式,选择相应的备自投方案。关键词:备用电源自投;逻辑库;组态中图分类号:TM762.1 收稿日期:2002-12-04。 0 引言 随着社会经济的发展,城乡电网规模不断扩大,电网结构日趋复杂,这对保证变电站供电可靠性提出了越来越高的要求。影响供电可靠性的因素很多,如变电站所处的地理位置、气候环境,站内一次、二次设备的可靠性,变电站的运行管理,合理的电网结构与完善的电网调度系统,以及完善的备用电源自投方案等。其中备用电源自投(以下简称备自投)是提高供电可靠性的一种有效手段。 本文分析了备自投在实际应用中存在的问题以及解决办法,提出了一种新型的智能备自投装置,并介绍了其工作原理与基本功能。 1 备自投的几个特殊问题 对于备自投装置在实际应用中常见的几个问题,如对电压互感器断线的处理,联切电容器,合闸前或合闸后联切负荷,加速备自投,以及接点启动备自投等,本文不再细述,只对以下几个特殊问题进行讨论。 1.1 复杂接线与复杂方式 降压变电站的典型接线是2条进线、2台主变分裂运行或一运行一备用,但变电站接线种类繁多。比如:有3台或更多主变,高压进线可能有3条或更多;高压侧双母接线;高压侧扩大内桥接线;低压侧分段开关兼做旁路开关等。复杂的接线带来了多种复杂的备自投方式,这就要求备自投装置能自动识别系统运行方式,自动选择相应的备自投方案。 1.2 同期问题 有的备用对象(母线)和其他电源具有联络线。若联络线连接的是小电源,则当工作电源失去后,母线电压将有一个下降的过程;若连接的是大电源,则母线电压不一定会下降。对于这两种情况,一般的备自投方案是在隔离故障电源的同时联切联络线,然后再合闸(方案1),其缺点是可能导致损失一部分负荷,且不利于系统稳定。对于前一种情况,还有一种方案是采用高段电压定值启动备自投跳闸,低段电压定值(检无压)启动备自投合闸(方案2),其缺点是由于无法可靠估计电压的下降速度,所以可能导致较长时间的停电。 因此,要求备自投装置具备自动准同期合闸功能(方案3),以最短的时间来恢复供电,且有利于系统稳定。 1.3 工矿企业变电站的备自投问题 工矿企业变电站低压侧往往有大量异步或同步电动机负荷,工作电源断开后,工作母线具有电动机的反馈电压(残压),且逐步衰减并移相[1,2] ,如果在备用电源与母线残压矢量差较大时合闸,电动机将流过很大的冲击电流,这很可能烧毁电动机。因此,最好能在工作电源断开后,在备用电源电压与母线电压相角还未摆开时实现快速合闸,这一要求往往很难实现,解决此问题的方法是采用1.2节中所述的方案2或方案3,并结合低频或差压启动备自投。 2 备自投的逻辑分析 备自投逻辑尽管很复杂,但仍有规律可循。一般说来,备自投的行为逻辑分为以下4个逻辑进程: a .备自投充电。当工作电源运行在正常供电状 86 第27卷 第9期2003年5月10日 电 力 系 统 自 动 化Automation of Elect ric Pow er Sy stems V ol.27 N o.9 M ay 10,2003

变电站备用电源自动投入装置--课程设计

变电站备用电源自动投入装置--课程设计

1.概述 1.1概念 为保证供电的可靠性,电力系统经常采用两个或两个以上的电源进行供电,并考虑相互之间采取适当的备用方式。当工作电源失去电压时,备用电源由自动装置立即投入,从而保证供电的连续性,这种自动装置称为备用电源自动投入装置,简称AAT。备用电源自动投入是保证电力系统连续可靠供电的重要措施。 备用电源自动投入装置遵循的基本原则如下: ①当工作母线上的电压低于检无压定值,并且持续时间大于时间定值时,备自投装置方可起动。备自投的时间定值应与相关的保护及重合闸的时间定值相配合。 ②备用电源的电压应工作于正常范围,或备用设备应处于正常的准备状态,备自投装置方可动作,否则应予以闭锁。 ③必须在断开工作电源的断路器之后,备自投装置方可动作。 工作电源消失后,不管其进线断路器是否已被断开,备自投装置在起动延时到了以后总是先跳该断路器,确认该断路器在跳位后,方能合备用电源的断路器。按照上述逻辑动作,可以避免工作电源在别处被断开,备自投动作后合于故障或备用电源倒送电的情况发生。 ④人工切除工作电源时,备自投装置不应动作。 装置引入进线断路器的手跳信号作为闭锁量,一旦采到手跳信号,立即使备自投放电,实现闭锁。

