等离子喷涂梯度耐热陶瓷涂层的研究展望

等离子喷涂梯度耐热陶瓷涂层的研究展望
等离子喷涂梯度耐热陶瓷涂层的研究展望

河 北 工 业 科 技

第19卷 第1期 第1页HEBEI JOU R N AL O F I ND U ST RI AL V ol.19 N o.1 P.1总第71期 2002年SCI EN CE&T ECHN O L OG Y Sum71 2002

文章编号:1008-1534(2002)01-0001-03

等离子喷涂梯度耐热陶瓷涂层的研究展望

徐雪霞1,阎殿然2

(1.河北师范大学物理系,河北石家庄 050016;2.河北工业大学教务处,天津 300130)

摘 要:主要概述了耐热梯度陶瓷涂层的研究现状,阐述了耐热梯度陶瓷涂层的制备、组织和性能研究的成果和存在的问题,并提出了耐热梯度陶瓷涂层发展的新方向。

关键词:耐热陶瓷涂层;梯度涂层;等离子喷涂

中图分类号:TG453 文献标识码:A

随着科学技术的发展,工程构件和机械零件的服役条件日益苛刻,对其性能要求也越来越高,在高温或内外温差大的环境下工作的部件,要求其具有优良的综合性能:如抗氧化、抗热震、抗热疲劳等,以燃气轮机的受热部件如喷嘴、叶片和燃烧室为例,它们处于高温氧化和高速气流冲蚀等恶劣环境中,承受温度达1100℃,已超过了高温镍合金使用的极限温度(1075℃),此时的有效方法就是采取其他替代材料。工程陶瓷具有高的化学稳定性,熔点高、硬度大、高绝缘绝热能力、热导率低、热膨胀系数小等,耐热性能十分优越,但塑变能力差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感,质脆,机械加工困难等。其应用受到一定限制。采用等离子喷涂技术在金属基体表面制备耐热陶瓷涂层,可以结合金属高强度、高韧性和陶瓷耐高温的优点,获得一类性能优异的复合材料。本领域的广大科研工作者对等离子喷涂的制备工艺、组织和性能进行了一系列的研究,取得了引人瞩目的成果。然而,随着科学技术

收稿日期:2001-08-06;责任编辑:卞铜身

基金项目:河北省自然科学基金(501036)

作者简介:徐雪霞(1972-),女,河北大城县人,助教,硕士。的发展,对表面涂层材料的性能要求也不断提高,同时要求涂层材料的制备工艺及设备不断改进,涂层材料的组织结构、性能和机理也在逐步深入地研究[1]。

在等离子喷涂陶瓷涂层中,涂层与基体的界面是一个很重要也很棘手的问题。由于基体与涂层材料的化学成分相差很大,喷涂过程中在基体-涂层界面处就会由于温度和相变产生较大的残余应力,尤其是金属和陶瓷的热膨胀系数差异很大,在高温环境或内外温差大的环境下界面处变形不协调,产生很高的热应力,加上涂层形成的残余应力降低界面的结合强度,使涂层材料过早失效。解决这类问题的主要思路是:1)研究新的界面涂层材料,使其组织结构和性能既接近涂层又接近基体,加在涂层和基体间起过渡和搭桥的作用;2)基体待喷涂表面改性处理,使其组织和结构接近基体,同时又利于与界面涂层的结合;3)发展新工艺,在基体-涂层的界面处形成梯度分布,消除明显界面,使组织和性能呈连续分布。本文主要讨论采用梯度涂层改善耐热陶瓷涂层性能的研究。

1 梯度耐热陶瓷涂层的研究

根据梯度材料的设计思想,利用“梯度复合”的方法把梯度涂层的制备特点和复合材料的优异性能相结合,倡导了一种新的材料复合思想,开拓了广大材料工作者的思路,为人类寻找在高温、大温度梯度等极其苛刻的环境下正常工作的材料提供了重要途径。通过在粘结底层和表面陶瓷层之间添加过渡层,使成分和组织由基体呈梯度平缓地过渡到涂层表面,减少基体和涂层的成分差距,使涂层的组织和物化性能也呈连续的过渡,避免基体到涂层的组织性能突变,缓解了界面处的应力集中,改善了涂层界面的结合情况,可大幅度提高涂层的性能。

2 复合多层梯度耐热陶瓷涂层的研究

根据工作环境和服役条件,对于金属基体耐热陶瓷涂层的基本要求是:1)耐高温;2)抗高温氧化;3)与金属基体结合牢固;4)热导率低,绝热性好;5)热膨胀系数与金属基体匹配良好,耐热循环次数高[2]。要获得具上述优良性能的金属基体陶瓷涂层,则需从以下几方面进行深入研究。

2.1 涂层材料的合理选择

涂层材料的种类对其性能影响很大[3]。对于耐热陶瓷涂层材料来讲,要求其熔点高,热导率低,抗高温氧化性能和抗热震性能好等。目前主要采用的耐热涂层陶瓷材料为ZrO2,它的使用主要是由于其低的热传导率,高的热膨胀系数和良好的抗热震性[4]。此外Al2O3作为耐热涂层材料也有了一定范围的应用,它具有稳定的物化性能,熔点高,硬度大,抗氧化性能好,来源充足,价格低廉。同时,粘结底层材料的选择也很重要。它是基体和涂层间的桥梁。目前普遍采用的是自熔性合金粉Ni/Al,因其具有优异的自粘结性能,可以与基体形成部分冶金结合,致密性好,可提高陶瓷涂层与基体的结合强度。

2.2 确定合理的喷涂工艺参数

从粘结底层到过渡层到表面陶瓷层,由于涂层材料不同,要获得理想的喷涂组织,就需确定合理的喷涂工艺参数。喷涂功率过小,难以使涂层材料熔化或熔融,有大量生粉存在;喷涂功率过大,又易使基体和涂层过热,造成变形和氧化。具体来讲,粘结底层熔点较低,对其喷涂功率宜适当减小,喷枪和待喷涂部件的距离宜适当增大;对于陶瓷层,由于陶瓷材料熔点高,则需适当加大喷涂功率,缩短枪距;而过渡层由金属和陶瓷组成,其喷涂工艺参数就宜介于粘结底层和陶瓷层之间。根据本课题组具体实践,喷涂材料、喷涂功率和枪距之间关系如表1所示:表1 等离子喷涂工艺参数

T ab.1 T he t echnolog ical pa rameter o f

pla sma spr ay coat ing

喷涂材料粘结底层中间过渡层陶瓷层

喷涂功率(kW)22~2626~3030~32枪距(m m)110~120100~11090~100

2.3 设计合理的成分梯度

根据梯度材料的设计思想,梯度涂层的设计应是成分梯度越小越好。从基体到涂层的成分梯度越小,则组织和性能的过渡越平缓,界面间物化性能相差越小,利于涂层界面强度的提高。而喷涂材料的整体强度主要决定于界面的结合强度。因而小的成分梯度利于涂层性能提高。但成分梯度越小,基体到涂层的过渡层越多,首先会造成涂层总体厚度太大,使涂层脆性增加,易于开裂和剥落。其次会造成太多次数的喷涂,使制备工序繁杂,生产周期长,效率降低。因而,合理的成分梯度应既保证材料的组织和性能的良好过渡,又需尽量简化喷涂工序。对于耐热陶瓷涂层来讲,高温抗氧化性能和高温抗热震性是均需具备的性能。对于高温抗氧化性能来讲,涂层成分梯度较小,总体厚度较大,有利于抑制通孔的形成,从而防止外界氧透过通孔从涂层进入基体造成氧化。但涂层的孔隙率太小,又会减弱孔隙的应力松驰效应,使工件受冷热温差作用时造成的热应力和组织应力难以松驰,就会使涂层开裂甚至剥落,不利于抗热震性的提高。二者在对涂层的组织要求上有相互

