淀粉抗老化研究进展

淀粉抗老化研究进展
淀粉抗老化研究进展

淀粉抗老化研究进展

杨龙

(青岛农业大学,食品科学与工程学院,山东,青岛,266109)

摘要:淀粉的老化是现如今困扰世界的科学难题,目前抗老化的方法主要有淀粉酶法和生物化学法,本文分析总结了现在国内外淀粉抗老化的方法及成果,较全面的总结了生物酶、乳化剂、亲水性胶体、海藻糖、硫酸钠、蛋白质、脂质等物质,高静水压处理、pH、水分含量等因素的抗回生作用,从而便于对各种方法进行比较,得出最好的方法,对今后的研究有一定的指导意义。

关键词:淀粉抗老化研究进展

The Development of Starch Anti-retrogradation

Yanglong

College of Food Science and Engineering,

Master of Food Science

Qingdao Agricultural University

266109,Qingdao,Shandong,China

Abstract: Starch retrogradation is a scientific problem which perplexes the world. N- owadays, amylase method and biochemistry methods are the main ideas for anti-retro- gradation. The methods and achievement of anti-retrogradation researched at home a- nd abroad was analyzed and summarized in this paper. The materials of enzymes, em- ulsifiers, hydrophilic colloids, trehalose, sodium sulphate, protein, lipid and influenci- ng factors of High Hydrostatic Pressure, pH and the amount of water were also sum- marized, and then, by comparisom, the best mothod, as the guide for the later reseach, was put forward.

Keywords: Starch Anti-retrogradation Biological Enzyme

新制作的谷物食品,如面包、馒头、蛋糕等,都具有内部组织结构松软、有弹性、口感良好的特点,但经过完全糊化的淀粉,在较低温度下自然冷却或缓慢脱水干燥,就会使已破坏的淀粉分子氢键发生再度结合,胶体发生析水使部分分子重新变成有序排列,结晶沉淀,这种现象被称为淀粉的回生。回生淀粉难以复

水,因此蒸煮熟后的馒头、米饭、米粉焙烤的面包等放置一段时间会变硬而难以消化吸收,从而使食品的质构与消化性劣化[1]。世界上每年都因老化问题浪费大量的粮食。随着人们生活节奏的加快及主食工业化的趋势,延长食品的货架期显得尤为迫切,因而如何使食品长时间保持优良的食用性能成为越来越多的人关注的焦点。大量实验事实表明,谷物食品的老化主要是由于淀粉的老化引起的,有效的解决了淀粉老化问题,谷物食品的老化问题也就迎刃而解。本文就将对现在国内外的淀粉抗回生的方法进行总结。

1 淀粉的理化特性

淀粉是植物在生长过程中贮备的营养物质,是谷物籽粒最基本的成分之一,占干基总重的50%~80%不等。从化学组成来看,淀粉是由众多葡萄糖残基单元组成的多糖,分子量从几万至几百万,按分子结构不同可分为直链淀粉和支链淀粉。

1.1 直链淀粉

直链淀粉的分子并不是完全伸直的,根据X-衍射分析表明,它具有次级结构,即是说由于分子内氢键的关系,使分子链卷曲成螺旋状,估计每六个葡萄糖残基组成螺旋的一个节距。

2.2支链淀粉支链淀粉分子具有高度的支叉结构,其分子中有主链,其上分出分支,各个葡萄糖残基之间均以α-D-(1,4)-糖苷键相连接,但在分支上有以α-D-(1,6)-糖苷键相连接的葡萄糖残基。主链中每隔6~9个葡萄糖残基就有一个分支,每个分支含有约15~18个葡萄糖残基,平均每24~30个葡萄糖残基就有一个非还原性尾端,整个分子形成一个巨大的网络结构[2]。

3 淀粉抗老化途径

回生是直链淀粉及支链淀粉的直线部分趋向于平行排列,从无定形态回复到结晶体,这样会使体系能量最低,更加稳定。这种趋于平行排列的趋势是一系列老化现象的直接内在推动力。回生的过程就是随着分子重新排列的进行,淀粉糊化后的胶体结构被破坏,吸水能力下降,水分析出。回生的结果就是水分散失,淀粉链重新由无定形态变为晶体,回生后的淀粉粘度降低,硬度升高,使得食品

的品质急剧下降,失去实用价值。目前对于淀粉回生的研究很多,所得出的抗回生方法亦很多。从某种意义上说,已糊化淀粉的回生趋势是很难避免的,但是在清楚了解淀粉的回生机理之后,就能够充分利用这些机理,采用有效措施来延缓淀粉老化,将由淀粉回生带来的不良影响降至最低。目前利用以下几种方法来解决淀粉回生问题,取得了就较为满意的效果。

3.1 生物酶

目前食品工业一般不采用化学方法,而广泛地采用食品添加剂如海藻糖、亲水性胶体、乳化剂、多糖类、低聚糖、食用胶类等,防止各种淀粉的老化[3]。尽管这些添加剂对淀粉的回生有很明显的抑制作用,然而,它们一般只可以延长5~30d,远远达不到人们所希望的效果。生物酶法是一种很好的抑制淀粉回生的方法,通过在馒头、面包和米粉等的制作过程中添加淀粉酶,可有效延长米面制品的保鲜时间,是一种较具有前途的方法[4]。

