汉黄芩素通过DNA氧化应激的抑制和OGG1表达的调节来衰减依托泊苷诱导的氧化DNA的损伤和凋亡

汉黄芩素通过DNA氧化应激的抑制和OGG1表达的调节来衰减依托泊苷诱导的氧化DNA的损伤和凋亡
汉黄芩素通过DNA氧化应激的抑制和OGG1表达的调节来衰减依托泊苷诱导的氧化DNA的损伤和凋亡

Wogonin attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxidative DNA stress and modulation of OGG1

expression

Sabry M.Attia a ,c ,?,Sheikh Fayaz Ahmad a ,Gamaleldin I.Harisa b ,d ,Ahmed M.Mansour c ,El Sayed M.El Sayed c ,Saleh A.Bakheet a

a

Department of Pharmacology and Toxicology,College of Pharmacy,King Saud University,Riyadh,Saudi Arabia b

Department of Pharmaceutics,College of Pharmacy,King Saud University,Riyadh,Saudi Arabia c

Department of Pharmacology and Toxicology,College of Pharmacy,Al-Azhar University,Cairo,Egypt d

Department of Biochemistry,College of Pharmacy,Al-Azhar University,Cairo,Egypt

a r t i c l e i n f o Article history:

Received 20February 2013Accepted 10July 2013

Available online 17July 2013Keywords:

DNA damage/repair Apoptosis

Oxidative DNA stress Secondary tumors

a b s t r a c t

Damage to DNA can lead to many different acute and chronic pathophysiological conditions,ranging from cancer to endothelial damage.The current study has been initiated to determine whether the ?avo-noid wogonin can attenuate etoposide-induced oxidative DNA damage and apoptosis in mouse bone marrow cells.We found that oral administration of wogonin before etoposide injection signi?cantly attenuates etoposide-induced oxidative DNA damage and apoptosis in a dose dependent manner.Etopo-side induced a signi?cant down-regulation of mRNA expression of the OGG1repair gene and marked bio-chemical alterations characteristic of oxidative DNA stress,including increased 8-OHdG,enhanced lipid peroxidation and reduction in reduced glutathione.Prior administration of wogonin ahead of etoposide challenge restored these altered parameters.Importantly,wogonin had no antagonizing effect on etopo-side-induce topoisomerase-II inhibition.Conclusively,our study indicates that wogonin has a protective role in the abatement of etoposide-induced oxidative DNA damage and apoptosis in the bone marrow cells of mice via suppression of oxidative DNA stress and enhancing DNA repair through modulation of OGG1repair gene expression.Therefore,wogonin can be a promising chemoprotective agent and might be useful to avert secondary leukemia and other drug-related cancers in cured cancer patients and med-ical personnel exposing to the potent carcinogen etoposide.

ó2013Elsevier Ltd.All rights reserved.

1.Introduction

Etoposide (VP-16),a topoisomerase II inhibitor,is one of the most popular chemotherapeutic drugs used in the treatment of various malignancies (Hande,1998).However,its utilisation is associated with the development of acquired drug resistance by the cancer cells and various side effects in the host including geno-mic damages and apoptosis (Attia,2008a ).The genotoxic potential of VP-16has become of great interest because of its serious effects on the chromosomes of non-tumour cells.In fact,after application of VP-16,damage to DNA may result as DNA fragmentation,chro-mosomal breaks and micronucleus formation causing genomic instability and may lead to mutagenesis,carcinogenesis or ?nally to apoptotic cell death (Seiter,2005;Ng et al.,2006).Apoptotic cell death plays a role not only in anticancer effects but also in adverse reactions,such as bone marrow suppression.In animals,VP-16is a somatic and germ-cell genotoxic agent capable of inducing both numerical and structural chromosome aberrations (Ashby et al.,1994;Turner et al.,2001;Attia et al.,2002,2003).Moreover,fol-low-up studies of patients who received VP-16therapy revealed an increased incidence of acute myeloid leukaemia characterised by site-speci?c rearrangements in the mixed multiple leukaemia gene on chromosome 11q23(Kitazawa et al.,2001;Felix et al.,2006).

The ?avonoid wogonin (WOG)is one of the active ?avonoids in Scutellaria baicalensis Georgi radix and presents extensive pharma-cological actions such as antioxidant,antiviral,anti-thrombotic,anti-in?ammatory,neuroprotective as well as various immuno-modulatory effects (Tai et al.,2005).Recently,more studies focused on its anti-proliferative and apoptosis inducing activity in various human tumor cells (Chen et al.,2002;Li-Weber,2009).In addition,it’s differentiation inducing effect and potential effect

0278-6915/$-see front matter ó2013Elsevier Ltd.All rights reserved.https://www.360docs.net/doc/f3616020.html,/10.1016/j.fct.2013.07.022

?Corresponding author at:Department of Pharmacology and Toxicology,College of Pharmacy,King Saud University,Riyadh,Saudi Arabia.Tel.:+966542927708;fax:+96614677200.

E-mail addresses:attiasm@https://www.360docs.net/doc/f3616020.html,.sa ,attiasm@https://www.360docs.net/doc/f3616020.html, (S.M.Attia).

of overcoming multidrug resistance were reported(Lee et al., 2009).The?avonoid WOG has been shown to markedly potenti-ates the anti-proliferative effect of VP-16in various tumor cells (Lee et al.,2009;Enomoto et al.,2011).The potentiating effect of WOG involves multiple mechanisms.For example,in a functional assay for P-glycoprotein(P-gp),WOG suppressed excretion of cal-cein,a substrate for P-gp,in tumor cells.Moreover,WOG decreased the excretion of radiolabeled VP-16and accordingly increased intracellular content of VP-16in the cancer cells.Thus,P-gp inhibi-tion and accumulation of VP-16in cancer cells seem to be part of the mechanism of potentiation of the action of VP-16by WOG (Enomoto et al.,2011).

In various cancer cells,WOG has been shown to potentiates VP-16-Induced apoptosis in these cells.In contrast,WOG has been shown to protect bone marrow cells and thymocytes from VP-16-induced apoptotic cell death(Lee et al.,2007,2009;Enomoto et al.,2011).These contradictory actions of WOG on apoptosis are distinguished by cancer or normal cell types.Similarly,Fas et al.(2006)reported that WOG sensitizes TNF a-resistant leuke-mia cells to TNF a-induced apoptosis and does not affect the viabil-ity of normal T-cells.The authors accounted for its mechanism by production of reactive oxygen species(ROS)and the difference in the oxidation–reduction status of cancer and normal cells.ROS accumulation may be partly involved in the potentiating effect of WOG because VP-16is known to increase ROS generation in cancer cells(Kurosu et al.,2003).Since the pharmacological properties of WOG may be distinguished by the cell type,it may enhance the pharmacologic actions of VP-16and ameliorate its adverse effects. Therefore,the combination of VP-16with WOG might be of thera-peutic bene?t.

The concept of providing protection against genotoxicity in non-tumor tissues will represent a promising approach of prevent-ing the unavoidable toxicity from cytotoxic chemotherapy;this will allow the safe use of increased drug doses for the bene?t of fu-ture cancer patients.Considering the widespread use of VP-16in clinical oncology and the ability of WOG to improve the therapeu-tic outcome from VP-16(Enomoto et al.,2011),prompted us to investigate whether the non-toxic doses of WOG in combination with VP-16can ameliorate VP-16-induced oxidative DNA damage and apoptosis in mice bone marrow cells.The unrepaired DNA damage was assessed by the bone marrow micronucleus test and the kinetics of repair of oxidative DNA damage was assessed by co-met assay.Apoptosis was analyzed by the occurrence of a hypodip-loid DNA peak and the activity of caspase-3in mouse bone marrow cells.In addition,quantitative analysis of mRNA expression of the DNA repair-related gene8-oxoguanine glycosylase(OGG1)was performed by real-time reverse polymerase chain reaction(RT-PCR).The biochemical alterations characteristic of oxidative DNA damage induced by VP-16such as8-hydroxy-20-deoxyguanosine (8-OHdG),lipid peroxidation and reduced glutathione(GSH)levels have been evaluated.Further,the catalytic activity of topoisomer-ase II was evaluated in the presence of WOG and/or VP-16.

2.Material and methods

2.1.Animals

Adult male Swiss albino mice aged10–14weeks and weighing25–30g were obtained from Experimental Animal Care Center,College of Pharmacy,King Saud University.The animals were maintained in an air-conditioned animal house at a temperature of25–28°C,relative humidity at$50%and photo-cycle of12:12h light and dark periods.The animals were provided with Purina rodent’s chow pel-lets and water ad libitum.All experiments were carried out according to the Guide-lines of the Animal Care and Use Committee at King Saud University.Each treatment group and vehicle control group consisted of?ve randomly assigned ani-mals.The total number of animals in this study was260treated mice and45vehicle control.2.2.Drugs and chemicals

VP-16and WOG were purchased from Sigma–Aldrich(St Louis,MO,USA).The drugs were dissolved in5%dimethylsulfoxide(DMSO)in sterile distilled H2O, mixed on a magnetic stirrer for at least30min prior to administration.VP-16 was administered by intraperitonial injection within1h following preparation. The doses of VP-16were selected on the basis of its effectiveness in inducing chro-mosomal damage(Ashby et al.,1994;Turner et al.,2001;Attia et al.,2009)and the selected doses are within the dose range used for human chemotherapy.WOG was administered through oral intubations and the gavage administrations were made 24h and1h prior to the VP-16injection.Control animals were received equal amounts of5%DMSO in sterile distilled H2O and the administrated volumes were 0.01ml per1g body weight.All other chemicals were of the?nest analytical grade.

2.3.Measurement of unrepaired DNA damage by micronucleus test

In the micronucleus test,the animals were treated with10or20mg/kg body weight WOG before0.5,1or10mg/kg body weight VP-16treatment.Cyclophos-phamide was used at a concentration of40mg/kg body weight as a positive control mutagen(Attia,2007;Attia et al.,2009).Mice were sacri?ced at24h after VP-16or cyclophosphamide treatment and femurs bone marrow cells were collected in tubes containing foetal calf serum.Bone marrow smears were prepared and stained with May-Gruenwald/Giemsa as described previously(Attia et al.,2005;Attia, 2007).At least two sides were made for each animal and allowed to dry overnight. Per animal,2000polychromatic erythrocytes(PCE)of coded slides were scored for the presence of micronuclei(MN)(Attia et al.,2009).The frequencies of PCE were determined in slide areas where1000normochromatic erythrocytes(NCE)could be counted to determine a shift in erythroblast proliferation.The values were ex-pressed as%PCE of the total erythrocyte counts to determine a reduction of eryth-roblast proliferation.