2河 北 工 业 科 技 第19卷 

矛盾之处,这就需根据具体工作环境确定合理的涂层梯度结构,做到既有较高的孔隙率可以松驰应力,又有较低的通孔率抑制氧化。

3 梯度耐热陶瓷涂层发展的新方向

梯度涂层虽然可以通过增加过渡层增加界面结合强度,减小应力,但多层梯度涂层的制备工序比较复杂,提高成本,且由于梯度涂层的形成也是通过配置不同成分配比的金属陶瓷混合粉喷涂而得,所以涂层层间仍存在一定程度的成分突变,并未真正达到“梯度”的要求。如果把“梯度复合”思想进一步展开,利用涂层中的化学反应制备工序简单又具有良好过渡的涂层,是梯度耐热陶瓷涂层发展的新方向。

在高温条件下涂层中元素与环境中元素可相互扩散,涂层中元素和底材中元素相互扩散以及扩散过程中伴随的化学反应,往往使涂层结构和组成发生变化,或由于金属底材表面的严重氧化降低涂层在底材上的附着力,最终导致涂层失效[5]。因而高温下增强抗氧化性的途径主要有:

1)涂层或涂层中的某成分能优先生成致密的氧化物膜;

2)涂层或涂层中的某组分在高温下形成的氧化膜在限定使用温度范围内稳定,不再进一步氧化生成可挥发的气态物质;

3)高温条件下,涂层中元素对底材为化学惰性的或扩散进入底材后不降低后者力学性能;

4)合理选择配方使涂层结构致密均匀。

非均质材料热膨胀行为极其复杂,热膨胀使材料内部产生复杂的应力,反过来这些复杂的应力分布又约束和抑制进一步的热膨胀,并有可能使涂层发生一定变形和开裂。所以选择合适的金属和陶瓷材料,尽可能降低热膨胀系数的差异,并使之形成有益的氧化物过渡层,发生有利的相变或化学反应[6、7],是提高高温抗氧化性的关键。

根据这一需要,通过选择合适的粘结底层材料,利用高温下涂层内的反应,使粘结底层和陶瓷层之间形成组织和性能介于二者之间的反应形成中间过渡层,从而形成基体-粘结底层-反应形成中间过渡层-表面陶瓷工作层的梯度涂层。由于该过渡层是通过涂层内元素与外界元素反应得到,从涂层向基体反应愈来愈弱,所以可达到从涂层到基体均匀而缓慢的过渡,真正达到涂层间无明显界面的要求,此种涂层的研制具有十分重要的理论价值和实际生产意义。但反应形成梯度涂层的问题在于反应生成相与涂层内各相的界面结合尚需加强,由于反应生成相与涂层内各相结合较弱,因而易造成相间剥落,导致涂层的高温氧化。这就需选择合适的粘结底层材料,确定合理的喷涂工艺和增加涂层后处理工艺,增强涂层内各相的界面结合。

总而言之,反应形成梯度耐热陶瓷涂层的开发是具有开拓性意义的。

参考文献:

[1] 马 岳,段祝平,杨治星,等.表面等离子喷涂材料研究

的现状及发展[J].表面技术.1999,28(1):1-4.

[2] 邓世均.热喷涂高性能陶瓷涂层[J].材料保护.1999,

32(1):31-34.

[3] 李应有.涂层材料设计初探.表面技术[J].1997,26

(4):24-27.

[4] 易茂中,冉丽萍.不同封闭处理ZrO2热障涂层抗热震

性的研究[J].材料保护,1989,32(7):17-19.

[5] CZECH N,FIETZEK H,KOLARIK V,et al.S tu dies of

the Bond-Coat Oxidation an d Phase Structur e of T BCs

[J].Surface an d Coatin gs Techn ology.1999,113:157-164.

[6] ROBINS ON D A,YIN G,DIECKM ANN R.Oxide Film

Formation on Aluminiu m Nitrid e Sub strates Covered w ith Th in Aluminiu m Layer s[J].Jour nal of M aterials S cience.1994,29:2389-2394

[7]BRANDL W,T OM A D,GRADKE H G.Th e

Ch aracteristics of Alum ina Scales Formed on HVOF-S prayed M CrAlY Coatings[J].S urface and Coatin gs T echnology.1998,108:10-15.

(下转第7页)

3

 第1期 徐雪霞等 等离子喷涂梯度耐热陶瓷涂层的研究展望

switch (pcr s ->CW RS .Client AX )//判断中断时A X

寄存器的值{case 0:

pcr s->CW RS.Client A X =1;//如是0,则将A X 改为1。break;defa ult :

ret ur n FA L SE;//没有处理,传给下一个处理者。}

ret ur n T RU E ;//处理完闭,返回被中断程序。

}

这个例程实现了INT 89H 中断的挂接。将程序编译后,再用VTo olsD 软件包中的Vx DLoad 工具载入Vx dProg.VxD,则当在Win95的DOS 框中执行MOV AX,0INT 89H 时,将返回AX =1,而此时中断向量表

INT 89H 的处理程序为0∶0,没有处理程序。

6 结束语

在Windo w s9x 操作系统下,当需要对系统的资源进行高权限的低层操作,而一般编程又解决不了问题时,开发者完全可以利用系统提供的VxD 技术,开发编制自己的VxD 作为访问控制代理,实现特殊的控制功能。参考文献:

[1] 杨振约,谢 瑞.Win dows 95下虚拟驱动程序的开发

[J ].电子技术,1999(4):34-36.

[2] 熊桂喜.Window s 95技术内幕[M ].北京,清华大学出

版社,1996.

[3] 杨 强,李堂秋.Win9x 虚拟设备驱动程序编程指南

[M ].北京,清华大学出版社,1999.

Development Design of V irtual Device Driver

LI Xiang -jiang ,ZHOU Jian-jun

(Depart ment of Computer Eng ineering,

Changsha Communications U niver sity ,Changsha Hunan 410076,China)

Abstract :T his paper analyses t he v ir tua l machine o f w indow s 9x ,the file str uctur es and message pro cess of V xD .

T he development to ols o f V xD are int ro duced and the V xD pr og ram is also pr esent ed.

Key words :Vx D ;dev elo pment too ls;dev elo pment desig n

(上接第3页)

Study of the T hermal Resistance Ceramic Coating on Plasma Spray Gradient Coatings

XU Xue-x ia 1

,YAN Dian-r an

2

(1.Depart ment of physics ,Hebei N or mal U niver sity ,Shijiazhua ng Hebei 050016,China ;2.Dean's Off ice ,Hebei U niv ersit y of T echno lo gy ,T ianjin 300130,China )

Abstract :So me of the investig ation r esults of ther mal resista nce g radient cer amic coatings ar e discussed.T he

achievements w it h reg ard to the ex isted pro blems ar e studied.A lso the developing tr end o f ther mal-resista nce gr adient ceramic co ating s is put fo rw ar d in t his paper .