研究表明,直链淀粉分子长短及直、支链的比例与回生速率呈高度相关[5]。因此,我们可以利用淀粉酶,对淀粉进行一定程度地降解,通过改变链长,增强分子链排列的无序性来延缓回生,具有良好的应用效果。效果较明显的有以下几种淀粉酶:

3.1.1 α-淀粉酶

淀粉酶是一种内切酶,以随机的方式从淀粉分子内部水解α-1,4-糖苷键,从而改变直链淀粉及支链淀粉直线性侧链的聚合度,使淀粉水解产生可溶性糊精。而这种糊精的含量与食品的老化速率的下降呈正相关[5],其错综复杂的排列方式可有效干扰淀粉的结晶。但过量的糊精会使面包馒头等食品瓤心发粘,影响口感,加酶量过大时还会出现塌架问题。因此在应用中应将淀粉酶的添加量与其耐热程度、口感等方面综合考虑[6]。

3.1.2 β-淀粉酶

β-淀粉酶是一种端切酶,可以从淀粉分子的非还原端开始,依次切下两个葡萄糖单位,即一个麦芽糖分子,从而缩短直链淀粉及支链淀粉直线分支的长度,减少其重结晶趋势。木俣六司研究β-淀粉酶对米饭回生的影响后表明淀粉酶可

以显著抑制米饭的回生硬化[7]。孙庆杰等人利用β-淀粉酶抑制米粉的回生,生产的保鲜米制品1年内不回生,在分子水平上解决了米制品回生的难题[8]。因此β-淀粉酶成为对淀粉回生机理研究的一个有力工具。

β-淀粉酶处理支链淀粉的外侧短链被部分降解,聚合度降低,姚远通过高效排阻色谱证实β-淀粉酶的处理可以使部分支链淀粉外侧短链聚合度降低2~3个葡萄糖单位。部分支链淀粉外侧短链聚合度降低,淀粉分子的成核和结晶速度降低,回生受到抑制[9]。另外,经β-淀粉酶处理后的大米支链淀粉结晶熔化热焓有所降低,表明其结晶度降低,回生受到抑制。酶解程度越大,抑制效果越明显[10]。β-淀粉酶可有效降低支链分子外支链的长度,使其聚合度低于10,而无法形成双螺旋结构。同样,亦有专利报道,对淀粉或面粉进行β-淀粉酶处理,制作出防止回生老化的物料用于糕饼类[11]。

3.1.3 葡萄糖淀粉酶

葡萄糖淀粉酶作用于淀粉时从非还原尾端开始,依次逐个切下一个葡萄糖单位,并将葡萄糖分子的构型由α-型转变为β-型,葡萄糖淀粉酶的专一性较差,它可以水解α-1,3-糖苷键和α-1,6-糖苷键,但是速度较慢,其抑制淀粉回生的机理与β-淀粉酶相似。

3.1.4 支链酶

支链酶是一种新型酶制剂,能够催化糖原中的α-1,6-糖苷键的合成,从而生成具有分支的葡聚糖支链淀粉。支链淀粉是在储存过程中不易于重新结合的分子,这主要是因为支链形成的立体形的空间位阻对有序构象干扰的一种直接后果。通过支链酶将分支点引入到天然淀粉的直线型直链淀粉中,以及将α-1,6分支进一步引进到已经具有分支的支链淀粉部分,都能有效的抑制淀粉的回生[12]。

3.2 物理化学方法

3.2.1 乳化剂的作用

乳化剂作为最主要的一类食品添加剂,在淀粉类食品抗老化方面有着显著的作用效果,是最理想的抗老化剂和保鲜剂。乳化剂抗老化保鲜的作用效果是淀粉

分子及乳化剂自身的结构特征决定的。乳化剂能够同淀粉分子发生相互作用形成稳定的复合物,这一点在保持淀粉类食品品质方面有着特殊的,但乳化剂同直链淀粉及支链淀粉有着不同的意义作用方式。我们一般都把直链淀粉看作是以线型分子式存在的,但糊化的直链淀粉并不是线型的,而是在分子内氢键的作用下发生链卷曲,形成α-螺旋状结构,这种α-螺旋状结构的内部形成一个疏水腔,具有疏水作用。乳化剂的疏水基团进入α-螺旋结构内并在这里与淀粉以疏水方式结合起来,形成一种稳定的强复合物。因而直链淀粉在淀粉粒中被固定下来,向淀粉周围自由水中溶出的直链淀粉减少,防止了因淀粉粒之间的再结晶而发生老化。支链淀粉的直链状螺旋结构少,与乳化剂形成复合物的能力较小,但乳化剂可以借助氢键加成到淀粉表面上,即支链淀粉的外部分枝上,而发生支链淀粉与乳化剂的相互作用。

3.2.2 亲水性胶体作用

除淀粉酶制剂和乳化剂外,一些亲水性胶体也具有良好的保鲜、防老化性能。亲水性胶体之所以具有保鲜性能主要有以下原因:第一,具有良好的成膜性,能够防止食品在加工或贮藏过程中水分的散失;第二,多数胶体本身是多糖,其羟基能与淀粉链上的羟基及周围的水分形成大量的氢键,起到阻止淀粉回生的作用;第三,胶体大多数都具有很高的吸水、持水能力,从而大大提高了食品的含水总量,对食品失水老化起到延缓作用[13]。