2.4.Alkaline comet assay

The alkaline comet assay was used to evaluate the kinetics of repair of DNA strand breaks in animals treated with10mg/kg body weight VP-16and/or10or 20mg/kg body weight WOG.Animals were sacri?ced by cervical dislocation at1, 3or24h after the exposure to10mg/kg body weight VP-16.At speci?c time,bone marrow cells from one femora were collected and the alkaline comet assay was per-formed as described elsewhere(Attia et al.,2010).The slides were stained with ethidium bromide then studied by using a?uorescent microscope equipped with appropriate?lter.Images from100cells per animal were randomly selected for analysis using TriTek CometScore version1.5software and the olive tail moment [(Tail mean–Head mean)?Tail%DNA/100]was calculated.

2.5.Modi?ed version of comet assay

For detecting oxidative DNA damage,the modi?ed comet assay using lesion-speci?c enzymes were also used on parallel slides to detect oxidized purines and pyrimidines.The modi?ed comet assay was performed as described previously by Attia et al.(2013).Brie?y,the mouse bone marrow cells were embedded in agarose on microscope slides and stored in the lysis buffer as previously described(Attia et al.,2010).After lysing,the slides were washed three times for5min each with an enzyme buffer(40mM HEPES,0.1M KCl,0.5mM EDTA,0.2mg/ml bovine serum albumin,with the solution adjusted to pH8.0with KOH).After washing,excess li-quid was removed,and the following solutions were applied to slides prepared from each treatment group:50l l of enzyme buffer alone(control),50l l of enzyme buffer containing1l g/ml of formamidopyrimidine glycosylase(Fpg,which cataly-ses excision of oxidized purines)or50l l of enzyme buffer containing1l g/ml of endonuclease III(Endo III,which catalyses excision on oxidized pyrimidines).The slides were kept in a moist box and incubated at37°C for30–45min.After the en-zyme treatment,the slides were placed in a horizontal electrophoresis chamber to perform DNA unwinding then electrophoresis and slide staining were the same as mentioned previously(Attia et al.,2010).Thereafter,slides were analyzed as de-scribed above for the alkaline comet assay.

2.6.Detection of apoptosis

To study the in?uence of WOG on the VP-16-induced apoptosis in mouse bone marrow cells,6groups of15mice each were treated as in the alkaline comet assay and?ve mice from each group were sacri?ced by cervical dislocation at1,3or24h after the exposure to VP-16.At speci?c time,bone marrow cells were collected and the apoptotic cells were quanti?ed with propidium iodide as mentioned earlier (Bakheet et al.,2011).The stained cells were then analyzed by?ow cytometry using a FACSCalibur cytometer and cells containing hypodiploid DNA were considered as apoptotic.The percentage of apoptotic cells were calculated using a computer sys-tem CellQuest(BD Biosciences).Moreover,the activity of caspase-3in signal trans-duction was investigated in mouse bone marrow cells at24h sampling regimen by use of the DEVD-p NA cleavage assay as described elsewhere(Attia,2012a).

S.M.Attia et al./Food and Chemical Toxicology59(2013)724–730725

2.7.Expression analyses

Animal treatment was the same as in the alkaline comet assay.The animals were killed by cervical dislocation at24h after VP-16treatment to estimate the gene expression levels of OGG1.Total RNA from bone marrow cells were isolated using TRIzol reagent(Invitrogenò)according to the manufacturer’s instructions then the quantity and quality of the RNA were determined with a NanoDrop 8000.Thereafter,?rst-strand cDNA synthesis was performed using the High-Capac-ity cDNA reverse transcription kit(Applied Biosystems),according to the manufac-turer’s instructions.Brie?y,1.5l g of total RNA from each sample was added to a mixture of 2.0l l of10?reverse transcriptase buffer,0.8l l of25?dNTP mix (100mM),2.0l l of10?reverse transcriptase random primers,1.0l l of Multi-Scribe reverse transcriptase,and3.2l l of nuclease-free water.The?nal reaction mixture was kept at25°C for10min,heated to37°C for120min,heated for 85°C for5s,and?nally cooled to4°C.

Quantitative analysis of mRNA expression were performed by RT-PCR by sub-jecting the resulting cDNA to PCR ampli?cation using96-well optical reaction plates in the ABI Prism7500System(Applied Biosystemsò).The25-l l reaction mix-ture contained0.1l l of10l M forward primer and0.1l l of10l M reverse primer (40nM?nal concentration of each primer),12.5l l of SYBR Green Universal Master-mix,11.05l l of nuclease-free water,and1.25l l of cDNA sample.The primers used in the current study were as follows:OGG1forward primer50-GAT TGG ACA GTG CCG TAA-30,reverse primer50-GGA AGT GGG AGT CTA CAG-30and Cyclophilin A: forward primer50-TGG TCA ACC CCA CCG TGT TCT TCG-30,reverse primer50-TCC AGC ATT TGC CAT GGA CAA GA-30(GenScript,Piscataway,NJ).The RT-PCR data were analyzed using the relative gene expression(i.e.,DD CT)method,as described in Applied Biosystems User Bulletin.The data are presented as the fold change in gene expression normalized to the endogenous reference gene(Cyclophilin A) and relative to untreated calibrator group(Livak and Schmittgen,2001).

2.8.Measurement of oxidative DNA stress markers

To study the effect of WOG on the oxidative DNA stress induced by VP-16treat-ment,animal were treated as in the alkaline comet assay and peripheral blood sam-ples were collected from the heart at24h after VP-16treatment for estimation of serum8-OHdG,lipid peroxidation and GSH levels.The amount of8-OHdG was determined using the Bioxytech8-OHdG-ELISA Kit(OXIS Health Products,Portland, OR,USA)according to the manufacturer’s instructions as described previously(At-tia,2012a)and the concentration of8-OHdG was interpolated from a standard curve drawn with the assistance of logarithmic transformation.Reported values are the average of triplicate determinations and levels of8-OHdG are expressed as ng/ml.The extent of lipid peroxidation was assayed by measuring one of the end products of this process,the thiobarbituric acid-reactive substances(TBARS) by the method of Ohkawa et al.(1979)with some modi?cations as described else-where(Attia,2008b).The concentration of TBARS was calculated using standard curves of increasing1,1,3,3-tetramethoxypropane concentrations,and expressed as nmol/ml.GSH was assayed with5,50-dithiobis(2-nitrobenzoic acid)according to the protocol described by Ellman(1959)as described previously(Attia,2008b). The concentration of GSH was calculated from standard curve that was obtained from freshly prepared standard solutions of GSH and expressed as l g/ml.

2.9.Topoisomerase II inhibition assay

To determine if WOG would has an antagonizing effect on VP-16-induced topo-isomerase II inhibition,topoisomerase II-a activity was measured by inhibition of decatenation of kinetoplast DNA(kDNA)by100l M VP-16and/or100l M of WOG using a TopoGen(Columbus,OH,USA)assay kit as described previously(Attia, 2012b).

2.10.Statistical analysis

Results were expressed as means±SD of the mean.Data of micronucleus test, comet assay and propidium iodide staining were analyzed by the non-parametric tests,the Mann–Whitney U-test and Kruskal–Wallis test followed by Dunn’s for multiple comparisons.Data on oxidative DNA stress parameters,caspase-3activity and expression analyses were?rstly tested for homogeneity of variance and nor-mality and then analyzed by employing parametric tests,Student t-test and one-way ANOVA followed by Tukey–Kramer for multiple comparisons by using software computer program(GraphPad InStat;DATASET1.ISD).Results were considered sig-ni?cantly different if the P-value was<0.05.

3.Results and discussion

Flavonoids have become active medicine clinically and exami-nation of their anti-genotoxic and anti-apoptotic effects has re-ceived increasing attention in recent years.As mentioned in Introduction,WOG has various pharmacological and therapeutic actions.In spite of its powerful ef?cacies,WOG shows minor or al-most no toxicity on normal cells.The oral LD50value of WOG in mice was found to be greater than3g/kg(Hui et al.,2002).Since WOG is safe and readily available natural product,one needs to examine its interaction with drugs.Thus,the intention of the cur-rent study was to determine whether WOG can attenuate etopo-side-induced DNA damage and apoptosis in mouse bone marrow cells.The current study demonstrates that WOG was neither geno-toxic nor apoptogenic in mouse bone marrow at the doses tested. Moreover,it is able to protect mouse bone marrow cells against the VP-16-induced oxidative DNA damage and produce a decline in cell proliferation as observed by the reduction in MN frequen-cies,DNA strand breaks as well as increases in mitotic activities, respectively.The apoptogenic effect of VP-16was also reduced by WOG pre-treatment.These effects,however,are dose depen-dent,been detected clearly at the higher dose of WOG.

3.1.Effect of WOG on VP-16-induced MNPCE and bone marrow suppression

The levels of unrepaired DNA damage as detected by the micro-nucleus test are shown in Table1.The positive control mutagen cyclophosphamide was used and this compound produced the ex-pected responses and the results of this compound were in the same range as those of earlier studies(Attia,2007;Attia et al., 2009).These data con?rmed the sensitivity of the experimental protocol followed in the detection of genotoxic effects.VP-16 caused signi?cant increases in MN induction at all doses tested. However,an inverse dose response was found between1and 10mg/kg body weight.In the micronucleus test,comparison of the PCE/NCE ratio in bone marrow of treated animals to vehicle-control animals provides an indication of cytotoxicity.When eryth-roblast proliferation is depressed,the ratio will decrease,when proliferation is increased to repopulate the PCE pool,the ratio is in-creased.Some cytotoxicity can provide a valuable indication of bone-marrow exposure by the test agent,but excessive toxicity is undesirable.The decline of the MN yields with increasing doses was accompanied by a signi?cant reduction of PCE frequencies so that at low PCE rates hardly any MNPCE could be seen.These re-sults are in accord with the previous data published by Ashby Table1

Frequencies of MNPCE and PCE in bone marrow of mice after treatment with the indicated doses of wogonin(WOG)and/or etoposide(VP-16).

Chemical(mg/kg body weight)%MNPCE(mean±SD)%PCE A(mean±SD)

Control0.30±0.0749.4±1.34

WOG(10)0.34±0.1148.4±2.30

WOG(20)0.28±0.1048.8±1.09

VP-16(0.5) 1.58±0.31**46.4±2.30

WOG(10)+VP-16(0.5)0.98±0.32a47.2±2.77

WOG(20)+VP-16(0.5)0.78±0.31b47.4±2.30

VP-16(1) 2.78±0.44**44.4±4.27

WOG(10)+VP-16(1) 2.08±0.3148.2±2.68

WOG(20)+VP-16(1)0.92±0.30b47.6±2.30

VP-16(10) 1.68±0.38**40.0±3.0**

WOG(10)+VP-16(10) 1.12±0.21a44.4±2.70

WOG(20)+VP-16(10)0.66±0.15b46.2±2.48a

Cyclophosphamide(40) 1.76±0.35#41.6±4.21#

MNPCE=Micronucleated polychromatic erythrocytes;PCE=polychromatic eryth-rocytes;WOG=wogonin;VP-16=etoposide.