Key words :thermal r esist ance cer amic coating ;gr adient co ating ;plasma spr ay coat ing

7

 第1期 李湘江等 虚拟设备驱动程序的开发设计

热喷涂高性能陶瓷复合涂层的研究进展

文章编号:100025889(2004)0620005204 热喷涂高性能陶瓷复合涂层的研究进展 徐海燕1,周惠娣1,陈建敏1,冯治中1,张翠芳2 (1.中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州 730000;2.南京工程学校,江苏南京 211135) 摘要:论述了陶瓷复合涂层的种类、制备方法及应用.采用表面涂层热喷涂技术,能在金属基体上制备金属基陶瓷复合涂层、陶瓷与陶瓷复合涂层、梯度功能陶瓷复合涂层和纳米陶瓷复合涂层,这样就把陶瓷材料的特点与金属材料的特点有机结合在一起,赋予材料新的功能.这些复合材料已广泛应用于航天、航空、医学、生物和电子等领域. 关键词:复合涂层;热喷涂;纳米涂层;梯度功能涂层 中图分类号:TB332;TG174.453 文献标识码:A Investigative progression of thermo2sprayed high2performance ceramic composite coatings XU Hai2yan1,ZHOU Hui2di1,CHEN Jian2min1,FEN G Zhi2zhong1,ZHAN G Cui2fang2 (1.State K ey Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Science,Lanzhou 730000,China;2. Nanjing Engineering School,Nanjing 211135,China) Abstract:The category,preparation,and application of composite ceramic coating were introduction in this ar2 ticle.The composite ceramic coating such as metal2based ceramic composite coating,ceramic2ceramic composite coating,graded functional ceramic composite coating and nanometer ceramic composite coating,were prepared by surface2coated technology2thermal spraying.Those ceramic composite coating had many good properties applied in many fields such as spaceflight,aviation,medicine,biology and electron. K ey w ords:thermal spray;composite coating;nano2coating;functionally graded coatings 陶瓷是金属元素和非金属元素组成的晶体或非晶体化合物,它与金属材料、高分子聚合物材料构成了固态工程材料的三大支柱.陶瓷材料是离子键和共价键极强的材料,与金属和高分子材料相比,其具有熔点高,抗腐蚀和抗氧化性强,耐热性好,弹性模量,硬度和高温强度高的特点.由于陶瓷材料的抗冲击性能差、塑性变形能力低、脆性大,因此成形加工和安装困难,易发生破裂,这成为陶瓷材料应用的致命弱点.然而,应用新型陶瓷复合粉末,采用表面涂层技术,在金属基体上制备陶瓷涂层,能把陶瓷材料的特点与金属材料的特点有机地结合起来,获得复合材料结构及制品,正成为当代复合材料及制品高科技领域的重要分支[1].1958年,世界上第一台等离子喷涂设备在美国问世,为喷涂高熔点陶瓷涂层 收稿日期:2004201218 基金项目:国家自然科学基金(59925513),国家杰出青年科学基金(59925513),中科院“百人计划”资助(科发人教 字[1999]0381号) 作者简介:徐海燕(19752),女,甘肃景泰人,硕士生.提供了理想的高温热源,迅速在航空发动机、火箭等尖端科技领域得到了成功的应用.自20世纪80年代以来,它又迅速向传统民用工业部门扩展,其应用遍及能源、交通、冶金、轻纺、石化等领域,成效非常显著.据报道,美国在20世纪90年代以来,陶瓷涂层的应用年增长率在12%以上.这表明在先进发达国家,陶瓷涂层高科技技术已成为一个新兴产业.由各种材料复合获得的陶瓷复合涂层种类主要有金属基陶瓷复合涂层、陶瓷与陶瓷复合涂层、多层复合涂层、梯度功能陶瓷复合涂层和纳米陶瓷复合涂层等[2].这些复合材料不仅具有单一材料所具有的性能,还由于复合材料的不同而获得了许多特殊性能或具有多功能性的涂层,已广泛应用于航天、航空、医学、生物、电子等领域[3]. 1 复合陶瓷涂层的制备 复合陶瓷涂层具有许多其它材料所不具有的优良性能,所以科学家研究开发了许多陶瓷涂层的制 第30卷第6期2004年12月 兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.30No.6 Dec.2004

陶瓷涂层

陶瓷涂层 一、金属基陶瓷涂层简介 金属基陶瓷涂层是指涂在金属表面上的耐热无机保护层或表面膜的总称。他能改变金属底材料外表面的形貌、结构及化学组成,并赋予底材料新的性能。涂层的种类很多;按其组成可分为硅酸盐系涂层、氧化物涂层、非氧化物涂层及复合陶瓷涂层等,按工艺方法可分为熔烧涂层、喷涂涂层、气相沉积及扩散涂层、低温烘烤涂层、电化学工艺涂层、溶胶-凝胶涂层及原位原位反应涂层等;按其性能与用途可分为温控涂层(包括温控、隔热、红外辐射涂层等)、耐热涂层(包括抗高温氧化、抗腐蚀、热处理保护涂层等)、摩擦涂层(包括减磨、耐磨润滑涂层)、电性能涂层(包括导电、绝缘涂层等)、特种性能涂层(包括电磁波吸收、防原子辐射涂层等)及工艺性能涂层等。 二、金属基陶瓷涂层制备技术 1.喷涂法(等离子喷涂法) 2.化学气相沉积法(CVD):在相当高的温度下,混合气体与基体的表面相互作用,使混合气体的某些成分分解,并在基体表面形成一种金属或化合物的固态薄膜镀层。 3.物理气相沉积法(PVD):离子镀法、溅射法、蒸镀法、离子注入等,离子化使镀层更致密。目前CVD和PVD的界限已不明显,两者相互渗透,CVD技术引入等离子活化等物理过程,出现了PACVD技术,PVD技术也引入反应气体产生化学过程。 4.复合镀层 5.溶胶-凝胶法 6.原位反应法 三、应用 航天航空工业:航天飞机机身外皮发动机涡轮叶片燃烧室内壁齿轮箱传送装置 电力电子工业:增加介电常数 汽车工业:为了减轻重量而开发新一代汽车发动机,欧洲、日本的汽车制造厂已经采用了合金上电解沉积Ni-SiC复合镀层,这种镀层还能大大提高耐膜性能、润滑性能和耐高温氧化性能。将氧化锆陶瓷粉末喷涂在内燃机的燃烧室内壁,可提高内燃机的工作温度、节省燃料和简化结构。 切削刀具上的应用:硬度高、耐热粘结性强、化学稳定性高、切削韧性好、切削性能优良等特点。单双三层刀具,陶瓷镀层刀具寿命是原来的1-2倍,多镀层刀具是陶瓷镀层刀具寿命的0.5-1倍, 冶金和机械工业:金属的冶炼热加工和热处理都要在高温下进行,防止金属的高温氧化、渗氮、渗氧,往往在金属表面涂热处理保护涂层。 生物医学的应用:改善人体与金属的生物相容性。 石油化工:防腐 陶瓷、玻璃生产:增加强度和寿命 食品包装:耐热、高阻隔、透明度