3.2.3 海藻糖的作用

研究认为,海藻糖良好的持水性能确保较多的结合水分子接近淀粉分子,这事实上起到了对分子链的稀释作用,同时又提高了分子链周围的微区粘度,从而延缓了分子链的迁移速率,降低了回生速率[14]。且宋云平等研究表明配方为白砂糖浓度1%、海藻糖浓度1%时海藻糖抑制糯米粉老化的效果尤为明显[15]。

3.2.4 硫酸钠的作用

Hardeep Singh Gujral等的研究指出SLS(硫酸钠)含量的提高能够显著延缓淀粉的变硬和重聚,在室温下贮藏10天的蛋糕依然柔软表明SLS能够显著抑制淀粉的回生[16]。其试验含有0.1%的SLS的淀粉凝胶在5℃条件下贮存5天不发

生变硬,其机理可以解释为因为SLS能够阻止淀粉分子的重聚和凝胶块的形成从而表现出抗老化作用。

3.2.4 蛋白质和脂质作用

淀粉尤其是大米淀粉即使经过多次分离提纯,所得到的淀粉仍然含有蛋白质和脂质。这些物质有些是在植物生长过程中自然沉积在淀粉颗粒中的,有些则是在提取淀粉加工过程中带入的,它们对淀粉回生也有影响[17]。蛋白对淀粉回生影响的研究目前还没有报道,只有文献指出,采用酶法除去大米淀粉的结合蛋白能够加速大米淀粉的糊化,其峰值黏度、表观黏度等相应增大[18]。

脂质能够抑制淀粉回生,这个在方便米饭的回生抑制上,早有运用[19]。脂类,包括脂肪酸、乳化剂与部分油脂,可与直链淀粉分子形成螺旋配合体[20],并产生凝聚,x-射线衍射谱显示V型结晶。当热的已糊化含脂质淀粉冷却时,V型结晶首先生成[21]。大米淀粉的回生与脂质含量有很大关系,Morrison等人研究发现,直链淀粉含量高的大米(19.5%~28.3%)中,直链与脂质的复合率达到19.4%~30.2%,其结晶融化温度为80~120℃[22]。

3.2.5 HHP(High Hydrostatic Pressure,高静水压)处理的作用

Alexander J. King的研究表明 HHP对淀粉回生特性的影响与贮藏温度和淀粉的植物来源有密切的关系,比如其所研究表明小麦和玉米淀粉贮藏在23℃条件下要比在其它温度下贮藏更稳定[23]。Stolt在2001年报道过将大麦淀粉置于90℃,30分钟和550 MPa, 30℃, 10 分钟的条件下在4℃下贮藏7天不回生[24]。

3.2.6 环境pH的影响

国外有研究表明在高酸环境中面包中的淀粉回生速率要低。这可以部分解释为在高酸环境中小分子量的淀粉糊精成为了阻止淀粉回生的基本条件[25]。

3.2.7 水分含量的影响

水分含量60%以下时,随着水分含量的降低,支链淀粉分子的迁移速度降低,参与重结晶的水分子变少,因而重结晶程度降低,晶体融化温度升高[26]。对于糊化的小麦淀粉,Slade等人认为,其支链重结晶的最低水分要求为27%,这是低水分条件下储藏能够抑制淀粉回生的原因[27]。水分含量60%以上时,随着水分含

量的增加,虽然淀粉分子的迁移速度增加,但是由于浓度降低,淀粉分子之间的交联机会减少,因而回生程度逐步降低。同时由于参与结晶层的水分子增多,重结晶的融化温度也逐步降低。故水分含量为60%时回生最严重。

3.3 其它方法

其它方法如冷冻干燥或真空油炸使淀粉制品的含水量迅速降低使尽可能的保持淀粉原有的糊化结构,这些方法在方便食品的生产中也有较为广泛的应用。

4 结束语

淀粉已成为工业生产尤其是食品工业中一种不可缺少的原料,但是由于支链淀粉的回生现象严重的影响了淀粉食品的加工、贮藏和食用品质,探索一种更为合适的方法来抑制支链淀粉的回生成为当前所必需解决的问题。淀粉作为一种以非平衡态存在于食品体系的生物大分子,要想从更深的层面去了解其性质并找到更好的抗回生的方法必须有效地运用现代高分子科学理论,以求从分子角度更好的解决支链淀粉回生的问题。

[参考文献]

[1]胡强,孟岳成.淀粉糊化和回生的研究[J].食品研究与开发,2004,25(5):63-66

[2]蒋爱民,赵丽芹.食品原料学[M].东南大学出版社,2007:14-16

[3]李作为,芮汉明,张立彦.淀粉老化对微波膨化影响的研究[J].粮食与饲料工业,2000,(1):42-43.

[4]邱泼,李喜宏,韩文凤,孙庆杰.生物酶法抑制淀粉回生机理研究进展[J],粮食加工,2006,6:59-61

[5]李慧娟,柴松敏.淀粉的老化机理及抗老化研究[J],粮食加工,2006,3:42-45

[6]R.卡尔霍斯尼谷物科学与工艺学原理[M]北京:中国食品出版社,1989,36-60

[7]木俣六司米饭的老化防止方法[M].日本:公开特许公报昭50-199355.

[8]谢定,刘永乐,单阳,孙庆杰,易翠平,何新益.保鲜方便米粉抗老化研究[J],食品与机械,2006,2:8-10

[9]姚远.米制品回生研究 [C].无锡轻工大学博士论文,2000.