A Numbers of PCE were counted in microscopic?elds which contained1000 normochromatic erythrocytes(NCE);%PCE were calculated as%PCE=[PCE/ (PCE+NCE)]?100.

**P<0.01compared with the solvent control(Kruskal–Wallis test followed by Dunn’s multiple comparisons test).

a P<0.05.

b P<0.01compared with corresponding VP-16alone(Mann–Whitney U-test). #P<0.01compared with control(Mann–Whitney U-test).

726S.M.Attia et al./Food and Chemical Toxicology59(2013)724–730

1.Effects of wogonin[WOG(mg/kg body weight)]on etoposide[VP-16(mg/kg body weight)]-induced DNA strand breaks in mouse bone marrow cells.The were subjected to comet assay after1,3and24h of exposure to VP-16,with without enzyme digestion after the lysis.Cells without enzyme treatment were

exposed to enzyme buffer alone(A)cells treated with endonuclease III(Endo were digested for45min(B)and those treated with formamidopyrimidine glycosylase(Fpg)were digested for30min(C).?P<0.05and??P<0.01compared the corresponding solvent control(Kruskal–Wallis test followed by Dunn’s multiple comparisons test).a P<0.05and b P<0.01compared with the correspond-VP-16alone(Mann–Whitney U-test).

2.Percentage of apoptotic cells in bone marrow of mice1,3or24h after treatment with wogonin[WOG(mg/kg body weight)]and/or etoposide[VP-16(mg/ body weight)].%Apoptotic cells denote the percentage of cells with hypodiploid DNA content.??P<0.01compared with the corresponding solvent control(Kruskal–Wallis test followed by Dunn’s multiple comparisons test).a P<0.05and b P<0.01 compared with the corresponding VP-16alone(Mann–Whitney U-test).

S.M.Attia et al./Food and Chemical Toxicology59(2013)724–730727

and also inhibited lipopolysaccharide and cytokine-induced C6 glial cell apoptosis(Kim et al.,2001).

As shown in Fig.3,no apparent difference could be observed in caspase-3activity between the control group and the WOG-treated group.The hydrolytic enzyme activity of caspase-3towards DEVD p NA was signi?cantly elevated in animals treated with VP-16in comparison with the control.Pre-treatment of mice with WOG sig-ni?cantly reduced the elevated caspase-3activity relative to the value obtained after treatment with VP-16alone(P<0.01).In con-trast,WOG has been reported to activate caspase-3and induce apoptotic cell death in some cancer cells(Chen et al.,2002).Thus, the effect of WOG on apoptotic cell death differs according to the type of cells.

3.3.Mechanisms by which WOG protected against VP-16-induced DNA damage and apoptosis

It has been reported that VP-16generates phenoxyl radical or quinone intermediates in the redox reaction(Haim et al.,1986).

Accumulation of these radicals may cause damage to cellular gen-ome and other critical biomolecules,ultimately inducing genotox-icity and leukemia(Attia,2010).Moreover,it is believed that accumulation of lipid peroxyl radicals induced by VP-16during their oxidation may cause damage to cell membrane leading to li-pid peroxidation(Ladner et al.,1989).The exact mechanism by which WOG protected against VP-16-induced genomic damage and apoptosis is not well known.Possible explanations for this pro-tection is that pre-treatment with WOG would enhancing DNA re-pair and allow interception of free radicals generated by VP-16 before they reach DNA to induce DNA damage and apoptosis.

To ensure the role of increase oxidative stress in the induction of oxidative DNA damage,modi?ed comet assay was performed in parallel with the alkaline comet assay.Alkaline comet assay is generally considered as a reliable method of DNA strand breaks assessment due to its versatility and sensitivity.Inclusion of the enzyme Fpg and Endo-III makes this assay more sensitive towards the detection of oxidative stress induced DNA damage(Collins et al.,1993).As shown in Fig.1,the VP-16treatment led to signif-icant increase in the DNA strand breaks+Endo-III(B),and DNA strand breaks+Fpg(C)in olive tail moment as compared to control groups at all sampling times with the highest value at1h after VP-16treatment.WOG pre-treatment followed by VP-16signi?cantly reduces the DNA strand breaks+Endo-III and strand breaks+Fpg values as opposed to the group receiving VP-16only.Thus,oxida-tive DNA damage induced by VP-16may be one of the most impor-tant factors responsible for the bone marrow toxicity and the protective effect of WOG resides,at least in part,in its radical scav-enger activity.

Among the various DNA oxidative lesions,8-OHdG is the most abundant oxidized base generated in vivo by various types of ROS.This aberrant base is a pre-mutagenic lesion,inducing G-C to T-A transversions.A substantial body of evidence indicates that 8-OHdG is possibly an important biomarker of carcinogenesis (Nishigori et al.,2004).In mammalian cells,this oxidized base is speci?cally recognized and excised by the OGG1enzyme.This en-zyme initiates the highly conserved base excision repair of small chemical alterations in DNA.As shown in Fig.4,the expression of OGG1gene in mice exposed to VP-16was signi?cantly down regulated relative to the untreated control.On the other hand, when pre-treatment of different doses of WOG was given prior to VP-16treatment,a signi?cant restoration of mRNA expression of the OGG1gene was observed and the higher dose of WOG gave the more effective restoration of OGG1gene.

The biochemical alterations characteristic of oxidative DNA stress activity induced by VP-16such as8-OHdG,lipid peroxida-tion and GSH have been also measured after treatment with VP-16and/or WOG.The present study demonstrates that WOG pre-treatment reduced the VP-16induced accumulation of8-OHdG and lipid peroxidation and prevented the reduction in GSH signif-icantly(Table2).The increased GSH level suggests that protection by WOG may be mediated through the modulation of cellular anti-oxidant levels.These observations con?rm earlier studies in which WOG were reported to scavenge free radicals and lipid peroxides

3.Effects of wogonin[WOG(mg/kg body weight)]and/or etoposide[VP-16 (mg/kg body weight)]on caspase-3activity in the bone marrow cells of (mean±SD).??P<0.01versus control,b P<0.01versus VP-16alone(one-way ANOVA and post hoc Tukey–Kramer multiple comparison test).

4.Effects of wogonin[WOG(mg/kg body weight)]and/or etoposide[VP-16 (mg/kg body weight)]on8-oxoguanine-DNAglycosylase(OGG1)mRNA expression the bone marrow cells of mice(mean±SD).??P<0.01versus control,a P<

b P<0.01versus VP-16alone(one-way ANOVA and post ho

c Tukey–Kramer multiple comparison test).

Table2

Effects of wogonin(WOG)and/or etoposide(VP-16)on the bone marrow contents of 8-OHdG,lipid peroxidation(TBARS)and GSH in mice(mean±SD).

Treatment group

(mg/kg body weight)

8-OHdG

(ng/ml)

TBARS

(nmol/ml)

GSH

(l g/ml) Control 3.21±0.82 2.92±0.79 3.74±0.56 WOG(10) 3.91±0.87 3.58±0.43 4.76±0.67 WOG(20) 3.34±0.89 3.44±0.71 5.22±1.10 VP-16(10)11.3±2.7**9.41±2.2** 1.46±0.4** WOG(10)+VP-16(10) 6.62±1.5b 6.14±2.1a 2.56±0.9# WOG(20)+VP-16(10) 4.46±1.2b 4.40±0.9b 3.61±0.9b WOG=Wogonin,VP-16=etoposide,8-OHdG=8-hydroxy-20-deoxyguanosine, TBARS=thiobarbituric acid-reactive substances,GSH=reduced glutathione.

**P<0.01compared with the solvent control.

a P<0.05.

b P<0.01compared with VP-16alone(one-way ANOVA followed by Tukey–Kramer multiple comparisons test).

#P<0.05compared with VP-16alone(Student t-test).

(Shieh et al.,2000;Lim,2003;Chang et al.,2007)and this?nding is also in harmony with the positive responses in which WOG atten-uated excitotoxic and oxidative stress-induced neuronal damage in primary cultured rat cortical cells(Cho and Lee,2004).

An important consideration of co-administration of VP-16and WOG is how it will possibly affect the anti-tumor treatment ef?-cacy;there are,however,important differences between these two processes,which suggest that a reduction in side effects does not necessarily go hand-in-hand with a reduction in the anti-tu-mor effects.To determine whether WOG antagonizes VP-16-in-duced topoisomerase II inhibition,the activity of topoisomerase II-a was measured by inhibition of decatenation of kDNA by WOG and/or VP-16.Fig.5shows the fully catenated kDNA(Lane 1)cannot enter the gel due to its large size;however,following incubation with puri?ed topoisomerase II-a(Lanes2–5),two decatenation products could be shown:nicked monomer kDNA (upper band)and covalently closed circular DNA(lower band;re-laxed).As seen in Lanes2and3,the solvent control and WOG (100l M)do not affect decatenation of kDNA,while100l M VP-16totally block the reaction(Lane4).Importantly,the addition of WOG could not reverse VP-16-induce topoisomerase II inhibi-tion(Lane5).Consequently,WOG should not diminish the anti-tu-mor activity of VP-16through its ability to prevent the formation of free radical intermediates.

3.4.Conclusion

The present study demonstrated that WOG was neither geno-toxic nor apoptogenic for the mouse bone marrow cells at the se-lected doses.Moreover,WOG is able to attenuate VP-16-induced oxidative DNA damage and apoptosis in mouse bone marrow cells. VP-16induced a signi?cant alteration of mRNA expression of OGG1gene and marked biochemical alterations characteristic of oxidative DNA stress,including increased8-OHdG and lipid perox-idation generation and reduction in GSH.Prior administration of WOG ahead of VP-16challenge ameliorated these altered parame-ters.VP-16has a direct inhibitory effect on topoisomerase II,an important component of its anti-tumor activity,and this will be unchanged by any manipulations that alter the redox reaction. The improvement in mitotic activity of bone marrow cells of ani-mals pre-treated with WOG in VP-16toxicity may focus attention on the bene?cial effect of WOG to overcome the haematological toxicity induced by VP-16.The antioxidant properties of WOG have already been described(Shieh et al.,2000;Lim,2003;Chang et al., 2007).For the?rst time,however,we demonstrated that these properties are also effective on a potent human carcinogen,such as VP-16.Therefore,WOG can be a promising chemoprotective agent and might be useful to avert secondary acute myeloid leukemia and other drug-related cancers in cured cancer patients and medical personnel exposing to VP-16.

Con?ict of Interest

The authors declare that there are no con?icts of interest. Acknowledgements

The authors extend their appreciation to the Deanship of Scien-ti?c Research at King Saud University for funding the work through the research group Project No.RGP-VPP-120.

References

Ashby,J.,Tinwell,H.,Glover,P.,Poorman-Allen,P.,Krehl,R.,Callander,R.D.,Clive,D., 1994.Potent clastogenicity of the human carcinogen etoposide to the mouse bone marrow and mouse lymphoma L5178Y cells:comparison to salmonella responses.Environ.Mol.Mutagen.24,51–60.