不锈钢表面金属陶瓷涂层技术

摘要 近年来,随着现代化工业的不断进步与发展,人们对于材料的性能要求越来越高,其中较为重要的一点便是材料的耐磨性。众所周知,磨损现象不论在科研实践还是日常生活中都是很常见的,并且若不及时更换调整便极有可能造成严重的安全事故。因此,如何提高易磨损材料的耐磨性能便显得尤为重要。 锌锅沉没辊是热浸镀锌设备中一种重要零件,我国锌锅沉没辊的辊轴与辊套需要从国外进口,不仅价格昂贵而且磨损严重,平均一周就需要更换一次设备,导致轧制的成本很高。所以锌锅沉没辊辊轴与辊套的耐磨性是一个越来越受到重视的问题。本设计旨在制备316L不锈钢表面的耐磨陶瓷涂层来缓解锌锅沉没辊的辊轴与辊套过于严重的磨损,以此延长锌锅沉没辊的辊轴与辊套的寿命,提高生产效率。 我们通常用表面合金化、表面形变强化、表面涂层强化等方法来提高材料耐磨性。本设计借助钎涂原理,分别以氧化铝和碳化钨作为陶瓷增强相材料,Ni82CrSiB合金为钎料,利用真空钎涂的方法制作出较为耐磨的陶瓷涂层,从而达到提高不锈钢表面耐磨性的要求。试验结果表明:氧化铝与钎料的润湿效果不够理想,在涂层中没能发现氧化铝相,即以氧化铝作为陶瓷增强相材料无法达到预期目标;而碳化钨颗粒在涂层中分布较均匀,涂层表面光滑,有金属光泽,并且与不锈钢表面冶金结合良好,硬度达到了不锈钢基体的6倍以上,有望大幅提高材料的耐磨性能。 关键词:金属陶瓷涂层;钎涂技术;硬度

Brazing Process of Metal-ceramic Coating on Stainless Steel Abstract In recent years, with the continuous progress and modernization of industrial development, people are increasingly demanding high-performance materials, one of the important points is the wear resistance. As we all know, the wear phenomena both in research and practice is still very common in daily life, and if not timely replacement of adjustments it is very likely result in serious accidents. Therefore, how to improve the wear resistance of the material is particularly important. The zinc pot sink roll is one of the important parts of hot dip galvanizing equipments. The bush of zinc pot sink rolls needs to be imported from abroad, and it is not only expensive but also badly worn., it needs to be replaced once per week, and that would lead to the high cost of rolling. Therefore, the wear resistance of the zinc pot sink roller bearing is a question with more and more attention. This design is in order to prepare the surface of 316L stainless steel wear-resistant ceramic coating to solve the zinc pot sink roll shaft and insert wear too serious problem to extend the life of the equipment and The main methods of improving the wear resistance for material are surface strain hardening, surface alloying, surface coating strengthened and so on. In this design, we use the braze coating principle, and make the Al2O3 and WC as ceramic reinforcement materials, Ni82CrSiB as the brazing. The method of using the vacuum braze coating to produce more wear-resistant ceramic coating, so as to improve wear resistance of the stainless steel surface requirements. The results showed that: The wetting effect of Al2O3 and brazing filler is not satisfactory, and we could not find alumina phase in the coating, that is to say, Al2O3 as the ceramic reinforcement materials can not achieve the desired goal. However, WC particles in the coating are distributed more evenly. The coating surface is smooth, with a metallic luster, and it is a good metallurgical bond with the stainless steel surface. Its hardness is more than 6 times the stainless steel substrate, and it can be required to improve the wear resistance. Key Words:metal-ceramic coating; braze coating process; hardness

纳米耐高温绝热涂料的研制

纳米耐高温绝热涂料的研制 刘成楼,郑德莲,刘昊天 (北京国泰瑞华精藻硅特种材料有限公司,北京100037)摘要:以改性六钛酸钾晶须(PTW)、纳米SiO2 气凝胶、超细空心陶瓷微珠、纳米TiO2 和Al2O3为主要隔热填料,以耐高温有机硅树脂乳液和丙烯酸乳液为基料,在多种功能助剂的配合下制备成纳米耐高温绝热涂料。涂层具有薄层、绝热、防水、抗裂、防腐、隔音、耐高温、耐候等特性。 关键词:纳米涂料;绝热涂料;耐高温涂料;节能中图分类号:TQ 630.7 文献标识码:A 文章编号:1009-1696(2015)01-0010-04 0·引言 为了达到生态环保、节能减排的目标,对民用建筑物、输热管道、工业热力设施等必须采取有效的隔热保温措施。传统的隔热保温材料中,如岩棉毡、无机保温砂浆、聚苯泡沫板、发泡聚氨酯等厚度必须达到一定要求,才能有较好的保温性能,且在防水、抗裂、施工性等方面存在不足;有机高分子发泡材料耐燃性差,存在火灾隐患。近年来,国内外以空心微珠为主要填料开发的轻质、薄层、高效隔热涂料成为该领域的研究热点。 本研究以改性六钛酸钾晶须(PTW)、纳米SiO2气凝

胶、超细空心陶瓷微珠、纳米TiO2 和Al2O3 为主要隔热填料,以耐高温有机硅树脂乳液和丙烯酸乳液为基料,在多种功能助剂的配合下制备成耐600℃高温的纳米真空绝热保温涂料,涂层具有薄层、绝热、防水、抗裂、防腐、隔音、耐高温和耐候等特性。 1 ·实验部分 1.1 原材料 SiO2 气凝胶,因素高科(北京)科技发展有限公司;六钛酸钾晶须,唐山晶须复合材料制造公司;超细陶瓷微珠,上海汇精亚纳米新材料有限公司;纳米TiO2、Al2O3,江苏海泰;有机硅树脂乳液,德国瓦克;丙烯酸乳液,美国陶氏;硅烷偶联剂,南京曙光;分散剂、润湿剂、消泡剂、防腐剂、增稠剂、成膜助剂等,美国陶氏。 1.2 基本配方 纳米耐高温绝热涂料的基本配方见表1。 1.3 制备工艺 (1)改性六钛酸钾晶须浆的制备 将适量硅烷偶联剂、分散剂、润湿剂、消泡剂、pH 调节剂等加入去离子水中,搅拌均匀后加入六钛酸钾晶须,高速分散1 h,制成80% 的六钛酸钾晶须浆; (2)SiO2 气凝胶浆的制备 将适量分散剂、润湿剂、消泡剂,稳定剂、pH 调节剂

金属陶瓷

金 属 陶 瓷 材 料 2014级材料一班 王倩文 1430140512

目录 一、金属陶瓷的定义 (3) 二、金属陶瓷的特点 (4) 1.金属对陶瓷相的润湿性好。 (4) 2.金属相与陶瓷相应无剧烈的化学反应 (4) 3.金属相与陶瓷相的膨胀系数相差不会过大 (4) 三、金属陶瓷的行业现状 (5) 1.中国硬质合金工业产业分布、生产企业和研发机构 (5) 2.碳化钛基金属陶瓷 (5) 2.1 切削加工领域的应用 (6) 2.2 航天航空工业方面的应用 (6) 2.3 其他方面的应用 (7) 3.碳氮化钛基金属陶瓷 (8) 3.1 Ti(C,N)基金属陶瓷组分和成分设 (8) 3.2 晶粒细化 (9) 3.3 Ti(C,N)基金属陶瓷的应用 (9) 4.三元硼化物金属陶瓷 (10) 四、金属陶瓷的发展趋势 (11) 1.新材料的研究与开发。 (11) 2.超细晶粒和纳米级金属陶瓷。 (12) 3.梯度金属陶瓷的应用开发。 (12) 4.金属陶瓷回收再利用问题。 (12) 5.基础研究的发展。 (13)