[10]丁文平,丁霄霖.普鲁兰酶和β-淀粉酶对大米支链淀粉回生影响的研究[J].中国粮油学报,2003,18(1):13-16.

[11]姚远,丁霄霖,吴加根.淀粉回生研究进展(Ⅰ)回生机理、回生测定方法及淀粉种类对

回生的影响[J].中国粮油学报,1999,14:2.

[12]Cobazonp villagealetal. Amylopectin Staling of Cooked Milled Rices and Properties of Amylopectin and Amylose[J]Cereal Chemistry.1997,74 (2),163-167

[13]顾艳丽.淀粉的老化及抗老化方法[J].广西工学院学院学报,2006(17):40-42.

[14]姚远,丁霄霖,吴加根. 淀粉回生研究进展(II)脂类、糖类与淀粉酶对回生的影响[J].中国粮油学报,1999,14(3)9-14

[15]宋云平,宫衡,傅水林,云战友.海藻糖对淀粉回生抑制作用的研究[J].食品科学,2006,26(10)94-97

[16]Hardeep Singh Gujral, C.M. Rosell, S. Sharma and Sukhprit Singh. Effect of Sodium Lauryl Sulphate on the Texture of Sponge Cake. Food Science and Technology International.2003, 9, 89

[17]魏西根,许琳,刘建伟.大米淀粉回生的研究进展[J].农产品加工·学刊,2007,10:32-34

[18]B.R.Hamaker. The Influence of Rice Starch on Rice Quality, In Rice Science and Technology[M].Eds.Marcel Dekker, New York,1994

[19]王显伦,许红.方便米饭回生抑制研究[J].郑州工程学院学报,2002(3):43-47.

[20]H F Zobel. Starch Crystal Transformation and Their Industia Importance [J]. Starch, 1988,40:1

[21]C G Biliaderis, C M Page, T J Maurice.Nonequilibrium melting of amylase-V complexes[J]. Carbohyr. Polyn, 1986,6:269-275

[22]Morrison WR, Law R V, Snape C E.Evidence for Inclusion Complexes of Lipids with V-amylose in Maize, Rice and OatStarches[J]. J Cereal Sci, 1993, 18:107-109.

[23]Alexander J. King.High Pressure Processing of Corn and Wheat Starch [D] The Ohio State University, 2005:39

[24]Stolt, M, Oinonen, S. & Autio K. Effect of High Pressure on the Physical Properties of Barley Starch. Innovative Food Science & Emerging Technologies, 2000, 1,167-175

[25]Rouzaud, O. and Martìnez-Anaya, M. Relationship between biochemical and quality-related characteristics of breads, resulting from the interactions of flour, microbial starter and the type of process. Zeitchcrift fur Lebensmittel Unterschung und Forschung, 1997, 321-326.

[26]丁文平,檀亦兵,丁霄霖.水分含量对大米淀粉糊化和回生的影响[J].粮食与饲料工业,2003,8:44-46

[27]SladeL, LevineH. Recent Advances in Starch RetrogradationA. In: Stilva, S. S, eds, In

du-strial Polysaccharides[M]. NewYork: GordonandBreach, 1987, 387~430.

淀粉基生物降解塑料的应用研究进展

淀粉精细化学品 淀粉基生物降解塑料的应用研究进展 班级:2010级高分子材料与工程(2)班 姓名:郭艳艳 学号:P102014327 时间:2012-10-22 淀粉基生物降解塑料的应用研究进展 摘要:本文介绍了淀粉的结构和性能,淀粉基塑料的分类,阐述了其降解机理,重点综述了的生物降解材料的应用情况及研究进展概况,并在使用材料出现的问题的基础上提出淀粉基降解塑料的发展趋势。 关键词:淀粉基,降解塑料,生物降解 以淀粉为原料的塑料是具有广泛应用前景的生物可降解材料,它具有来源丰富,价格低廉,可重复再生,易生物降解以及阻氧性能好等优点, 因此用该材料加工的产品不仅是传统一次性塑料制品的极好替代品,同时也是二十一世纪的新型绿色包装材料,将引发包装行业的一次绿色革命。同时,淀粉基生物降解塑料可缓解普通塑料带来的“白色污染“问题,对于保护人类环境,促进人与自然的和谐统一,推动绿色“GDP”增长具有重要意义,符合国家可持续发展战略。 1 淀粉的结构及性能 淀粉分子式为(C6H10O5)n,结构式: 图1.1 天然淀粉是以内部有结晶结构的小颗粒状态存在的,其分子结构有直链和支链两种。对于不同的植物品种,其淀粉颗粒的形状,大小以及直链淀粉和支链淀粉含量的比例都各不同。淀粉颗粒的粒径大都在15~ 100μm。直链淀粉是由α-1,4葡萄糖苷键连接的线性葡聚糖聚合物,相对分子质量为(20~200)×104 ,而支链淀粉是由α-1,4 和α-1,6 糖苷键连接的具有分支结构的葡聚糖聚合物,相对分子质量为(100~400)×106。 天然淀粉分子间存在氢键,溶解性很差,亲水但并不易溶于水。加热时没有熔融过程,300℃以上分解。然而淀粉可以在一定条件下通过物理过程破坏氢键变成凝胶化淀粉或解体淀粉。这种状态的淀粉结晶结构被破坏,分子变得无序化。有两种途径可以使淀粉失去结晶性:一是使淀粉在含水>90%的条件下加热,至60-70℃时淀粉颗粒首先溶胀,而后达到90℃以上时淀粉颗粒消失而凝胶化。二是在水含量<28%的条件下将淀粉在密封状态下加热,塑炼挤出。这种淀粉和天然淀粉颗粒不同,加热可塑,称为热塑性淀粉,这种淀粉可制备淀粉塑料,同时实验研究表明,直链淀粉更适合制备塑料制品,且机械性能优良。 2 淀粉基塑料的分类 2.1 填充型淀粉基塑料 填充型淀粉塑料又称生物破坏性塑料,其制造工艺是在通用塑料中加入一定量的淀粉和其他少量添加剂,然后加工成型,此类产品淀粉含量都不是很高,淀粉含量不超过30%,这是因为淀粉和塑料树脂的极性相差较大,相互黏结性差,增加淀粉含量会造成拉伸强度和断裂伸