Attia,S.M.,2007.The genotoxic and cytotoxic effects of nicotine in the mouse bone marrow.Mutat.Res.632(1–2),29–36.

Attia,S.M.,2008a.Mutagenicity of some topoisomerase II-interactive agents.Saudi Pharm.J.17,1–24.

Attia,S.M.,2008b.Abatement by naringin of lome?oxacin-induced genomic instability in mice.Mutagenesis23(6),515–521.

Attia,S.M.,2010.Deleterious effects of reactive metabolites.Oxid.Med.Cell Longev.

3(4),238–253.

Attia,S.M.,2012a.In?uence of resveratrol on genomic damage induced by cisplatin.

Mutat.Res.741(1–2),22–31.

Attia,S.M.,2012b.Dominant lethal mutations of topoisomerase II inhibitors etoposide and merbarone in male mice:a mechanistic study.Arch.Toxicol.

86(5),725–731.

Attia,S.M.,Schmid,T.E.,Badary,O.A.,Hamada,F.M.,Adler,I.D.,2002.Molecular cytogenetic analysis in mouse sperm of chemically induced aneuploidy:studies with topoisomerase II inhibitors.Mutat.Res.520,1–13.

Attia,S.M.,Kliesch,U.,Schriever-Schwemmer,G.,Badary,O.A.,Hamada,F.M.,Adler,

I.D.,2003.Etoposide and merbarone are clastogenic and aneugenic in the

mouse bone marrow micronucleus test complemented by?uorescence in situ hybridization with the mouse minor satellite DNA probe.Environ.Mol.

Mutagen.41,99–103.

Attia,S.M.,Badary,O.A.,Hamada, F.M.,de Angelis,M.H.,Adler,I.D.,2005.

Orthovanadate increased the frequency of aneuploid mouse sperm without micronucleus induction in mouse bone marrow erythrocytes at the same dose level.Mutat.Res.583(2),158–167.

Attia,S.M.,Al-Anteet,A.A.,AL-Rasheed,N.M.,Alhaider,A.A.,Al-Harbi,M.M.,2009.

Protection of mouse bone marrow from etoposide-induced genomic damage by dexrazoxane.Cancer Chemother.Pharmacol.64(4),837–845.

Attia,S.M.,Bakheet,S.A.,AL-Rasheed,N.M.,2010.Proanthocyanidins produce signi?cant attenuation of doxorubicin-induced mutagenicity via suppression of oxidative stress.Oxid.Med.Cell Longev.3(6),404–413.

Attia,S.M.,Harisa,G.I.,Hassan,M.H.,Bakheet,S.A.,2013.Beryllium chloride induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.Mutagenesis.https://www.360docs.net/doc/f3616020.html,/10.1093/mutage/get032. Bakheet,S.A.,Attia,S.M.,AL-Rasheed,N.M.,Al-harbi,M.M.,Ashour,A.E.,Korashy,

H.M.,Abd-Allah, A.R.,Saquib,Q.,Al-Khedhairy, A.A.,Musarrat,J.,2011.

Salubrious effects of dexrazoxane against teniposide-induced DNA damage and programmed cell death in murine marrow cells.Mutagenesis26(4),533–543.

Chang,W.T.,Shao,Z.H.,Yin,J.J.,Mehendale,S.,Wang,C.Z.,Qin,Y.,Li,J.,Chen,W.J., Chien,C.T.,Becker,L.B.,Vanden Hoek,T.L.,Yuan,C.S.,https://www.360docs.net/doc/f3616020.html,parative effects of?avonoids on oxidant scavenging and ischemia–reperfusion injury in cardiomyocytes.Eur.J.Pharmacol.566(1–3),58–66.

Chen,Y.C.,Shen,S.C.,Lee,W.R.,Lin,H.Y.,Ko,C.H.,Shih,C.M.,Yang,L.L.,2002.

Wogonin and?setin induction of apoptosis through activation of caspase3 cascade and alternative expression of p21protein in hepatocellular carcinoma cells SK-HEP-1.Arch.Toxicol.76(5–6),351–359.

Cho,J.,Lee,H.K.,2004.Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells.Eur.J.Pharmacol.485(1–3),105–110. Collins, A.R.,Duthie,S.J.,Dobson,V.L.,1993.Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA.

Carcinogenesis14,1733–1735.

Ellman,G.L.,1959.Tissue sulfhydryl groups.Arch.Biochem.Biophys.82,70–77. Enomoto,R.,Koshiba, C.,Suzuki, C.,Lee, E.,2011.Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects.Cancer Chemother.Pharmacol.67(5),1063–1072.

Fas,S.C.,Baumann,S.,Zhu,J.Y.,Giaisi,M.,Treiber,M.K.,Mahlknecht,U.,Krammer, P.H.,Li-Weber,M.,2006.Wogonin sensitizes resistant malignant cells to TNFalpha-and TRAIL-induced apoptosis.Blood108(12),3700–3706.

Felix,C.A.,Kolaris,C.P.,Osheroff,N.,2006.Topoisomerase II and the etiology of chromosomal translocations.DNA Repair(Amst.)5,1093–1108.

Wogonin(WOG)did not reverse the inhibitory effects of etoposide

kinetoplast DNA(kDNA)decatenation by human topoisomerase https://www.360docs.net/doc/f3616020.html,ne

marker(kDNA without topoisomerase II-a);lane2:solvent control;

(100l M);lane4:VP-16(100l M);lane5:WOG+VP-16;lane6is

marker produced by digestion of kDNA with Xho I;and lanes2–5:

topoisomerase II-a and drugs.This gel is representative of at least four independent

experiments.

Toxicology59(2013)724–730729

Haim,N.,Roman,J.,Nemec,J.,Sinha,B.K.,1986.Peroxidative free radical formation and O-demethylation of etoposide(VP-16)and teniposide(VM-26).Biochem.

https://www.360docs.net/doc/f3616020.html,mun.135,215–220.

Hande,K.R.,1998.Etoposide:four decades of development of a topoisomerase II inhibitor.Eur.J.Cancer34(10),1514–1521.

Holm, B.,Jensen,P.B.,Sehested,M.,Hansen,H.H.,1994.In vivo inhibition of etoposide-mediated apoptosis,toxicity,and antitumor effect by the topoisomerase II-uncoupling anthracycline aclarubicin.Cancer Chemother.

Pharmacol.34(6),308–503.

Hui,K.M.,Huen,M.S.,Wang,H.Y.,Zheng,H.,Sigel,E.,Baur,R.,Ren,H.,Li,Z.W., Wong,J.T.,Xue,H.,2002.Anxiolytic effect of wogonin,a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi.Biochem.Pharmacol.

64(9),1415–1424.

Kapiszewska,M.,Cierniak,A.,Papiez,M.A.,Pietrzycka,A.,Stepniewski,M.,Lomnicki,

A.,2007.Prolonged quercetin administration diminishes the etoposide-induced

DNA damage in bone marrow cells of rats.Drug Chem.Toxicol.30(1),67–81. Kim,H.,Kim,Y.S.,Kim,S.Y.,Suk,K.,2001.The plant?avonoid wogonin suppresses death of activated C6rat glial cells by inhibiting nitric oxide production.

Neurosci.Lett.309(1),67–71.

Kitazawa,J.,Ito, E.,Arai,K.,Yokoyama,M.,Fukayama,M.,Imashuku,S.,2001.

Secondary acute myelocytic leukemia after successful chemotherapy with etoposide for Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis.Med.Pediatr.Oncol.37,153–154.

Kurosu,T.,Fukuda,T.,Miki,T.,Miura,O.,2003.BCL6overexpression prevents increase in reactive oxygen species and inhibits apoptosis induced by chemotherapeutic reagents in B-cell lymphoma cells.Oncogene22(29), 4459–4468.

Ladner,C.,Ehninger,G.,Gey,K.F.,Clemens,M.R.,1989.Effect of etoposide(VP16-213)on lipid peroxidation and antioxidant status in a high-dose radiochemotherapy regimen.Cancer Chemother.Pharmacol.25,210–212. Lee,E.,Enomoto,R.,Suzuki,C.,Ohno,M.,Ohashi,T.,Miyauchi,A.,Tanimoto,E., Maeda,K.,Hirano,H.,Yokoi,T.,Sugahara,C.,2007.Wogonin,a plant?avone, potentiates etoposide-induced apoptosis in cancer cells.Ann.NY Acad.Sci.

1095,521–526.Lee,E.,Enomoto,R.,Koshiba,C.,Hirano,H.,2009.Inhibition of P-glycoprotein by wogonin is involved with the potentiation of etoposide-induced apoptosis in cancer cells.Ann.NY Acad.Sci.1171,132–136.

Lim, B.O.,2003.Effects of wogonin,wogonoside,and3,5,7,20,60-pentahydroxy?avone on chemical mediator production in peritoneal exduate cells and immunoglobulin E of rat mesenteric lymph node lymphocytes.J.

Ethnopharmacol.84(1),23–29.

Livak,K.J.,Schmittgen,T.D.,2001.Analysis of relative gene expression data using real-time quantitative PCR and the2(-Delta Delta C(T))method.Methods25(4), 402–408.

Li-Weber,M.,2009.New therapeutic aspects of?avones:the anticancer properties of Scutellaria and its main active constituents Wogonin,Baicalein and Baicalin.

Cancer Treat.Rev.35,57–68.

Ng, A.,Taylor,G.M.,Eden,O.B.,2006.Genotoxicity of etoposide:greater susceptibility of MLL than other target genes.Cancer Genet.Cytogenet.164, 164–167.

Nishigori,C.,Hattori,Y.,Toyokuni,S.,2004.Role of reactive oxygen species in skin carcinogenesis.Antioxid.Redox Signal.6(3),561–570.

Ohkawa,H.,Ohishi,N.,Yagi,K.,1979.Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal.Biochem.95,351–358.

Park,S.,Hahm,K.B.,Oh,T.Y.,Jin,J.H.,Choue,R.,2004.Preventive effect of the ?avonoid,wogonin,against ethanol-induced gastric mucosal damage in rats.

Dig.Dis.Sci.49(3),384–394.

Seiter,K.,2005.Toxicity of the topoisomerase II inhibitors.Expert.Opin.Drug Saf.4, 219–234.

Shieh,D.E.,Liu,L.T.,Lin,C.C.,2000.Antioxidant and free radical scavenging effects of baicalein,baicalin and wogonin.Anticancer Res.20(5A),2861–2865.

Tai,M.C.,Tsang,S.Y.,Chang,L.Y.,Xue,H.,2005.Therapeutic potential of wogonin:a naturally occurring?https://www.360docs.net/doc/f3616020.html,S Drug Rev.11(2),141–150.

Turner,S.D.,Wijnhoven,S.W.,Tinwell,H.,Lashford,L.S.,Rafferty,J.A.,Ashby,J., Vrieling,H.,Fairbairn,L.J.,2001.Assays to predict the genotoxicity of the chromosomal mutagen etoposide focusing on the best assay.Mutat.Res.493 (1–2),139–147.