材料是人类文明的里程碑,是人类赖以生存和得以发展的重要物质基础。正是材料的使用、发现和发明,才使人类在与自然界的斗争中,走出混沌蒙昧的时代,发展到科学技术高度发达的今天。当今世界,能源、信息、材料已成为人类现代文明进步的标志,继金属、有机高分子材料以后,金属陶瓷材料正以其卓越的性能、繁多的品种和广泛的用途进入各行各业,其发展之快,作用之大,令世人瞩目。金属陶瓷材料具有比强度高、比模量高、耐磨损、耐高温等优良性能,在众多场合已被作为新材料的代名词,成为现代高新技术、新兴产业和传统工业技术改造的物质基础,也是发展现代国防所不可缺少的重要部分,引起了世界各国尤其是发达国家的高度重视,纷纷投入巨资进行研究开发,把金属陶瓷材料作为本国高技术发展的一个重要领域。 一、金属陶瓷的定义 金属陶瓷是由陶瓷硬质相与金属或合金粘结相组成的结构材料。从金属陶瓷英文单词Cermets来,是由Ceramic(陶瓷)和Metal(金属)结合构成的。金属陶瓷既保持了陶瓷的高强度、高硬度、耐磨损、耐高温、抗氧化和化学稳定性等特性,又具有较好的金属韧性和可塑性。由于“金属陶瓷”和“硬质合金”两个学科术语没有明确的分界,所以具体材料也很难划分界线,从材料的组元看,“硬质合金”应该

陶瓷涂层技术知识

陶瓷涂层技术知识 一、金属基陶瓷涂层简介 金属基陶瓷涂层是指涂在金属表面上的耐热无机保护层或表面膜的总称。他能改变金属底材料外表面的形貌、结构及化学组成,并赋予底材料新的性能。涂层的种类很多;按其组成可分为硅酸盐系涂层、氧化物涂层、非氧化物涂层及复合陶瓷涂层等,按工艺方法可分为熔烧涂层、喷涂涂层、气相沉积及扩散涂层、低温烘烤涂层、电化学工艺涂层、溶胶-凝胶涂层及原位原位反应涂层等;按其性能与用途可分为温控涂层(包括温控、隔热、红外辐射涂层等)、耐热涂层(包括抗高温氧化、抗腐蚀、热处理保护涂层等)、摩擦涂层(包括减磨、耐磨润滑涂层)、电性能涂层(包括导电、绝缘涂层等)、特种性能涂层(包括电磁波吸收、防原子辐射涂层等)及工艺性能涂层等。 二、金属基陶瓷涂层制备技术 1.喷涂法(等离子喷涂法) 2.化学气相沉积法(CVD):在相当高的温度下,混合气体与基体的表面相互作用,使混合气体的某些成分分解,并在基体表面形成一种金属或化合物的固态薄膜镀层。 3.物理气相沉积法(PVD):离子镀法、溅射法、蒸镀法、离子注入等,离子化使镀层更致密。目前CVD和PVD的界限已不明显,两者相互渗透,CVD技术引入等离子活化等物理过程,出现了PACVD技术,PVD技术也引入反应气体产生化学过程。 4.复合镀层 5.溶胶-凝胶法 6.原位反应法 三、应用 航天航空工业:航天飞机机身外皮发动机涡轮叶片燃烧室内壁齿轮箱传送装置 电力电子工业:增加介电常数 汽车工业:为了减轻重量而开发新一代汽车发动机,欧洲、日本的汽车制造厂已经采用了合金上电解沉积Ni-SiC复合镀层,这种镀层还能大大提高耐膜性能、润滑性能和耐高温氧化性能。将氧化锆陶瓷粉末喷涂在内燃机的燃烧室内壁,可提高内燃机的工作温度、节省燃料和简化结构。 切削刀具上的应用:硬度高、耐热粘结性强、化学稳定性高、切削韧性好、切削性能优良等特点。单双三层刀具,陶瓷镀层刀具寿命是原来的1-2倍,多镀层刀具是陶瓷镀层刀具寿命的0.5-1倍, 冶金和机械工业:金属的冶炼热加工和热处理都要在高温下进行,防止金属的高温氧化、渗氮、渗氧,往往在金属表面涂热处理保护涂层。 生物医学的应用:改善人体与金属的生物相容性。 石油化工:防腐 陶瓷、玻璃生产:增加强度和寿命 食品包装:耐热、高阻隔、透明度 四、发展方向 1.发展新涂层:研究解决陶瓷涂层与金属基体的热膨胀系数匹配问题,从而提高涂层与金属的结合力。 2.发展新工艺:简便、成本低、生产效率高以及产生无缺陷涂层的工艺 3.无损探伤方法,韧性、粘结强度等。 五、金属陶瓷镀膜技术在车用内燃机上的应用 为降低内燃机活塞环与气缸套表面的摩擦因数,提高发动机的机械效率,进而提高内燃机的性能,在内燃机活塞环上应用了金属陶瓷镀膜技术。采用此项技术后,发动机成本仅增加3%-5%,而整机动力性和经济性得到了明显改善,实用价值很高。

热喷涂技术资料

齐鲁工业大学|机械与汽车工程学院 热喷涂技术的研究综述 孙* (齐鲁工业大学机械与汽车工程学院 20130102****) 摘要: 本文介绍了热喷涂技术的由来,发展历程,工艺特点(热喷涂工艺的优缺点),基本概念,总结了热喷涂技术的应用状况,探讨了新工艺、新材料在热喷涂技术中的应用前景。 关键词:表面处理;热喷涂;热喷涂的优缺点;热喷涂的应用进展 前言: 高新技术的飞速发展对提高金属材料的性能、延长仪器设备中零部件的使用寿命提出了越来越高的要求。而这两个方面的要求又面临高性能结构材料成本逐年上升的问题。近年来,表面工程发展很快,尤其是热喷涂技术获得了巨大的进展,为解决上述问题提供了一种新的方法。热喷涂技术是一种将涂层材料 (粉末或丝材 )送入某种热源 (电弧、燃烧火焰、等离子体等 )中熔化,并利用高速气流将其喷射到基体材料表面形成涂层的工艺。由于热喷涂技术可以喷涂各种金属及合金、陶瓷、塑料及非金属等大多数固态工程材料,所以能制成具备各种性能的功能涂层,并且施工灵活,适应性强,应用面广,经济效益突出,尤其对提高产品质量、延长产品寿命、改进产品结构、节约能源、节约贵重金属材料、提高工效、降低成本等方面都有重要作用。热喷涂涂层具有耐磨损、耐腐蚀、耐高温和隔热等优良性能,并能对磨损、腐蚀或加工超差引起的零件尺寸减小进行修复,在航空航天、机械制造、石油化工等领域中得到了广泛的应用【1-3】。 热喷涂发展现状: 1、热喷涂技术的由来 热喷涂是指采用氧—乙炔焰、电弧、等离子弧、爆炸波等提供不同热源的喷涂装置,产生高温高压焰流或超音速焰流,将要制成涂层的材料如各种金属、陶