(a)明备用 (b) 暗备用之一

(c) 暗备用之二 图1-1 几种备用方式的简单接线图1.2.1 明备用的控制 有一个工作电源和一个备用电源的接线,即为明备用的配置,如图1-1(a)所示。图中。TI为工作变压器,T2为备用变压器。正常工作时。QF1、QF2处于合闸位置,工作母线Ⅲ上的负荷由工作电源通过T1供给;此时QF3合上(也可断开)、QF4断开,T2处于别用状态。当工作母线Ⅲ因某种愿意失电时,在QF2断开后,QF4合上(QF3断开时,要与QF4同时合上),恢复对工作母线Ⅲ的供电。 1

iPACS-5731-D101395备用电源自投装置技术说明书

iPACS-5731-D101395用电源自投装置 技术说明书 版本:V1.00 江苏金智科技股份有限公司

目录 1. 概述 (1) 1.1.应用范围 (1) 1.2.保护配置和功能 (1) 1.2.1. 保护配置 (1) 1.2.2. 测控功能 (2) 1.2.3. 保护信息功能 (2) 2. 技术参数 (2) 2.1.额定电气参数 (2) 2.1.1. 额定数据 (2) 2.1.2. 功耗 (2) 2.2.主要技术指标 (3) 2.2.1. 定时限过流: (3) 2.2.2. 零序过流保护: (3) 2.2.3. 备用电源自投: (3) 2.2.4. 遥信开入: (3) 2.2.5. 电磁兼容 (3) 2.2.6. 绝缘试验 (3) 2.2.7. 输出接点容量 (3) 3. 软件工作原理 (4) 3.1.线路/变压器备投-方式1 (4) 3.2.线路/变压器备投-方式2 (5) 3.3.分段(桥)开关自投(方式3、方式4) (6) 3.4.过负荷减载 (7) 3.5.分段开关保护原理说明 (7) 3.5.1. 定时限过流保护 (7) 3.5.2. 合闸后加速保护 (7) 3.5.3. 充电保护 (7) 3.6.进线合环切换 (7) 3.6.1. 合环方式一 (8) 3.6.2. 合环方式二 (8) 3.6.3. 合环方式三 (9) 3.7.PT断线 (10) 3.8.装置自检 (10) 3.9.装置运行告警 (10) 3.10.遥测,遥信,遥控功能 (10) 3.11.对时功能 (10) 4. 定值内容及整定说明 (11) 4.1.系统参数整定 (11)

锂电池充电电路及电源自动切换电路的设计

BATT BATT-8.4V 图1 锂电池充电电路原理图 输入电源V in =24V ,充电电流1~1.5A,锂电池参数为8.4V,2.5A 1、充电电流的设置 恒流充电电流由下式决定:CS CH R mV I 200=,取A I CH 25.1=,得 Ω=16.0CS R 选取R CS 参数为0.16Ω±5%/1W 实际使用电阻值为150mΩ,得A A R mV I CS CH 33.1150 200 200=== 2、充电结束电流的设置 在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC 管脚的电阻所设置的电流时,充电结束。充电结束电流由下式决定: 6 10 ) 314350(278.1×+×= CS EOC R R I ,R3取10K ,I EOC =0.2A 3、电感的选择 在正常工作时,瞬态电感电流是周期性变化的。在P 沟道MOS 场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P 沟道MOS 场效应晶体管关断期间,电感向电池放电,电感电流减小。电感的纹波电流随着电感值的减小而增大,

随着输入电压的增大而增大。较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。所以电感的纹波电流应该被限制在一个合理的范围内。 电感的纹波电流可由下式估算: )1(1 VCC V V L f I BAT BAT L ?×××= Δ 其中: f 是开关频率,300KHz L 是电感值 VBAT 电池电压 VCC 是输入电压 在选取电感值时,可将电感纹波电流限制在△IL =0.4×I CH ,I CH 是充电电流,得 L>34.2μΗ,实际取电感值为39μΗ。 4、电源自动切换电路 VOUT 给后续电路供电 图2 电源自动切换电路 当外部电源断开时,PMOS 管导通,由电池给外部系统供电,当外部电源接入时, PMOS 管关断,电池和系统电源之间断开,外部电源对系统供电。

备用电源自动投入装置

备用电源自动投入装置 本章要点 1.备用电源自动投入装置的作用。 2.对备用电源自动投入装置的要求。 3.备用电源自动投入装置的原理接线图及动作行为分析。 第一节备用电源自动投入装置的作用 电力系统许多重要场合对供电可靠性要求很高,采用备用电源自动投入装置是提高供电可靠性的重要方法。所谓备用电源自动投入装置,就是当工作电源因故障被断开后,能自动将备用电源迅速投入工作的装置,简称AAT装置。 图2-1所示为电力系统使用AAT装置的几种典型一次接线图。 图2-1 (a)所示为备用变压器自动投入的典型一次接线图。图中T1为工作变压器,T0为备用变压器。正常情况下1QF、2QF闭合,T1投入运行,3QF、4QF 断开,T0不投入运行,工作母线由T1供电;当工作变压器T1发生故障时,T1的继电保护动作,使1QF、2QF断开,然后AAT装置动作将3QF、4QF迅速闭合,使工作母线上的用户由备用变压器T0重新恢复供电。 又如图2-1(f)所示的接线,正常情况下变电所的I段和II段母线分别由线路L-1和L-2供电,分段断路器3QF断开。当线路L-l发生故障时,线路L-1的继电保护动作将断路器4QF, 2QF断开,然后AAT装置动作将分段断路器3QF迅速闭合,使接在I段母线上的用户由线路L-2重新恢复供电。 比较图2-1中各种使用AAT装置的典型一次接线图可知,其备用电源的备用方式有所不同,其中第一种备用方式是装设正常情况下断开着的备用电源(用备用变压器或备用线),如图2-1 (a)、(b)、(c)、(d)所示,称明备用方式。其特点是备用可靠性高,广泛用于发电厂厂用电和变电所所用电。为提高备用电源的利