730S.M.Attia et al./Food and Chemical Toxicology59(2013)724–730

炎症和氧化应激

炎症和氧化应激 炎症可以引起氧化应激,氧化应激也可以引起炎症。首先我们要清楚一些概念。如:炎症、炎症细胞。 炎症细胞指炎症反应时参与炎症反应、浸润炎症组织局部的细胞。如巨噬细胞、淋巴细胞、中性粒细胞和嗜酸性粒细胞以及参与炎症反应的血小板和内皮细胞等。 一、炎症定义:炎症是机体对各种物理、化学、生物等有害刺激所产生的一种以防御为主的病理反应,是一种具有血管系统的活体组织对损伤因子的防御性反应。血管反应是炎症过程的中心环节。在炎症过程中,一方面损伤因子直接或间接造成组织和细胞的破坏,另一方面通过炎症充血和渗出反应,以稀释、杀伤和包围损伤因子。同时通过实质和间质细胞的再生使受损的组织得以修复和愈合。因此可以说炎症是损伤和抗损伤的统一过程。炎症以局部血管为中心,典型特征是红、肿、热、痛和功能障碍,炎症可参与清除异物和修补组织等。(一)根据持续时间不同分为急性和慢性。急性炎症以发红、肿胀、疼痛等为主要征候,即以血管系统的反应为主所构成的炎症。局部血管扩张,血液缓慢,血浆及中性白细胞等血液成分渗出到组织内,渗出主要是以静脉为中心,但象蛋白质等高分子物质的渗出仅仅用血管内外的压差和胶体渗透压的压差是不能予以说明的,这里能够增强血管透性的种种物质的作用受到重视。这种物质主要有:(1)组织胺、5-羟色胺等胺类物质可导致炎症刺激后所出现的即时反应。(2)以舒缓激肽(bradykinin)、赖氨酰舒缓激肽(kallidin)、甲硫氨酰-赖氨酰-舒缓激肽(methio-nyl-lysyl-bradykinin)为代表的多肽类。其共同的特征是可使血管透性亢进、平滑肌收缩、血管扩张,促进白细胞游走。(3)血纤维溶解酶(plasmin)、激肽释放酶(kallikrein)、球蛋白透性因子(globulin-PF)等蛋白酶(protease),其本身并不能成为血管透性的作用物质。但可使激肽原(kininoge)变为激肽(kinin)而发挥作用。然而上述这些物质作用于血管的那个部位以及作用机制多属不明。在组织学上可以看到发生急性炎症时出现的血管渗出反应和修复过程混杂在一起的反应。并可见有巨噬细胞、淋巴细胞、浆细胞的浸润和成纤维细胞的增生。 (二)从炎症的主要的组织变化可分类如下:(1)变质性炎症。(2)渗出性炎症(浆液性炎、纤维素性炎、化脓性炎、出血性炎、坏死性炎、卡他性炎)。(3)增生性炎症。(4)特异性炎症。 二、炎症的成因:(一)感染性:细菌毒素病毒等病原微生物感染,如呼吸道、消化道感染,创面感染等。严重的如胸腔内、腹腔内感染、胆道感染等。 (1)被病原体入侵所激活的中性粒细胞在吞噬活动时耗氧量增加,其摄入O2的70-90%在NADPH氧化酶和NADH氧化酶的催化下接受电子形成氧自由基,用于杀灭病原微生物。氧化应激引起高凝状态组织缺血激活补体系统,或产生多种具有趋化活性的物质,如C3片段、白三烯等,吸引、激活中性粒细胞。再灌注期组织重新获得O2供应,氧自由基爆发。 (2)病原体入侵机体后,机体处于应激状态,如《伤寒论》:“太阳之为病,脉浮、头项强痛而恶寒”脉浮,是由交感兴奋引起,儿茶酚胺增加释放,由于儿茶酚胺的自氧化,可以产生大量的氧自由基,氧化应激造成高凝状态使组织缺血,激活补体系统,或产生多种具有趋化活性的物质,如C3片段、白三烯等,吸引、激活中性粒细胞。再灌注期组织重新获

氧化应激与心肌

氧化应激与心肌 1957年美国克里夫兰临床中心,首先将大隐静脉搭桥术应用于冠心病病人,此后冠状动脉粥样硬化性心脏病血运重建治疗快速发展。冠状动脉溶栓术、经皮冠状动脉成形术、冠状动脉支架植入术、冠状动脉旁路手术已成为挽救缺血心肌的重要治疗方式。但血流恢复本身也会引起显著的损伤,部分患者在血供恢复后,出现细胞超微结构变化、细胞代谢障碍、细胞内外环境改变,导致缺血再灌注损伤(ischemia/reperfusion-associated tissue injury,IRI),临床表现为心律失常、心力衰竭等。IRI也出现在心脏手术、心脏移植、心肺复苏等临床情况后。目前研究表明细胞IRI的机制主要包括:氧自由基含量增多、细胞内钙超载、线粒体膜去极化等。氧化还原失衡是IRI发生的重要起始因素,但其机制和细胞中存在的保护机制尚不完全明确,本文重点对氧化应激与心肌IRI的研究进展做一综述。 1.氧化应激和ROS 氧化应激(oxidative stress,OS)主要是由于内源性和(或)外源性刺激引起机体代谢异常而骤然产生大量活性氧簇(ROS)。ROS是指在外层电子轨道含有一个或多个不配对电子的原子、原子团或分子,包括超氧阴离子(O2- ·)、过氧化氢(H2O2)、过氧亚硝酸盐(ONOO-)和羟基自由基(·OH)。ROS作为第二信使介导了许多生理性与病理性细胞事件,包括细胞分化、过度生长、增殖及凋亡。超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶作为体内清除自由基的重要物质,在维持体内氧化还原平衡方面发挥重要的作用。但在IRI过程中,参与合成ROS的酶体系增多,且活性更强,如NADPH氧化酶、线粒体黄素酶、黄嘌呤氧化酶、未偶联的一氧化氮合酶、细胞色素P450、脂氧合酶、环氧合酶和过氧化物酶体,ROS的生成量明显高于细胞内的清除能力,导致氧化还原失衡。ROS虽然半衰期很短,但具有极强的氧化活性,与细胞内脂质、蛋白质、核酸等生物大分子发生过氧化反应,造成细胞结构损伤和代谢障碍。 2.ROS的主要来源 NADPH氧化酶是细胞内ROS的最主要来源,是由催化亚基gp91phox或其同系物,即非吞噬细胞氧化酶1~4(NOX1~4) 、双功能氧化酶1~2(Duox1~2) ,跨膜亚基p22phox,胞浆亚基p47phox、p67phox等蛋白分子共同组成的多亚基蛋白复合体。NOX家族蛋白亚型与跨膜亚基、胞浆亚基结合并组装成有活性的复合体后发挥其生物学功能。活化的NADPH氧化酶复合物与NADPH结合并释放2个电子,通过黄素腺嘌呤二核苷(FAD)传递给亚铁血红素,与细胞膜的外侧的2个氧分子结合生成O2-,最后生成H2O2、过氧化硝酸盐(ONOO-) 、羟基团(-OH) 及其它基团[1,2]。NOX源性的ROS在维持机体稳态中是把双刃剑,NOX源性ROS 一方面在氧化还原信号通路中起到了第二信使作用,参与多种细胞生理功能;另一方面,在高血压、动脉粥样硬化以及心肌IRI的病程中发挥了重要作用,因此单一抑制NOX活性对治疗心肌IRI并不是最好的选择。Vincent等[3]研究发现在30分钟缺血-24小时再灌注小鼠模型中,NOX4基因敲除组与NOX1和NOX2敲除组相比,表现出更大面积的心肌梗死,提示内源性NOX4 在H/R损伤中可能发挥着心肌细胞保护作用。 黄嘌呤氧化酶(XO)是IRI中ROS产生的另一重要来源,与合成抗氧化剂尿酸的黄嘌呤还原酶(XDH)作用相反。XDH/XO活力受细胞因子、细胞内化学物质及激素的调节。细胞缺血时XO活力升高,并且A TP分解产物次黄嘌呤积聚,再灌注时O2大量介入,次黄嘌呤和氧在XO作用下反应生成O2- ·和H2O2。有研究指出,XO不仅通过合成ROS参与心肌缺血再灌注损伤,XO本身可以与白细胞产生相互作用,造成微循环阻塞,导致再灌注的无复流现象。此外,XO可以直接损伤血管内皮细胞(EC)或通过ROS间接损害EC,影响心肌血流再灌注[4]。 3.ROS与细胞损伤

三种不同提取溶剂对黄芩苷提取效果的影响

摘要 本文研究了不同提取溶剂对黄芩苷提取效果的影响。具体内容摘要如下:使用超声波法从干燥的黄芩根中提取黄芩苷,提取过程分别采用不同的提取溶剂,不同提取溶剂选择水、60%乙醇、60%甲醇为实验材料。分别提取出黄芩苷粗品后,对提取出来的黄芩苷粗品进行分离纯化,用紫外分光光度法对黄芩苷的浓度和质量进行测定,从而测出每种溶剂中黄芩苷的提取率,然后对三种不同溶剂的提取率进行分析和比较,分析不同提取溶剂对黄芩苷提取效果的影响,以确定提取黄芩苷可使用的最佳的提取溶剂。通过实验分析黄芩苷的最佳提取溶剂为乙醇,甲醇次之,最后为水。 关键词:黄芩苷;黄芩根;不同溶剂;超声波提取;紫外分光光度法

Abstract On the basis of a lot of literatures,we studied different extraction effect of the different extraction solvent. Specific summary as follows:extract baicalin from the root of Scutellaria baicalensis with ultrasonic wave extraction , baicalin extraction process using different extraction solvent, we choose methanol 、ethanoland、water as the extraction solvent. When the baicalin are extracted, we separated and purified them from compound. Baicalin were analysed and determined by UV Spectrophotometry .We also worked out the extraction efficiency of baicalin and made a comparation among different extraction efficiency. Finally we confirmed that ethanol is the best extraction solvent,the second is methanol,the last one is water. Key Words:Baicalin;Ultraviolet spectrophotomeg; Ultrasonic wave extraction; The root of Scutellaria baicalensis;Different extraction solvent