瓷、金属加陶瓷的复合材料、各种塑料粉末的固态喷涂材料,瞬间加热到塑态或熔融态,高速喷涂到经过预处理(清洁粗糙)的零部件表面形成涂层的一种表面加工方法。我们把特殊的工作表面叫“涂层”,把制造涂层的工作方法叫“热喷涂”,它是采用各种热源进行喷涂和喷焊的总称。 热喷涂技术最早出现在 20世纪早期的瑞士,随后在前苏联、德国、日本、美国等国得到了不断的发展,各种热喷涂设备的研制、新的热喷涂材料的开发及新技术的应用,使热喷涂涂层质量不断得到提高并开拓了新的应用领域【4】。热喷涂技术在我国始于20世纪50年代,至70年代末形成气候。目前,无论在设备、材料、工艺、科研等方面都在迅速发展与提高,成为表面技术重要组成部分。 2、热喷涂技术的发展历程 在 1993年以前【5-6】介绍较多的是单一热喷涂的技术与方法,其中以火焰喷涂法最为常见。虽然该法(火焰温度可达 3000℃),可熔化大多数金属,但由于陶瓷材料熔点太高而使该法受到限制。与现有的火焰喷涂、等离子喷涂、电弧喷涂等技术相比,气体爆炸喷涂具有致密性好,孔隙率低,结合强度高等优点。但因爆炸法之粉料以直线束方式射向基体表面,对形状复杂和细小件内壁难以处理,并需专门隔音装置以对付约140分贝的爆炸声,且涂层与基体之结合强度也有待于提高。新近研制的超音速喷涂法利用喷枪(具有混合气体室,燃烧室及扩张嘴)在压力下点燃混合气体,通过扩张使燃烧继续,由此可产生超音速(1370m/s)和高温(2760℃)的气流,从而能喷涂金属陶瓷,例如WC-Co和WC-Cr-Ni等粉末材料,并无脱碳现象。与爆炸喷涂相比,由于火焰的超音速提高了粒子的速度,其所制得的涂层致密且高耐水性。加上热源温度低,限制了粉末粒子加热,从而有效地抑制了粉末中 WC的分解。实验得出,超音速法所形成的涂层较等离子及氧—乙炔火焰法形成的涂层性能优越,其耐蚀性能与硬质合金YT相当。并且涂层材料已从金属、合金、陶瓷进而扩大到塑料等非导电性材料【7】。 我国热喷涂技术是从五十年代开始的,当时由吴剑春和张关宝在上海组建了国内第一个专业化喷涂厂,研制氧乙炔焰丝喷及电喷装置,并对外开展金属喷涂业务。我国热喷涂技术起步较早,50年代就发展了丝材电弧喷涂;60年代某些军工部分开始研究等离子喷涂,等离子弧焰温度高、等离于喷涂颗粒飞行速度快,

反应釜耐高温高压特种防腐涂料

反应釜耐高温高压特种防腐涂料 1.作用机理:该涂料是由四川星利化工有限公司和高校共建的“腐蚀与防腐研究中心”研制而成。选用国家级重点防腐实验室研发的特种改性树脂作为主要成膜物,再加入特种耐热改性材料、耐热颜填料、添加剂等,经先进配方和工艺制备而成的耐高温高压的特种防腐涂料。分底漆和面漆两种,底漆为A型,面漆为 B型。 2. 性能: 2.1耐温耐压效果好。通过特种耐热材料,极好地提高了涂层的导热系数,提高了涂层的耐热耐压性能,耐热温度 ≯220℃,压力≯70MPa,涂层在高温高压下的防腐性能也极优。 2.2 防腐性能好。涂层的附着力和物理机械性、柔韧性均好,耐酸、碱、盐等化学药品性能极佳。 2.3 延展性突出。延展率大于30%,能抗一定极限范围内的温度和压力的骤升骤降。 2.4涂层硬度极高,耐磨性突出。 3 适用范围: 适用于温度在220℃以内,具有一定腐蚀介质和压力环境下的化工反应釜、石油开采用钻杆、冶金、化工容器等内壁的涂装防腐。 4技术指标:

项目指标 漆膜颜色及外观浅绿或其它色,漆膜平整光滑 干燥时间(220℃烘干固化) 1.5h 附着力(刀挑法)A级 细度(μm)≤ 50 铅笔硬度>5H 10%HCl常温常压浸泡90天,涂层无变化10%NaOH常温常压浸泡90天,涂层无变化3.5%NaCl常温常压浸泡90天,涂层无变化PH12.5的水,148℃,70Mpa24小时涂层不起泡,附着力不降低水:甲苯:煤油=1:1: 16小时涂层不起泡,附着力不降低1,107℃,35Mpa 5.施工方法: 5.1 施工方法:涂料在运送到施工现场后需静止24小时以上,涂 料在使用之前适当搅拌至均匀,并用专用配套稀释剂,用量根据使用 粘度调节稀释至施工粘度,继续搅拌1-1.5小时。先喷底漆,表干后120℃烘烤1个小时,冷却后再喷面漆,表表干后先120℃烘烤1个小时,然后220℃烘干固化90分钟。 5.2 表面处理要求:被涂物表面必须进行清理,做到表面无锈、无油、无灰尘、无水,除锈达到sa2.5级或st3级标准。处理后的工 件在规定时间(相对湿度大于80%需在30分钟内、相对湿度50-80%须

MOCVD法制备金属陶瓷功能梯度材料的研究

第30卷 第4期西南师范大学学报(自然科学版)2005年8月Vol.30 No.4Journal of S outhwest China Normal University(Natural Science)Aug.2005 文章编号:10005471(2005)04068205 MOCV D法制备金属陶瓷功能梯度材料的研究① 章娴君1, 郑慧雯1,2, 张庆熙1, 王显祥3 11西南师范大学化学化工学院,重庆400715;21巴蜀中学,重庆400013; 31四川农业大学生命科学与理学院,四川雅安625014 摘要:利用金属有机化学气相沉积(MOCVD)方法,以Mo(CO)6,Si(OC2H5)4为物源,在Al2O3陶瓷基片上制备了金属陶瓷功能梯度材料,并用XPS,XRD,SEM等技术对其成分分布,物相组成和表面形貌进行测试和表征.结果表明:材料的组成沿厚度方向呈连续梯度变化,符合功能梯度材料的变化规律. 关 键 词:功能梯度材料(F GM);金属有机化学气相沉积(MOCVD);X射线光电子能谱(XPS);表面形貌 中图分类号:TB34文献标识码:A 金属陶瓷功能梯度材料(F GM)是针对高温、热循环和大温度落差的工作条件而开发的一类新型超耐热材料[14].材料一侧为耐高温、耐热冲刷特性的陶瓷材料,另一侧为具有高强度、高韧性的金属材料,其间为金属/陶瓷过渡层.由于材料微观结构沿某一个或某几个特定的方向呈连续变化,从而消除了由于金属和陶瓷物性参数的巨大差异而在材料内部产生的热应力界面,达到缓和热应力和耐热隔热的目的.因而,金属陶瓷功能梯度材料(F GM)是一类很有希望用于宇航、核能等高技术领域的新型复合材料[5].目前国内外已制备出的金属/陶瓷F GM有TiN2TiC,ZrO22Ni,TiAl2Cu,ZrO22Ti6Al4,SiC2Al,TiC2Ni,YSZ2 Ni,YSZ2Ni2Nb等[6].但还未见用化学气相沉积的方法制备Mo/SiO2功能梯度材料的相关报道. 本文以Mo(CO)6,Si(OC2H5)4为物源,采用功能梯度材料(F GM)的设计思想,利用MOCVD技术,通过改变沉积温度,沉积气压和反应气源中各组分的成份比来调节和控制薄膜的组织和成份,使之发生连续变化来制备Mo/SiO2功能梯度材料,并以XPS,XRD,SEM等技术研究该材料的成分分布,物相组成和表面形貌. 1 实 验 111 材料的成分设计 SiO2和Mo的热学和物理性能如表1.由表1可见,SiO2和Mo物理性质相差很大,尤其是热性能不匹配,会使不连续的梯度层间产生很大热应力.采用功能梯度材料(F GM)的逆设计思想,能获得合理组分构成的梯度层设计,有利于材料结构性能的平缓过渡,即可解决上述难题.设计中,假定Mo/SiO2功能梯度材料由5层组成,每层梯度材料是由均匀的SiO2和Mo构成,表面层为纯金属Mo,最底层为纯陶瓷SiO2,中间为过渡层.采用公式C=(x/d)p计算不同梯度层各成分的含量[7],其中:C为体积分数,x为各梯度层与表面层之间的距离,d为样品的厚度,p为成分分布指数.在本实验中,经理论分析p=1为最佳取值,计算所得各梯度层的最佳成份分布如图1所示. ①收稿日期:20040725 基金项目:重庆市攻关资助项目. 作者简介:章娴君(1944),女,四川成都人,教授,主要从事有机新材料研究.