如何防止淀粉类食物老化要点

如何防止淀粉类食物老化 淀粉类食物如面包、糕点及各种面食,在存放过程中会随着时间延长而发生一系列内在品质上的变化,老化是除了微生物腐败外,另一个导致淀粉类食物品质不良的原因。了解老化的各种现象及影响因子,有助于对淀粉类食物的配方、组成、加工过程及包装做更好的改进。经实验研究发现,影响淀粉的老化主要有以下几个因素: 1、温度 淀粉类食物的熟成必须在淀粉糊化温度以上时才能发生。不同种类、来源的淀粉其糊化温度有所不同,虽然不同种类的淀粉其糊化温度有所不同,但是淀粉老化是在淀粉糊化后温度缓慢冷却的过程中开始的,一般不会在淀粉糊化之前发生老化。大多数淀粉类食物发生老化时与温度的关系,一般规律为:在略低于淀粉糊化温度以上和淀粉冻结温度以下,淀粉类食物一般不容易发生老化现象。而如果把淀粉类食物放置在上述两种温度之间,淀粉类食物的老化程度也随着环境温度的不断下降而增加,老化速度也逐步加快。发生老化作用的最适温度约在2℃-4℃之间。 2、水分 淀粉类食物中均含有一定的水分。水分的挥发作用及重新分布会促进老化。水分的多少会影响淀粉老化的速度,当淀粉类食物含 30%-60% 水分时,淀粉最易发生老化;当水分含量在70%以上时,食物中的淀粉糊化较彻底,老化程度比较缓慢;当水分含量低于10%时,食物便不容易发生老化现象。 在淀粉类食物发生老化的过程中,绝大数食物会伴有变硬现象,甚至能使一些食物老化后产生粉质化。这些现象归因于在加工制作淀粉类食物时,总需添加一定量的水,经过人为地混合或捏合,在加热时淀粉颗粒开始膨胀,淀粉分子结构松散,水分子进入食物中的淀粉分子中并与其缔合。当食物制作成熟食后,在冷却及贮存的过程中,由于淀粉分子与水分子之间的氢键很不稳定,易断裂,从而使淀粉分子之间重新形成稳定的氢键。在这个过程中,就有一部分水从食物中被排挤出来,出现脱水收缩现象,致使淀粉类食物发生变硬、变脆等不良现象,口感很快降低。 3、淀粉组成 绝大多数天然淀粉可分为长链状的直链淀粉和树支状的支链淀粉。这两种不同结构的淀粉分子在一般淀粉颗粒中均存在。直链淀粉在冷水中不发生溶解,只有通过加压或加热才能逐渐溶解于水,形成较为粘滞的胶体溶液。但这种胶体溶液的性质非常不稳定,在静置的情况下非常容易析出;而支链淀粉极易溶解于热水之中,形成一种高黏度的胶状体,并且这种胶体溶液在冷却后也很稳定。 4、蛋白质