细胞氧化应激基本概念讲解

1、细胞氧化 细胞生命活动过程中所需的能量约有95%是来自于线粒体,其来源是将细胞内的供能物质氧化、分解、释放能量,并排出CO2和H2O,这一过程称之为细胞氧化(cellular oxidation),又称细胞呼吸(cellular respiration)。其基本步骤有:糖酵乙酰辅酶A(CoA)的形成、进行三羧酸循环及电子传递和化学渗透偶联磷酸化作用。酶能使细胞的氧化过程在此比较低的温度下进行,并释放出仅仅使细胞能够扑获和储存的能量。这个受生物学控制的氧化结果起初就和简单的燃烧现象一样:复杂的分子被降解为水,二氧化碳,并释放能量。这个过程中一些经过交换的电子永久地逃离细胞的呼吸或从呼吸中心遗漏掉并同周围的氧分子相互作用,产生有毒性氧分子—自由基。在细胞呼吸的过程中,估计有2-5%的电子转化为过氧化物分子和其他类型的氧化自由基,自由基的持续增加就对机体组织造成大量的氧化压力。自由基被认为与大约60种(而且至少是60种)疾病的发生有关,科学有证据证实,抗氧化剂能停止甚至逆转(在某些疾病中)由于自由基所导致的损伤。自由基与机体细胞发生作用后,给机体留下了毁灭性的灾难。在细胞膜上留下了许多微笑的孔洞,使细胞的分子结构发生改变,破坏了细胞的蛋白和脂类分子。一旦我们机体细胞内有足够的抗氧化剂储备,我们就能将自由基对机体的损伤程度降到最低。 2、OS 氧化应激(Oxidative Stress,OS)是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。指机体在内外环境有害刺激的条件下,体内产生活性氧自由基(Reactive Oxygen Species,ROS)和活性氮自由基(Reactive Ntrogen Species,RNS)所引起的细胞和组织的生理和病理反应。ROS有超氧阴离子(.O2-)、羟自由基(.OH-)和过氧化氢(H2O2)等等;RNS有一氧化氮(NO)、二氧化碳(CO2)和过氧亚硝酸盐(.ONOO-)等等。由于它们可以直接或间接氧化或损伤DNA、蛋白质和脂质,可诱发基因的突变、蛋白质变性和脂质过氧化,被认为是人体衰老和各种重要疾病如肿瘤、心脑血管疾病、神经退行性疾病(老年痴呆)、糖尿病-最重要的危氧化应激和抗氧化不单纯是一种生化反应,它更有着极其复杂的细胞和分子机制,包括膜氧化、线粒体代谢、内质网应激、核的重构、DNA损伤修复、基因转录表达、泛素和泛素化、自吞和溶酶体、细胞外基质、信号传递、蛋白折叠等多重的细胞和分子改变。 3、ROS 需氧细胞在代谢过程中产生一系列活性氧簇( reactive oxygen species, ROS),包括:O2 -·、H2O2 及HO2·、·OH 等。 4、细胞凋亡 细胞凋亡(apoptosis )是维持正常组织形态和一定功能的主动自杀过程,是在基因控制下按照一定程序进行的细胞死亡,故又称为程序性细胞死亡( PCD ) 5、SOD 超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。SOD 是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD 具有抗衰老的特殊效果。是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。

黄芩的化学成分与药理作用研究进展

黄芩的化学成分与药理作用研究进展 摘要:黄芩为临床常用的清热燥湿药,主要含有黄酮及其苷类、萜类化合物及挥发油等成分,具有解热、抗炎、抗微生物、抗肿瘤、抗氧化等药理作用,对消化系统、心血管系统、神经系统等疾病具有一定的治疗作用。近年来,国内外对黄芩的化学成分和药理作用开展了大量的研究,本文对此进行了综述,以期为黄芩的进一步开发利用提供依据。 关键词:黄芩;化学成分;药理作用 黄芩始载于《神农本草经》,别名山茶根、土金茶根,为唇形科植物黄芩ScutellariabaicalensisGeorgi的干燥根,味苦,性寒,归肺、胆、脾、小肠、大肠经,具有清热燥湿,泻火解毒,止血,安胎的功效,用药历史悠远,现临床常用于湿温、暑湿,胸闷呕恶,肺热咳嗽等证。为中医临床和中成药中最为常用的中药之一,如根据贾蔷等的统计,在《中药部颁标准》中有477个成药含有黄芩,包含主治疾病153种。因此,对黄芩的研究一直广受关注,国内外学者对黄芩的栽培鉴定、加工炮制、物质基础、药理作用、临床应用等方面进行了广泛深入的研究报道,本文通过收集、整理大量文献,对近年来黄芩的化学成分及药理作用研究进展进行综述,以期为黄芩药材的进一步开发与利用提供一定依据。 1、化学成分 化学成分是药材发挥多种作用的基础,开展化学成分的分离纯化鉴定及其药理作用的研究,是探索黄芩深度开发与综合利用的前提。 1.1黄酮及其苷类黄酮及其苷类是黄芩的主要药效物质基础,目前从黄芩属药材中 已发现了40余种黄酮类化合物,其中黄酮及黄酮醇类(见图1、表1)有黄芩苷、黄芩素、汉黄芩苷、汉黄芩素等;二氢黄酮及二氢黄酮醇类(见图2、表1)多在C5和C7有羟基取代,常见的有二氢黄芩苷、7,2′,6′-三羟基-5-甲氧基二氢黄酮、5,7,2′,6′-四羟基二氢黄酮醇等;还含有4′,5,7-三羟基-6-甲氧基黄烷酮、2′,6′,5,7-四羟基黄烷酮等黄烷酮类成分(见图3、表1)以及查尔酮类成分(见图4、表1)2,6,2′,4′-四羟基-6'-甲氧基查尔酮等。炮制是中药临床应用的特点,中药材炮制前后其所含成分可能发生改变而产生减毒增效的作用,黄芩的炮制品主要有酒黄芩、炒黄芩、黄芩炭等,研究发现,黄芩的不同炮制品中,其黄酮苷类成分含有量有所降低而黄酮类苷元成分含有量增高,物质基础的改变对黄芩及其炮制品的各类药理作用产生了一定影响.

波动性高血糖和恒定性高血糖的代谢记忆效应对主动脉内皮细胞氧化

波动性高血糖和恒定性高血糖的代谢记忆效应对主动脉内皮细胞氧化应激的影响 发表时间:2018-08-24T14:26:05.347Z 来源:《中国误诊学杂志》2018年7月19期作者:孙妍蕾孙家忠曹晨肖婷杨梅邓向群(通讯作者[导读] 研究在不同的血糖波动条件下,高血糖的代谢记忆效应对主动脉内皮细胞氧化应激的影响 孙妍蕾孙家忠曹晨肖婷杨梅邓向群(通讯作者)武汉市第三医院湖北武汉 430000 摘要:目的研究在不同的血糖波动条件下,高血糖的代谢记忆效应对主动脉内皮细胞氧化应激的影响,用抗氧化剂a-硫辛酸研究主动脉内皮细胞损伤机制。方法体外培养主动脉内皮细胞株,分组:实验分为以下2类,对照组:①正常对照组:5mmol/L葡萄糖组;②高糖组:20mmol/L葡萄糖组;③低水平波动组:5mmol/L葡萄糖和20mmol/L葡萄糖;④高水平波动组:5mmol/L葡萄糖组和30mmol/L葡萄糖组。药物组:在对照组的基础上加入药物a-硫辛酸(ALA),24小时后进行指标检测;波动组培养基中葡萄糖浓度按高低循环的方式给予,即:20 mmol/L葡萄糖培养2 h,更换5 mmol/L葡萄糖培养3 h,进行3个循环,夜间9 h,加5 mmol/L培养基,共作用24 h,培养14天后进行指标检测。结果 1:与正常组比较,高糖组和波动组细胞内氧化应激水平均有显著升高;2:与高糖组比较,低水平波动组和高水平波动组细胞内氧化应激水平有显著升高;3:与低水平波动组比较,高水平波动组细胞内氧化应激水平有显著升高;4:与对照组比较,药物组细胞内氧化应激水平有显著下降。结论波动性高血糖较恒定性高血糖对主动脉内皮细胞具有更强的损伤效应,其机制可能是波动性高血糖比恒定性高血糖能引起更为强烈和持久的“代谢记忆效应”,抗氧化剂a-硫辛酸可以对抗主动脉内皮细胞的氧化应激损伤。关键词:波动性高血糖;恒定性高血糖;代谢记忆效应;主动脉内皮细胞;氧化应激引言 近年来,有研究提出在糖化血红蛋白相同时,血糖波动越大,慢性并发症的发生率越高,波动性高血糖相对于恒定性高血糖更能促进糖尿病患者慢性血管并发症的发生与发展[1]。血糖波动已成为一个独立于HbA1c的糖尿病慢性并发症的重要危险因素,波动性高血糖比恒定性高血糖更易促进糖尿病患者慢性血管并发症的发生与发展,其可能作为糖尿病控制的“金标准”。波动性高血糖已成为糖尿病血管并发症防治领域的一个研究热点。“代谢记忆”即机体根据最初的血糖水平形成持续性地、级联性的血管内皮细胞炎性因子表达,从而导致细胞增殖、凋亡及功能紊乱,尽管严格控制血糖,数年内大血管和微血管病变仍持续发展[2-4]。近年来大量研究已证实血糖水平与糖尿病并发症的发病率及严重程度之间存在明显不一致,这是因为高糖具有代谢记忆效应。氧化应激是形成高糖代谢记忆的基础,同时也是高糖代谢记忆参与糖尿病并发症的主要途径[5]。但波动性高糖的代谢记忆效应导致并发症形成的具体机制以及治疗措施至今尚未完全阐明,一直是国内外研究的热点。 一、材料和方法 1.主动脉内皮的细胞的培养与传代 主动脉内皮细胞参照商品说明培养,培养14天。每组12小时更换新鲜培养基。每24小时对相关指标进行检测,最后实验结束后对相关指标进行检测,动态观察指标变化。 2.实验的分组与处理: 对照组: (1)正常糖对照组:持续葡萄糖浓度为5mmol/L; (2)恒定性高糖组:持续葡萄糖浓度为20mmol/L; (3)低水平高糖波动组:培养基中葡萄糖浓度按高低循环的方式给予,即:20 mmol/L葡萄糖培养2 h,更换5 mmol/L葡萄糖培养3 h,进行3个循环,夜间9 h加5 mmol/L培养基,共作用24 h; (4)高水平高糖波动组:培养基中葡萄糖浓度按高低循环的方式给予,即:30 mmol/L葡萄糖培养2 h,更换5 mmol/L葡萄糖培养3 h,进行3个循环,夜间9 h加5 mmol/L培养基,共作用24 h;药物组: (1)恒定性高糖+α-硫辛酸(α-LA)组:如第2组处理方法,负载终浓度为62.5μmol/L的α-LA; (2)低水平高糖波动+α-硫辛酸(α-LA)组:如第3组处理方法,负载终浓度为62.5μmol/L的α-LA; (3)高水平高糖波动+α-硫辛酸(α-LA)组:如第4组处理方法,负载终浓度为62.5μmol/L的α-LA; 3.指标检测 1)活性氧(ROS):用活性氧检测试剂盒进行检测,采用DCFH-DA探针,在激发波长为502nm,发射波长为530nm附近,使用流式细胞仪测定DCF荧光,从而测定细胞内活性氧水平。 2)丙二醛(MDA):用MDA试剂盒进行检测,用TBA法在532nm处用分光光度计检测吸光度值,经标准曲线换算成其浓度,血清MDA含量 =(测定管吸光度-测定空白管吸光度)/(标准管吸光度-标准空白管吸光度)*10。 4.统计学处理 采用SPSS 13.0软件进行统计分析,计量数据用(x±s)进行正态性检验和方差齐性检验,若资料为正态分布及方差齐性,组间比较用t检验或方差分析,正态分布或用Mann-Whitney U检验。P<0.01为差异有统计学意义。 二、结果 1.波动性高血糖、恒定性高血糖和抗氧化剂a-硫辛酸对主动脉内皮细胞中MDA含量的影响与对照组相比,高水平波动组、低水平波动组、恒定性高血糖组细胞上清MDA含量明显升高(t值分别为40.58、33.15、11.69,均P<0.01),高水平波动组、低水平波动组高于恒定性高血糖组(t=17.01、13.70、,均P<0.01),高水平波动组高于低水平波动组(t=9.85,均P<0.01)。采用抗氧化剂a-硫辛酸干预后,高水平波动组、低水平波动组、恒定性高血糖组细胞上清MDA含量明显下降(t值分别为15.58、11.60,10.27均P<0.01)(图1)。