智能型双电源自动切换开关应用

智能型双电源自动切换开关应用 来源:工控商务网 随着科学技术的进步,各行业对供电可靠性的要求越来越高。很多场合必须采用两路电源来保证供电的可靠性。过去的两路电源用户,在低压侧采用手动操作的双向隔离开关进行倒闸操作,因此常出现误操作而引起事故。随着供电可靠性要求的提高,反事故措施的日趋完善,越来越多的先进设备投入应用到供电系统中。 一、高可靠性双电源切换装置 一种能在两路电源之间进行可靠切换双电源的装置,不会出现误操作而引起事故的全系列智能化双电源自动切换开关,就是为了满足高可靠性要求。目前投入使用的专用智能化设备,具有自投自复、自投不自复和电网发电机三种切换功能,对两路供电电源的三相电压有效值及相位进行实时检测,当任一相发生过压、欠压、缺相,能自动从异常电源切换到正常电源,这是一种性能完善、安全可靠、操作方便、智能化程度高、使用范围广泛的双电源控制系统的设备。 全系列智能型双电源自动切换开关的紧急供电系统,可实现当一路电源发生故障时,可以自动完成常用与备用电源间切换,而无需人工操作,以保证重要用户供电的可靠性。其主要用于医院、商场、银行等不允许断电的重要场所。 二、智能型双电源自动切换开关 智能型双电源自动切换开关特点 智能型双电源自动切换开关是由两台三极或四极的塑壳断路器及其附件(辅助、报警触头)、机械联锁传动机构、智能控制器等组成。分为整体式与分体式两种结构。整体式是控制器和执行机构同装在一个底座上;分体式是控制器装在柜体面板上,执行机构装在底座上,由用户安装在柜体内,控制器与执行机构用约2m长的电缆连接。其特点是: 两台断路器之间具有可靠的机构联锁装置和电气联锁保护,彻底杜绝了两台断路器同时合闸的可能性; 智能化控制器采用以MOTOROLA单片机为控制核心,硬件简洁,功能强大,扩展方便,可靠性高; 具有短路、过载保护功能,过压、欠压、缺相自动切换功能与智能报警功能; 自动切换参数可在外部自由设定; 具有操作电机智能保护功能; 装置带有消防控制电路,当消防控制中心给一控制信号进入智能控制器,两台断路器都进入分闸状态; 留有计算机联网接口,以备实现遥控、遥调、遥信、遥测等四遥功能。

备用电源自投装置设计

备用电源自投装置设计、应用的若干问题 作者:佚名文章来源:不详点击数:857 更新时间:2006-5-18 备用电源自投装置设计、应用的若干问题 郑曲直,程颖 (昆明供电局,云南昆明650011) Asummarization on design and application of backup power switchover unit ZHENGQu-zhi,CHENGYing (Kunming Power Supply Bereau in Yunnan Pronvince,Kunming 650011,China) Abstract:This paper studies severalproblems on design and application of backup power switchover unit,gives some principles ofthe designandthe application ofbackup power switchover unit,such as design ofstart conditions,using oftransmissionline and main bus voltage,designof blocking logic,questionsof matching between multi-levelbackup powerswitchoverunits and matching between backup power switchoverunitand auto-reclosing unit and some other special problems.This paper also analyzes the realizability of adaptive backup power switchover unit,indicatesthatthe microprocessor-based backup power switchover unitshould be ableto automatically select properactuating logic according tothe operating manners of powersystem. Key words:backup power switchover unit;design;adaptive 摘要:针对电力系统中备用电源自投装置在设计、应用中的若干问题进行总结,提出备自投方案设计和应用中备用电源自投的启动条件设计、线路和母线电压的取用、备自投闭锁逻辑的设计、多级备自投间和备自投与重合闸间的配合以及一些特殊情况的处理原则,对自适应备自投功能的实现逻辑进行了分析,提出微机备用电源自投装置应能根据系统运行方式变化自动选择适当的动作逻辑。 关键词:备用电源自投;设计;自适应 1 概述 备用电源自投装置(备自投)是电力系统中为了提高供电可靠性而装设的自 动装置,对提高多电源供电负荷的供电可靠性,保证连续供电有重要作用。备自投装置是当工作电源因故障或其他原因消失后,迅速地将备用电源或其他正常工作电源投入工作,并断开工作电源的自动装置。文献[1]对备自投装置的装设、动作逻辑等都提出了明确的要求。 随着计算机技术的发展,以单片机或可编程逻辑元件构成的微机型备自投得到大量应用,其设计和运行上的灵活性为备自投装置的应用提供了新的思路。笔者近年在工作中遇到很多由于对备自投原理认识不深或限于对常规式备自投的

相关文档
最新文档