淀粉的研究进展

淀粉精细化学品 课题名称:淀粉衍生物絮凝剂的研究进展 姓名:马玉林 学号:P102014101 专业年级:10级化学工程与工艺一班 2012年10月22日

淀粉衍生物絮凝剂的研究进展 马玉林 (西北民族大学,甘肃兰州730100) 【摘要】近年来,全世界对淀粉衍生物絮凝剂的研究、开发、应用方面取得了显著进展。文章对淀粉衍生物絮凝剂的研究进行了综述,指出淀粉絮凝剂在研究中存在的问题和发展趋势,认为改性淀粉絮凝剂是最有发展前景的绿色絮凝剂之一。 【关键词】絮凝剂;改性淀粉;废水处理 近年来,合成有机高分子絮凝剂由于具有相对分子质量大、分子链官能团多的结构特点,在市场占绝对的优势。但随着石油产品价格不断上涨,其使用成本也相应增加,并且合成类有机高分子絮凝剂由于残留单体的毒性,也限制了其在水处理方面的应用。20世纪70年代以来,美、英、日和印度等国结合本国天然高分子资源,开展了化学改性有机高分子絮凝剂的研制工作。经改性后的天然高分子絮凝剂与合成有机高分子絮凝剂相比,具有选择性大、无毒、廉价等显著特点。 在众多天然改性高分子絮凝剂中,淀粉改性絮凝剂的研究、开发尤为引人注目。因为淀粉来源广。价格低廉。并且产物完全可被生物降解,因此,进入20世纪80年代以来,改性淀粉絮凝剂的研制开发呈现出明显的增长趋势,美、日、英等国家在废水处理中已开始使用淀粉生物絮凝剂,进几年,我国研究淀粉衍生物作为水处理絮凝剂也已取得了较大的进展。 1 淀粉类絮凝剂 淀粉的资源十分丰富,自然界中淀粉的含量远远超过其他有机物,是人类可以采用的最丰富的有机资源,也是开发最早、最多的一类天然高分子絮凝剂。淀粉分子带有许多羟基,通过这些羟基的酯化、醚化、氧化和交联等反应,可改变淀粉的性质。淀粉还能与屏息脂、丙烯酸、丙烯酰胺等人工合成高分子单体起连枝共聚反应,分子链上接有人工合成高分子链,使共聚物具有天然高分子和人工合成高分子两者的性质。 目前,改性淀粉已广泛用于食品、石油、造纸、电镀、印染和皮革等工业废水处理、污泥脱水,饮用水净化,重金属离子去除和矿物冶炼。淀粉衍生物絮凝剂主要有以下4种。 1.1阳离子型淀粉衍生物絮凝剂 阳离子型淀粉衍生物絮凝剂可以与水中微粒起电荷中和及吸附架桥作用,从而使体系中的微粒脱稳、絮凝而有助于沉降和过滤脱水。它对无机物质悬浮或有机物质悬浮液都有很好的净化作用,使用的pH范围宽,用量少,成本低。 阳离子淀粉是在碱性介质中,由胺类化合物与淀粉的羟基直接发生亲核取代

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展 摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。 关键词:小麦;淀粉酶;研究进展 在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。 1.研究小麦中的淀粉酶的意义 小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。 1.1小麦中的а-淀粉酶对面包品质的影响 大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]: 1.1.1 а-淀粉酶对面包品质的影响 ○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

淀粉老化

淀粉老化 含淀粉的粮食经加工成熟,是将淀粉糊化,而糊化了的淀粉在室温或低于室温的条件下慢慢地冷却,经过一段时间,变得不透明,甚至凝结沉淀,这种现象称为淀粉的老化,俗称"淀粉的返生"。 "老化"是"糊化"的逆过程,"老化"过程的实质是:在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。值得注意的是:淀粉老化的过程是不可逆的,比如生米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。 淀粉的老化首先与淀粉的组成密切相关,含直链淀粉多的淀粉易老化,不易糊化;含支链淀粉多的淀粉易糊化不易老化。玉米淀粉、小麦淀粉易老化,糯米淀粉老化速度缓慢。 食物中淀粉含水量30%~60%时易老化;含水量小于10%时不易老化。面包含水30%~40%,馒头含水44%,米饭含水60%~70%,它们的含水量都在淀粉易发生老化反应的范围内,冷却后容易发生返生现象。食物的贮存温度也与淀粉老化的速度有关,一般淀粉变性老化最适宜的温度是2~10℃,贮存温度高于60℃或低于-20℃时都不会发生淀粉的老化现象。 防止和延缓淀粉老化的措施。 1).温度:老化的最适宜的温度为2~4℃,高于60℃低于20℃都不发生老化。 2).水分:食品含水量在30~60%之间,淀粉易发生老化现象,食品中的含水量在10%以下的干燥状态或超过60%以上水分的食品,则不易产生老化现象。 3).酸碱性:在PH4以下的酸性或碱性环境中,淀粉不易老化。 4).表面活性物质:在食品中加入脂肪甘油脂,糖脂,磷脂,大豆蛋白或聚氧化乙烯等表面活性物质,均有延缓淀粉老化的效果,这是由于它们可以降低液面的表面能力,产生乳化现象,使淀粉胶束之间形成一层薄膜,防止形成以水分子为介质的氢的结合,从而延缓老化时间。 5).膨化处理:影响谷物或淀粉制品经高温、高压的膨化处理后,可以加深淀粉的α化程度,实践证明,膨化食品经放置很长时间后,也不发生老化现象,其原因可能是: a.膨化后食品的含水量在10%以下 b.在膨化过程中,高压瞬间变成常压时,呈过热状态的水分子在瞬间汽化而产生强烈爆炸,分子约膨胀2000倍,巨大的膨胀压力破坏了淀粉链的结构,长链切短,改变了淀粉链结构,破坏了某些胶束的重新聚合力,保持了淀粉的稳定性。 由于膨化技术具有使淀粉彻底α化的特点,有利于酶的水解,不仅易于被人体消化吸收,也有助于微生物对淀粉的利用和发酵,因此开展膨化技术的研究不论在焙烤食品和发酵工业方面都有重要意义。 日常生活中凉的馒头、米饭放置一段时间后会变得硬和干缩;凉粉变得硬而不透明;年糕等糯米制品粘糯性变差,这些都是淀粉的老化所致。 含淀粉的粮食经加工成熟,是将淀粉糊化,而糊化了的淀粉在室温或低于室温的条件下慢慢地冷却,经过一段时间,变得不透明,甚至凝结沉淀,这种现象称为淀粉的老化,俗称"淀粉的返生"。 "老化"是"糊化"的逆过程,"老化"过程的实质是:在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。值得注意的是:淀粉老化的过程是不可逆的,比如生米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。米煮成熟饭后,不可能再恢复成原来的生米。老化后的淀粉,不仅口感变差,消化吸收率也随之降低。 淀粉的老化首先与淀粉的组成密切相关,含直链淀粉多的淀粉易老化,不易糊化;含支链淀粉多的淀粉易糊化不易老化。玉米淀粉、小麦淀粉易老化,糯米淀粉老化速度缓慢。