黄芩苷和黄芩素的最新提取方法与应用研究

黄芩苷和黄芩素的最新提取方法与应用研究 摘要黄芩苷和黄芩素是中药黄芩的重要单体,具有多种功效,在抗菌、抗病毒、保肝、利胆、抗癌、抑制炎症反应等方面具有较高的应用价值。本文就两者的新提取工艺和新的应用进行概述,为黄芩的进一步开发和应用提供参考。 关键词黄芩苷黄芩素提取方法药理作用 Recent review in extraction techniques and pharmacological study of Baicalin and Baicalein Li Xue , Guo Yan-xia,Ren Hui-xia (Department of Pharmacy,Shandong University. Ji Nan,Shandong,China) ABSTRACT Baicalin and Baicalein are important components of traditional Chinese herb ,Scutellariae Radix ( HuangQin) , and have various efficacies , including antibacterial , antivirus , antiinflammation , protecting the liver function , antitumor , and show good values in clinical application. This article reviews latest developments in their extraction techniques and pharmacological action and provides theoretical evidences for exploiting of Scutellaria . KEYWORDS Baicalin ;baicalein ; extraction techniques ;pharmacological study 黄芩为唇形科植物黄芩(Scutellaria baicalensis Georgi)的干燥根,具清热燥湿、泻火解毒、止血、安胎之功效。现代药学研究证明,黄芩含有多种黄酮类化合物,其中黄芩苷、黄芩素、汉黄芩苷、汉黄芩素是主要有效成分[1],其黄芩苷和汉黄芩苷的苷键被水解厚,即产生葡萄糖醛酸和苷元(黄芩素和汉黄芩素),传统上通常以黄芩苷作为中药黄芩的标志性检测物和主要研究对象,但近年来研究发现黄芩素(黄芩苷元)在临床上有更好的药理活性,如抗菌、抗病毒、保肝、利胆、抗癌、抑制炎症反应等,因此本文将两者最新的提取方法与药效分别汇总,为工业生产与临床用药提供参考。 1.黄芩苷提取新方法 黄芩苷的提取工艺很多,过去主要有浸渍法、渗滤法、煎煮法、回流提取法和加碱温浸法等。但都存在提取时间长、效率不高、溶剂消耗量大、操作烦琐、过滤困难等缺点。随着提取和分离技术的不断提高,黄芩苷的提取方法也发生很大的变化,主要概括如下: 1.1 超声提取 超声能产生空化效应,具有粉碎、搅拌等特殊作用,使黄芩植物组织在溶剂中瞬时产生的空化泡的崩溃,而使组织中的细胞破裂,以利于溶剂渗透到植物细胞内部,使细胞中的黄芩苷成分进入水溶剂之中,加速相互渗透、溶解,以增加黄芩中的主要成分黄芩苷在水中的溶解度。郭孝武等[2]研究了不同频率超声对提取黄芩苷成分的影响,比较在同一提取时间, 频率分别为20, 800, 1100 KHz 时从中药黄芩中提取黄芩苷成分的得率, 以20 KHz 下得率最高, 认为原因是该频率下超声空化效应强, 加之粉碎化学效应, 有利于有效成分转移和黄芩苷与水的混合。但超声波法对设备的要求较高,实现工业化生产,成本较高。

黄芩化学成分

黄芩化学成分 1889年日本人高桥从中国黄芩中分离出一个酚性结晶,1910年, 及从越南产黄芩中研究清楚印黄芩素(Scutellarin),第一个其中的黄酮类化合物。1922年日本人柴田桂太等从中国黄芩中分离黄芩素结晶,研究清楚大部分分子结构,未分离出甲基化合物,对葡萄糖醛酸的位置不确定。 1.黄芩(陕西省富县直罗镇野生)黄芩苷、汉黄芩苷、黄芩素、汉黄芩素 2. 黄芩(Scutellaria baicalensis Georgi)的干燥根黄芩苷、汉黄芩苷、黄芩素、汉黄芩素、白杨素、千层纸素A 3.并头黄芩中野黄芩苷含量根3.17% >茎2.30%>叶1.78% >花卉0.38% ,含量范围1.78% ~3.17% ,根部野黄芩苷含量最高 4.(湖南师范大学硕士论文)黄芩干燥根茎黄芩苷、野黄芩苷、去甲汉黄芩素一7一O一葡萄糖醛酸苷、千层纸素一7一O一葡萄糖醛酸苷、汉黄芩素一7一O一葡萄糖醛酸苷、黄芩素、汉黄芩素、白杨素 5.(天津大学化工学院硕士论文)黄芩有效成分的酶提取工艺黄芩素、汉黄芩素、黄芩苷、汉黄芩苷 6. 黄芩中化学成分主要为黄酮类成分,此外还含有挥发油、苯乙醇昔类、甾醇、氨基酸、生物碱和微量元素等,但种类最多、生物活性最显著的是黄酮类化合物。 黄酮类:黄芩苷元(Baicalein),黄芩苷(Baicalin),汉黄芩素(Wogonin),汉黄芩苷(Wogomoside),鼠尾草素(Salvigenin),千层纸素,韧黄芩素-I,汉黄芩素-5-O-D-葡萄糖苷,韧黄芩素-II,黄芩黄铜II,白杨黄素,白杨素-6-C-β-D-葡萄吡喃糖基-8-C-α-L-阿拉伯吡喃糖苷,白杨素-6-C-α-L-阿拉伯吡喃糖-8-C-β-D-葡萄吡喃糖苷,白杨素-8-C-β-D-葡萄吡喃糖苷,木蝴蝶素-A-7-O-葡萄糖醛酸苷,粘毛黄芩素III,粘毛黄芩素III-2’-O-β-D-吡喃葡萄糖苷,粘毛黄芩素I,左旋圣草素,粘毛黄芩素II,黄芩素-7-O-D-葡萄糖苷,去甲汉黄芩素,异黄芩素-8-O-D-葡萄糖醛酸苷,黄芩黄酮I。7-甲氧基黄芩素,5,7,2’-三羟基黄酮,5,7,2’-三羟基-8-甲氧基黄酮,5,7,2’,5’-四羟基黄酮,5,7,2’-三羟基-6’-甲氧基黄酮,2’,3,3,6’,7-五羟基黄酮,5,7,2’-三羟基-8,6’-二甲氧基黄酮,5,7,2’,6’-四羟基黄酮,5,7-二羟基-6,8,2’,3’-四甲氧基黄酮,5,7,4’-三羟基-8-甲氧基黄酮,5-羟基-7,8-二甲氧基黄酮,5,8,2’-三羟基-7-甲氧基黄酮,5,8,2’-三羟基-6,7-二甲氧基黄酮,5,8-二羟基-6,7-二甲氧基黄酮,5,2’,5’-三羟基-6,7,8-三甲氧基黄酮,5,6’,2’-三羟基-7,8-二甲氧基黄酮,5,2’-二羟基-6,7,8-三甲氧基黄酮,5,6-二羟基黄酮-7-O-葡萄糖苷,8-甲氧基黄酮-5-O-葡萄糖苷,二氢黄芩苷,7,2’,6’-三羟基-5-甲氧基二氢黄酮,5,7,2’,6’-四甲基二氢黄酮醇,5,7,4’-三羟基-6-甲氧基二氢黄酮,5,7,2’,6’-四羟基二氢黄酮,3,6,7,2’,6’-五羟基二氢黄酮醇,红花素,二氢粘毛黄芩素,红花素-7-O-D-葡萄糖醛酸苷,异红花素,异红花素-7-O-D-葡萄糖醛酸苷,滇黄芩苷乙,滇黄芩苷丙,滇黄芩苷丁,滇黄芩苷戊,5,7,4’-三羟基-8-甲氧基二氢黄酮,二氢木蝴蝶素A,4’,5,7-三羟基-6-甲氧基黄烷酮,7,2’,6’-三羟基-5-甲氧基黄烷酮,2’,6’,3,5,7-五羟基黄烷酮,2’,6’,5,7-四羟基黄烷酮,滇黄芩苷甲,2,6,2’,4’-四羟基-6’-甲氧基查尔酮。 苯乙醇苷:2(3-羟基-4-甲氧基苯基)-乙基-1-O-L-鼠李糖-(1→3)-β-D-(4-阿魏酰)-葡萄糖苷,salidroside、daren-dosideA和darendsideB。 挥发油类:异戊二烯,乙酰苯,薄荷酮,异薄荷酮,番薄荷酮,β-广藿香烯,α-愈创

氧化应激

氧化应激 本综述由解螺旋学员穿山甲说了什么负责整理(2017年12月) 氧化应激(oxidative stress, OS)是指体内氧化与抗氧化作用失衡,倾向于氧化而导致的组织损伤。1, 2一旦发生氧化应激,许多细胞生物分子,如DNA、脂质和蛋白质就会容易受到自由基引起的氧化损伤,从而导致细胞和最终的组织器官功能障碍。氧化应激与多种疾病有关。 1.心血管疾病 过多的氧化应激反应物的堆积对血管系统有害1,它们会损伤内皮和平滑肌细胞膜,减少NO水平,氧化四氢生物蝶呤(BH4)作为一氧化氮合酶(NOS)的辅助因子,促进不对称二甲基精氨酸(ADMA)的合成,产生NOS抑制物,抑制鸟苷环化酶。其中的一个机制是低密度脂蛋白(LDL)中的多不饱和脂肪酸氧化成氧化低密度脂蛋白(oxLDL),这也是动脉粥样硬化的一个中间产物。3-5ROS依赖的信号通路引起转录和表观遗传失调,导致慢性低度炎症、血小板活化和内皮功能障碍。4, 6心血管疾病与心肌细胞活性氧族(ROS)的过多有关。7, 8 2.神经退行性疾病9-11 图1. 氧化应激与各种神经退行性疾病的关系 3.系统性红斑狼疮(SLE) SLE的特点是产生有害的自身抗原,炎症因子的过度作用,以及破坏性的组织和器官损