梯度功能材料讲稿

梯度功能材料 一、引言 许多结构件会遇到各种服役条件,因此,要求材料的性能应随构件中的位置而不同。例如,民用或军用刀具都只需其刃部坚硬,其它部位需要具有高强度和韧性;一个齿轮轮体必须有好的韧性,而其表面则必须坚硬和耐磨;涡轮叶片的主体必须高强度、高韧性和抗蠕变,而它的外表面必须耐热和抗氧化。诸如此类,可以发现现在应用的许多材料都是属于这个范畴。众所周知,构件中材料成分和性能的突然变化常常会导致明显的局部应力集中,无论该应力是内部的还是外加的。但人们同样知道,如果从一种材料过渡到另一种材料是逐步进行的,这些应力集中就会大大地降低。为了减少材料的应力集中,提高材料的性能,人们发展了一种新型的功能梯度材料(Functionaily Gradient Materials,简称FGM)。虽然FGM 产生的时间不长,但很快引起世界各国科学家的极大兴趣和关注。日本、美国、德国、俄罗斯、英国、法国、瑞士等许多国家相继开展FGM的研究。其应用已扩展到宇航.核能源、电工材料、光学工程、化学工业、生物医学工程等各个领域中。 二、梯度功能材料的发展 梯度功能材料(FGM)是一种集各种组分(如金属、陶瓷、纤维、聚合物等)一体的新型材料,其结构、物性参数和物理、化学、生物等单一或综合性能都呈连续变化,以适应不同环境,实现某一特殊功能。 梯度功能材料其实早就出现在自然界中。神奇的大自然早制造出多种梯度材料。例如,竹子是一种典型的梯度功能材料,人类和动物身体中的骨骼也是一种梯度材料,其特点是结构中的最强单元承受最高的应力。但是,在生命体中的梯度结构与人造梯度结构之间存在很大的差异。有生命的“FGMs”也是“有智能的”,它们能够感受所处环境的变化(包括局部的应力集中),产生相应的结构修改,而人造梯度材料至少在目前还缺乏这种功能。 人造梯度功能材料并不是新的事物,只不过人们没有意识到而已。人类制造的钢制器件实质就是一种功能梯度材料。1900年,美国的伍德用明胶作成了光折射率沿径向连续变化的圆柱棒,称之为梯度折射材料。由于制作工艺没有解决,未能得到实际应用,没有引起人们的注意。1969年,日本板玻璃公司的北野等人用离子交换工艺制成玻璃梯度折射棒材和光纤,达到了实用水平,梯度折射率材料的研究才迅速发展起来,研究的国家也从美国和日本扩展到二十几个国家。 1972年,Bever和Duwez提出了功能梯度这个概念。功能梯度材料作为一个规范化正式概念于1984由日本国力宇航实验室提出。由于航天飞机中,燃烧室内外表面的温差达到1000K以上,普通的金属材料难以满足这种苛刻的使用环境。一系列政府报告论述了日本在以太空飞机为重点的航天研究中所预计的材料需求,结论是鉴于对高温结构件的许多严格要求,需要在结构中仔细地引入成分和微观结构梯度,不但能最全面地利用已有材料去生产所需要的构件,还能避免由于外加应力或温度变化而在不同材料的锐利界面上引起的应力和(或)应变集中。1987年,日本平井敏雄、新野正之和渡边龙三人提出使金属和陶瓷复合材料的组分、结构和性能呈连续性变化的热防护梯度功能材料的概念。同年,日本科技厅制定了有关FGMs的一项庞大计划,主要研究一边处于冷却而另一边处于炙热环境下的部件的特殊要求。1990

热喷涂涂层的制备

技 术 评 论 —— 运 用 显 微 组 织 分 析 解 决 实 际 问 题 热喷涂涂层的制备 作者:George Vander Voort 热喷涂涂层金相 热喷涂涂层的应用是为了改善基体材料的抗氧化、抗腐蚀、抗表面磨损和抗烧蚀能力。有涂层金属部件的准确表征要求对其显微组织进行金相检验。涂层的厚度范围从 0.002 至 0.060英寸 (0.005 至 1.5mm) 并用不同的喷涂技术和参数沉积到基底上。必须用金相制备技术准确地确定显微组织特性。由于一些涂层的脆性本质和孔隙的存在并在涂层构成了很不相同的硬度,在金相制备中总是有可能无法显示出真实的显微组织或引入假象,从而对涂层特性作出错误的诠释。光学显微技术为一块经过正确制备的涂层试样提供了一种评估手段,以确定或测定 涂层/基底界面的质量、孔 隙度、未熔化颗粒及氧化物的分布、涂层厚度、以及其它涂层特性,如图 1 所示。 各个实验室为了对热喷涂试样进行显微组织评估而使用的金相制备技术不尽相同,这一差异往往会造成勉强合格的结果。这些技术包括在粗磨和细磨阶段,碳化硅砂纸、固定或半固定金刚石的使用。粗抛光阶段是在无绒毛织物上使用分级系列的金刚石膏或悬浮液。对于最终抛光阶段,则在有绒毛或无绒毛的织物上使用细金刚石膏或悬浮液,或使用小于 1 微米的氧化铝粉。如果在使用以上任何消耗品或制备表面时采用不恰当的技术都 会产生不够精确的结果。 图 1。典型的涂层截面组织,图中示出氧化物和夹杂物 的层状组织本期标乐公司的《技术评论》是为了给读者提供能够始终如一地准确对涂层进行表征的热喷涂涂层金相制备步骤的信息。 金相试样制备 取样/切割 对于不同类型的热喷涂试样,应当使用带有金属粘接的金刚石薄片或超薄氧化铝砂轮片的精密切割机沿着垂直于试样轴的方向进行切割。试样应当用台钳夹紧,其位置应使切割片从涂层一侧进入而从基底一侧出去,这样就显著减小了涂层的损伤。图 2 示出在切割热喷涂涂层时所建议的切割片转动方向、试样位置、及试样类型。通过真空浸渗可以使多孔性涂层或易碎涂层上有一薄层的环氧树脂可以避免在切割时造成损伤。表 1 给出切割参数。每一块切下的试样都应当放在丙酮中彻底 清洗并在镶嵌前在 70°C 的烘箱中干燥 5 分钟。