抗性淀粉研究进展

抗性淀粉研究进展 摘要:抗性淀粉是膳食纤维的一种,对于人体健康具有重要的食用价值和保健作用。本文就抗性淀粉的分类、制备方法、对人体的生理功能、及其在食品中的应用进行综述。 关键词:抗性淀粉;生理功能;食品应用 抗性淀粉(resistant starch,RS)是膳食纤维的一种,是人类小肠内不能消化吸收,但能在结肠发酵的淀粉及其分解产物[1]。1982年,英国生理学家Englyst发现并非所有淀粉都能被α-淀粉酶水解,由此提出抗性淀粉这一概念[2]。因为抗性淀粉在小肠内不被消化吸收,而是进入结肠被肠道微生物利用发酵产生短链脂肪酸再被吸收,有利于其能量缓慢释放,此外,还能产生二氧化碳、甲烷等气体维持结肠良好的微生态环境,有研究发现短链脂肪酸还能降低人体的胆固醇,这些功能都改善了人体健康。抗性淀粉的热量较低,热值一般不超过10.0-10.5KJ/g[3],具有膳食纤维的功能特性,但在食品加工能克服膳食纤维的某些缺点,改善食品品质。目前,人们已经将抗性淀粉应用在面条、饼干、酸奶等食品中。本文主要从抗性淀粉的分类、制作方法、健康特性、食品应用方面进行阐述。 1 抗性淀粉的分类 普通淀粉的形状为圆形或椭圆形轮廓,光滑平整;抗性淀粉为不规则的碎石状,表面鳞状起伏[4]。高直连淀粉(如玉米、大麦)是RS的主要来源,一般来说,直链淀粉与支链淀粉的比例比值越大,抗性淀粉的含量越高[5]。此外,抗性淀粉的颗粒大,因其体面积比大,与酶接触机会小,水解速度慢。宾石玉[2]等的研究测定高直连玉米淀粉、玉米、早籼稻糙米、糯米的抗性淀粉的含量分别为44.98%、3.89%、1.52%和0。 1.1 物理包埋淀粉(RS1) 因淀粉包埋在食物基质(蛋白质、细胞壁等)中,这种物理结构阻碍了淀粉与淀粉酶的接触而阻碍淀粉的消化,一般通过碾磨、破碎等手段可破坏包埋体系而转变为易消化淀粉。典型代表:谷粒、种子、豆类。 1.2 抗性淀粉颗粒(RS2) 主要存在水分含量较低的天然淀粉颗粒中,由于淀粉颗粒结构排列规律,晶体结构表面致密使得淀粉酶不易作用,从而对淀粉酶产生抗性,可通过热处理如蒸煮使其糊化失去抗性。典型代表:生的薯类、青香蕉淀粉颗粒。 1.3 回生淀粉(RS3) 食品加工过程中发生回生作用而形成的抗性淀粉。因淀粉颗粒在大量水中加热膨胀最终崩解,在冷却过程中,淀粉链重新靠近、缠绕折叠,定向排列成的紧密的淀粉晶体结构,而不易与淀粉酶结合。典型代表:加热放冷的马铃薯、红薯以及过夜的米饭。 1.4 化学改性淀粉(RS4) 通过化学改性(酯化、醚化、交联作用)或基因改良而引起淀粉分子结构发生变化而不利于淀粉酶作用的淀粉。典型代表:交联淀粉、基质改良粘大米。 1.5 淀粉脂质复合物(RS5) 当淀粉与脂质之间发生相互作用时,直连淀粉和支链淀粉的长链部分与脂肪醇或脂肪酸结合形成的复合物称RS5。脂质存在于RS5淀粉链中的双螺旋中,使得淀粉结构发生改变,不溶于水,且具热稳定性,不易与淀粉酶反应[6]。典型代表:含有淀粉和脂质的谷物和食品。 2 抗性淀粉的制备 从抗性的制备工艺方面,RS3 型抗性淀粉具有生产安全、易于控制及热稳定性好的优点,因此是最具有工业化生产与广阔的应用前景的一类抗性淀粉。抗性淀粉的产率与原料中的直链淀粉含量成正比,随着直链淀粉与支链淀粉的比例增高,抗性淀粉产率由7.61%增大至