伤。所有这些紊乱都会因活性氧的异常消耗和过量生成而增强或减弱。12氧化应激在SLE中增加,导致免疫系统失调、细胞死亡信号的异常激活和处理、自身抗体的产生和致死性并发症。自身抗原的氧化修饰引起自身免疫,血清蛋白的氧化修饰程度与SLE的疾病活动和器官损害密切相关。13 4.慢性阻塞性肺疾病(COPD) 有证据表明COPD患者存在氧化和羰基应激,特别是在急性加重期。14COPD患者的肺泡巨噬细胞更活跃,释放更多的活性氧,表现为超氧自由基和过氧化氢。15COPD患者激活的外周血中性粒细胞释放的活性氧增加,特别是在病情恶化期间。14COPD常加重期患者体内内源性抗氧化物谷胱甘肽的浓度低于稳定期患者。16 5.高血压病 ROS影响高血压发展的过程包括氧化还原敏感信号通路的激活,尤其是在血管系统中,血管扩张剂NO减少,ROS生成增加。17, 18 OS与多种疾病有关,但研究最多的还是心血管疾病。针对OS与各疾病的关系,已经出现了抗OS的治疗方案。 参考文献 1. Annuk M, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl 2003; (84): S50-3. 2. Al Shahrani M, Heales S, Hargreaves I, Orford M. Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease. J Clin Med 2017; 6(11). 3. Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 1998; 141(1): 1-15. 4. Santilli F, D'Ardes D, Davi G. Oxidative stress in chronic vascular disease: From prediction to prevention. Vascul Pharmacol 2015; 74: 23-37. 5. He F, Zuo L. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases. Int J Mol Sci 2015; 16(11): 27770-80. 6. Santilli F, Guagnano M, Vazzana N, La Barba S, Davi G. Oxidative stress drivers

氧化应激反应

氧化应激是指机体在遭受各种有害刺激时,体内高活性分子如活性氧自由基(reactive oxygen species,ROS)和活性氮自由基(reactive nitrogen species,RNS)产生过多,氧化程度超出氧化物的清除,氧化系统和抗氧化系统失衡,从而导致组织损伤。 ROS包括超氧阴离子(.O?-)、羟自由基(.OH)和过氧化氢(H?O?)等;RNS包括一氧化氮(.NO)、二氧化氮(.NO?)和过氧化亚硝酸盐(.ONOO-)等。机体存在两类抗氧化系统,一类是酶抗氧化系统,包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)等;另一类是非酶抗氧化系统,包括维生素C、维生素E、谷胱甘肽、褪黑素、α-硫辛酸、类胡萝卜素、微量元素铜、锌、硒(Se)等。物的清除,氧化系统和抗氧化系统失衡,从而导致组织损伤。 氧自由基反应和脂质过氧化反应在机体的新陈代谢过程中起着重要的作用,正常情况下两者处于协调与动态平衡状态,维持着体内许多生理生化反应和免疫反应。一旦这种协调与动态平衡产生紊乱与失调,就会引起一系列的新陈代谢失常和免疫功能降低,形成氧自由基连锁反应,损害生物膜及其功能,以致形成细胞透明性病变、纤维化,大面积细胞损伤造成进神经、组织、器官等损伤。这种反应就叫脂质过氧化。 脂质过氧化过程中发生的ROS氧化生物膜的过程,即ROS与生物膜的磷脂、酶和膜受体相关的多不饱和脂肪酸的侧链及核酸等大分子物质起脂质过氧化反应形成脂质过氧化产物(Lipid PerOxide, LPO)如丙二醛(Malonaldehyde, MDA)和4-羟基壬烯酸(4-hydroxynonenal,HNE),从而使细胞膜的流动性和通透性发生改变,最终导致细胞结构和功能的改变。

内皮细胞在血液循环系统中的影响和作用

研究生课程论文 课程名称动物生理生态学 开课时间 2013学年第一学期 学院化学与生命科学学院 学科专业动物学 学号 姓名 学位类别全日制硕士 任课教师 交稿日期 2013.12 23 成绩 评阅日期 评阅教师 签名

内皮细胞在血液循环系统中的影响和作用摘要:内皮细胞是血液包裹的最里面的,也是直接接触的一层内皮细胞,对血管和机体有保护作用,通过尿酸、染木素、晚期糖基化的三种物质对内皮细胞的凋亡、功能性的研究,对内皮细胞的合成和释放的细胞因子之间的平衡的紊乱,本综述是总结三个实验性文章对于后来糖尿病、心血管通透性增加还有血管舒张及各种炎症,和心血管增生疾病,有一个铺垫性开创。 关键词:内皮细胞,尿酸,染木素,晚期糖基化,凋亡。 The impact and role of endothelial cells in the circulatory system Abstract: endothelial cells is the most inside blood package. a layer of endothelial cells are in direct contact. and has a protective effect on blood vessels and the body. the functionality of the three substances through the uric acid. dye lignin, advanced glycation apoptosis. on endothelial cells. balance disorder between cytokine synthesis and release of endothelial cells of this review is a summary. three experimental articles for later diabetes. cardiovascular increased permeability and vasodilation and various kinds of inflammation. and cardiovascular proliferative diseases, there is a basic starting. Keywords: endothelial cells. uric acid. dye lignin.advanced glycation.apoptosis. 引言 血管内皮覆盖于血管内膜表面,不仅是血管的保护膜,更是机体重要的内分泌、旁分泌器官,其参与调节血管壁通透性、维持血管舒张/收缩平衡、调节凝血功能平衡、减轻血管炎症反应等,对维持心血管系统发挥正常功能起着重要的作用。1993年Ross等人[1]首次提出“内皮功能障碍”假说,即在各种因素作用下,血管内皮细胞合成和释放的细胞因子之间的平衡紊乱,导致血管通透性增加、血管舒张/收缩失衡、炎症反应增加等[2]。此后,血管内皮功能成为心血管领域研究的热点,几乎所有的心血管疾病均与内皮功能障碍有关。正是因为内皮细胞的重要性,在近期的三篇文献中“尿酸对血管内皮细胞氧化应激反应的影响及其对细胞的损伤作用”“染料木素对氧化应激诱导内皮细胞氧化应激损伤的保护作用和机制”“晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制”总结性的对内皮细胞的结构和功能做出一个简要的分析。

黄芩成分简介

黄芩简介 本品呈圆锥形,扭曲,长8-25cm,直径1-3cm。表面棕黄色或深黄色,有稀疏的疣状细根痕,上部较粗糙,有扭曲的纵皱纹或不规则的网纹,下部有顺纹和细皱纹。质硬而脆,易折断,断面黄色,中心红棕色;老根中心呈枯朽状或中空,暗棕色或棕黑色。气微,味苦。 栽培品较细长,多有分枝。表面浅黄棕色,外皮紧贴,纵皱纹较细腻。断面黄色或浅黄色,略呈角质样。味微苦。 产黑龙江,辽宁,内蒙古,河北,河南,甘肃,陕西,山西,山东,四川等地,江苏有栽培;生于向阳草坡地、休荒地上,海拔60-1300(1700-2000)米。 显微鉴定法 粉末黄色。韧皮纤维单个散在或数个成束,梭形,长60-250μm,直径9-33μm,壁厚,孔沟细。石细胞类圆形、类方形或长方形,壁较厚或甚厚。木栓细胞棕黄色,多角形。网纹导管多见,直径24-72μm。木纤维多碎断,直径约12μm,有稀疏斜纹孔。淀粉粒甚多,单粒类球形,直径2-10μm,脐点明显,复粒由2-3分粒组成。 薄层鉴定法 取本品粉末1g,加乙酸乙酯-甲醇(3:1)的混合溶液30ml,

加热回流30分钟,放冷,滤过,滤液蒸干,残渣加甲醇5ml使溶解,取上清液作为供试品溶液。另取黄芩对照药材1g,同法制成对照药材溶液。再取黄芩苷对照品、黄芩素对照品、汉黄芩素对照品,加甲醇分别制成每1ml含1mg、0.5mg、0.5mg的溶液,作为对照品溶液。照薄层色谱法(通则0502)试验,吸取上述供试品溶液、对照药材溶液各2μl及上述三种对照品溶液各1μl,分别点于同一聚酰胺薄膜上,以甲苯-乙酸乙酯-甲醇-甲酸(10:3:1:2)为展开剂,预饱和30分钟,展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的斑点;在与对照品色谱相应的位置上,显三个相同的暗色斑点。 主要成分 黄芩苷黄芩苷是从黄芩根中提取分离出来的一种黄酮类化合物,常温下为淡黄色粉末,味苦。难溶于甲醇、乙醇、丙酮、微溶于氯仿和硝基苯、几乎不溶于水,可溶于热乙酸。遇三氯化铁显绿色,遇乙酸铅生成橙色的沉淀。溶于碱及氨水初显黄色,不久则变为黑棕色。具有显著的生物活性,具有抑菌、利尿、抗炎、降胆固醇、抗血栓形成、缓解哮喘、泻火解毒、止Chemicalbook血、安胎、抗变态反应及解痉作用,也为哺乳动物肝脏涎酶的特异性抑制剂,具有调节某些疾病的作用,也具有较强的抗癌反应生理效能。主要用于治疗湿温,暑温胸闷呕吐,湿热痞满、泻痢黄疸、肺热咳嗽、高热烦渴、血热吐、痈肿疮毒,胎动不安症。另外黄芩苷还能吸收紫外线,清除氧自由基和抑制黑色素的生成,是一种很好的功能性美容化妆品原料。

急性肺损伤氧化应激作用机制及抗氧化治疗研究进展

急性肺损伤氧化应激作用机制及抗氧化治疗研究进展【摘要】急性肺损伤(acute lung injury,ali)是呼吸系统常见疾病,发病机制尚不明确,大量研究显示氧化损伤在其发病过程中发挥了重要作用。本文对近年来的ali的氧化应激作用机制及抗氧化治疗研究进展作一综述。 【关键词】急性肺损伤(ali);氧化应激;氧自由基;抗氧化剂progress in research on the mechanism of oxidative stress and antioxidant therapy in disease of acute lung injury xu lin yan1,li wen pu2 (1 nanhua university,hengyang,hunan 421001 p.r.china; 2 department of respiratory disease,hunan provincial people’s hospital,changsha,hunan 410005 p.r.china ) abstract:acute lung injury (ali) is a common diseases in respiratory system, of which the pathogenesis is not clear. a large number of studies show that oxidative damage play an important role in the disease .in this article , progress in research on the mechanism of oxidative stress and antioxidant therapy in disease of acute lung injury in recent years is to be reviewed. key words: acute lung injury (ali);oxidative; oxygen free radical(ofr);antioxidants. 急性肺损伤是临床上一种常见的危重症,系指心源性以外的各种

相关文档
最新文档