陶瓷耐高温涂料研发技术配方

陶瓷耐高温涂料北京生产厂家公司 陶瓷耐高温涂料逐步公认为是涂料发展新阶段,涂料无污染,耐温高强度大,适合多种高温高压、高耐磨高氧化环境中使用,是代替金属最好材料。陶瓷耐高温涂料是国内研发领先者--北京志盛威华化工有限公司,该公司研发生产的陶瓷耐高温涂料是一种稳定的抗氧化、抗腐蚀、抗磨损、绝缘、阻燃防火、隔热保温的新型材料,涂料涂刷在工业锅炉、燃烧炉、高炉、感应炉、汽化炉、冶炼炉、回转窑、航天、反应釜、烟囱、模具、尾气管、核反应堆结合力高,热膨胀系数匹配,因此志盛耐高温陶瓷涂料涂层发展前景好。 目前国内外陶瓷耐高温涂料同时满足耐高温磨损、腐蚀、隔热、氧化和良好的绝缘性、低廉的成本等各项要求。国内北京志盛威华化工有限公司率先在组建研发陶瓷耐高温涂料研发团队,自行研制的陶瓷耐高温涂料涂层适应了我国不断发展国情,隔热保温、耐酸碱防腐、粘合剂、绝缘自洁、防水防火、保护远红外等节能 ZS系列陶瓷高温涂料。志盛威华二十几年来的涂料不断研发,耐高温涂料涂层系类耐温有150℃、250℃、400℃、600℃、800℃、1000℃、1200℃、1600℃、1800℃、2000℃、2200℃、2600℃、3000℃等一系列新型的陶瓷耐高温涂料。志盛威华ZS系列陶瓷耐高温涂料种类有,有着极低的导热系数高温隔热保温涂料、高效的高温1021封闭防氧化高温陶瓷涂料、耐强酸强碱的陶瓷高温防腐涂料、屏蔽电流的1091高温绝缘涂料、耐火的无机耐高温胶等功能陶瓷高温涂料、工业窑炉远红外节能漆涂料,这些威华陶瓷耐高温涂料在市场上有广泛的应用和好评,也得到国家相关部门的认定和支持,陶瓷耐高温涂料多种耐温幅度打破传统高温漆概念,适合新形势下对涂料发展的需求和产业技术升级。

喷涂工艺过程

喷涂工艺过程 1、表面预处理 为了使涂层与基体材料很好地结合,基材表面必须清洁及粗糙,净化和粗化表面的方法很多,方法的选择要根据涂层的设计要求及基材的材质、形状、厚薄、表面原始状况以及施工条件等因素而定、净化处理的目的是除去工件表面的所有污垢,如氧化皮、油渍、油漆及其他污物,关键是除去工件表面和渗入其中的油脂、净化处理的方法有,溶剂清洗法、蒸汽清洗法、碱洗法及加热脱脂法等、粗化处理的目的是增加涂层与基材间的接触面,增大涂层与基材的机械咬合力,使净化处理过的表面更加活化,以提高涂层与基材的结合强度、同时基材表面粗化还改变涂层中的残余应力分布,对提高涂层的结合强度也是有利的、粗化处理的方法有喷砂、机械加工法(如车螺纹、滚花)、电拉毛等。其中喷砂处理是最常用的粗化处理方法,常用的喷砂介质有氧化铝、碳化硅和冷硬铸铁等。喷砂时,喷砂介质的种类和粒度、喷砂时风压的大小等条件必须根据工件材质的硬度、工件的形状和尺寸等进行合理的选择。对于各种金属基体,推荐采用的砂粒粒度约为16-60号砂,粗砂用于坚固件和重型件的喷砂,喷砂压力为0、5-0、7Mpa,薄工件易于变形,喷砂压力为0、3-0、4Mpa。 特别值得注意的一点是,用于喷砂的压缩空气一定要是无水无油的,否则会严重影响涂层的质量。喷涂前工件表面的粗化程度对大多数金属材料来说2、5-13mmRa就够了。随着表面粗糙度的增加涂层与基体材料的结合增强,但是当表面粗糙度超过10mmRa后,涂层结合强度的提高程度便会减低。对于一些与基材粘结不好的涂层材料,还应选择一种与基体材料粘结好的材料喷涂一层过渡层,称为粘结底层,常用作粘结底层的材料有Mo、NiAl、NiCr及铝青铜等、粘结底层的厚度一般为0、08-0、18mm。 2、预热 预热的目的是为了消除工件表面的水分和湿气,提高喷涂粒子与工件接触时的界面温度,以提高涂层与基体的结合强度;减少因基材与涂层材料的热膨胀差异造成的应力而导致的涂层开裂、预热温度取决于工件的大小、形状和材质,以及基材和涂层材料的热膨胀系数等因素,一般情况下预热温度控制在60-120℃之间、 3、喷涂 采用何种喷涂方法进行喷涂主要取决于选用的喷涂材料、工件的工况及对涂层质量的要求。例如,如果是陶瓷涂层,则最好选用等离子喷涂;如果是碳化物金属陶瓷涂层则最好采用高速火焰喷涂;若是喷涂塑料则只能采用火焰喷涂;而若要在户外进行大面积防腐工程的喷涂的话,那就非灵活高效的电弧喷涂或丝材火焰喷涂莫属了。总 之,喷涂方法的选择一般来说是多样的,但对某种应用来说总有一种方

陶瓷_金属梯度热障涂层圆筒的传热与热应力有限差分分析

第26卷 第3期2002年6月 武汉理工大学学报(交通科学 与工程版 ) Journal of Wuhan University of Technolo gy (T r anspo rtat ion Science&Engineer ing) V ol.26 N o.3 June2002 陶瓷/金属梯度热障涂层圆筒的传热 与热应力有限差分分析* 刘 杰 肖金生 覃 峰 崔东周 (武汉理工大学能源与动力工程学院 武汉 430063) 摘要:推导了多层陶瓷梯度涂层圆筒模型的温度和热应力分布,对变物性材料的差分解法进行了 分析,并与实际的工程模型进行了对比计算,有限差分解和有限元解能够很好地吻合. 关键词:热障涂层;功能梯度材料;有限差分;热应力 中图法分类号:U664.12;O241.84 基于提高内燃机的经济性和可靠性的考虑, 近年来陶瓷/金属梯度热障涂层及其在内燃机中 的应用研究受到了广泛的重视[1,2].梯度热障涂层 可充分利用两种材料的优良特性,提高内燃机性 能.但涂层在交变热应力作用下仍易脱落破坏,所 以研究涂层工作条件下不同时刻不同涂层材料的 热应力分布有重要的意义[3],文中着重对热应力 的差分解与解析解、有限元解进行比较研究. 1 陶瓷/金属梯度热障涂层圆筒的 传热分析 1.1 陶瓷/金属梯度热障涂层的多层圆筒模型 图1所示为涂层在内的四层圆筒模型,层1 为纯陶瓷层,层2为陶瓷/金属梯度层,层3为过 渡金属层,层4为基体金属层.采用柱坐标系,r 为径向,z为轴向. 1.2 陶瓷/金属梯度圆筒传热分析的解析解 对图1所示的四层圆筒模型,假设圆筒为无 限长,两端绝热,且处于稳态温度场中.所以圆筒 内各点的温度T与z及时间t无关.由傅里叶热 传导方程写出多层圆筒模型的稳态热传导方程为 d d r [r i(r) d T i(r) d r ]=0 R i-1≤r≤R i,i=1,2,3,4( 1) 图1 陶瓷梯度涂层的多层圆筒模型 将圆筒沿半径方向分成n个薄层,各层厚度 任意,但要求每层内的物性可近似取为常数.假设 内边界的表面传热系数为h a,流体的温度为T f a; 外边界的换热系数为h b,流体的温度为T f b.如果 是第一类边界条件,可将相应的换热系数取为近 似无限大即可.因为每层可以认为是均质的,所以 导热系数在每一层内是常数.设第i层的导热系 数为 i,则由各层界面间的热流连续条件,可导出 圆筒模型内的温度分布为 T(r)=T f a+A(T f b-T f a)( 1 R0h a + ∑s i=1 ln(r i/r i-1) i+ ln(r/r s) s+1)(2)式中 A=[ 1 R0h a+ ∑n i=1 ln(r i/r i-1) i+ 1 R4h b] -1 收稿日期:20020401 刘 杰:男,25岁,硕士,主要研究领域为陶瓷/金属梯度热障涂层、轮机工程仿真与CAD *交通部重点科技项目资助(批准号:95040332)

相关文档
最新文档