改性淀粉的研究进展及其应用综述

改性淀粉的研究进展及其应用综述 李月丰 (湖南农业大学食品科技学院,湖南长沙 410128) 摘要:本文综述了改性淀粉的主要特点,阐述了改性淀粉在各领域的应用研究,展望了改性淀粉的发展前景。 关键词:改性淀粉;应用;研究进展 0、前言 淀粉是天然高分子聚合物,是自然界来源最丰富的一种可再生物质,可降解,不会对环境造成污染。由直链淀粉和支链淀粉两部分组成,其水解的终产物为葡萄糖。 改性淀粉以天然淀粉为原料经过特定的化学方法、物理方法、酶处理法, 改良其原有性能的淀粉, 被广泛应用于食品、医药、皮革、铸造、造纸、纺织、水处理等行业。 1、改性淀粉在不同领域中的应用 1.1、在食品行业的应用 改性淀粉由于耐热、耐酸,具有良好的黏着性、稳定性、凝胶性和淀粉糊的透明度,较好的弥补和改善普通淀粉的不足,在食品行业有着广泛的用途。交联淀粉广泛应用于食品的增稠剂中, 尤其是需要粘度稳定性很好的浓溶液中。低交联度的淀粉可以在水果馅饼中用作填充料,加入罐头中可使其耐灭菌处理。酸法变性淀粉则大大提高了淀粉的凝胶性,用于果冻、夹心饼、软糖的生产。淀粉衍生物醋酸淀粉酯在食品工业中用作耐酸粘合剂。Hung, P. V. 和Morita, N.(2004)研究还表明[1-2]:交联键能加强淀粉颗粒之间的结合作用, 使之较稳定存在, 从而糊液有较好的流动性。李文钊等[3]将一种T0098 预糊化淀粉应用在面包中,可延缓老化, 使烘焙制品保持柔软蓬松, 延长保存期。王玉田等人[4]将玉米改性淀粉应用于灌肠制品中,发现灌肠制品在弹性、气味、滋味和组织状态及贮藏方面均有很大改善,并具有较高的成品率和经济效益。 1.2、在水处理中的应用 改性淀粉作为一种很有发展前途的新型水处理剂,已经得到越来越多的重

淀粉基生物降解塑料的研究进展

_==J96 2005.v01.26.NO.5食品硪究与开发综述 淀粉基生物降解塑料的研究进展 何小维罗志刚 华南理工大学轻工与食品学院广州510640 摘要:我国淀粉资源丰富、价格低廉,淀粉作为可完全生物降解的天然高分子材料日益受到人们的重视。本文综述了当今淀粉基生物降解塑料的分类、研究方法、发展状况,以及当今淀粉基生物降解塑料发展中存在的一些问题和应用前景。 关键词:淀粉塑料生物降解 RESEARCHPROGRESSABOUTB10DEGRADABLEPLAS’11CSBASEDONS’lARCH HEXiaoweiLUOZhigang CollegeofLightIndustryandFoodScience,SouthChinaUniveIsityofTechnology,Guangzhou,510640Abstract:Starchisveryabundantandche印inourcountry.Asacompletelybiodegradablenatural macromoleculematerial,starchwas given muchattention.Theclassificationandthemethodsofstudy— ingandthedevelopmentofstaI℃hplasticsaresumm赫zedinthis paper.SomepI.oblemstobeconsid- eredarepmposed,theforegmundisalsoforecast.Keywords:starch;plastics;biodegradation 塑料与混凝土、钢铁、木材并称为四大工业材料。自1997年利奥?柏兰克制得第一个以合成材料树脂为基础的塑料——酚醛树脂以来,几十年间,塑料工业得到了飞速的发展。特别是20世纪50年代以来,以聚乙烯、聚丙烯、聚苯乙烯等为原料制成的塑料制品被大量使用,极大地促进了生产力的发展。 塑料制品因其具有重量轻、机械性能良好、耐水、耐化学腐蚀、外形美观、制造及安装方便以及价格低廉等特点,在很大程度上迅速代替了金属、木材、玻璃甚至纸制品,被广泛应用于国民经济各个部门。据统计,全世界每年的塑料产量近1亿t,在三大合成材料中约占其总产量的75%以上,与钢铁的体积产量之比已达到92%。美国自1974年以来,塑料行业一直发展很快,发展速度为其他工业的2倍。1979年美国的塑料产量首次超过了钢铁产量。塑料在美国四大材料中名列第二。我国于20世纪50年代末期开始发展塑料加工工作,当时着重发展日用塑料制品(如塑料鞋、日用塑料薄膜制品),后开始努力发展农用塑料制品,满足水稻育秧和大棚用膜需要,以提高水稻及蔬菜的产量并延长蔬菜供应时间。目前我国农地膜和应用耕地面积已为世界之最。据1996年不完全统计,我国塑料制品总产量已达800万t[1]o 塑料的诞生确实给人们的日常生活带过来很广东省自然科学基金(970468)多方便。然而,随着塑料工业发展到一定的程度,其本身存在的一些隐患也逐渐暴露出来。塑料的化学稳定性使得塑料在自然界中几乎不被降解,塑料垃圾越来越多,弃于环境中的塑料废弃物、残膜急剧增加,几乎到了随处可见、无处不有的程度。以我国的塑料包装为例,其中一次性包装材料如以1/3计,每年就有70多万t的塑料废弃物作为垃圾抛弃[2]。 塑料垃圾不仅影响环境美观,而且污染了水源和土壤,危及禽畜及野生动物,给地球生态环境带来了沉重负担。由于现行塑料主要是以石油基聚合物为基础的,其污染又具有污染范围广、污染物量增长快、处理难、回收利用难、对生态环境危害大等特点。而且,由于其质量轻,总体积十分惊人。有资料表明,在日本海域的漂浮物中,有60%是废弃的发泡聚苯乙烯和乙烯基塑料[3|。以重量计,塑料垃圾的重量也占全球垃圾总量的8%,且在继续增加。 目前对塑料废弃物的处理,主要采用回收、焚烧、掩埋等方法,但效果均不理想。如做填埋处理,不但占用土地,而且由于一般塑料要经200~400年才会降解因而对土壤造成长期危害;做焚烧处理,会产生有害气体,形成对环境的二次污染;做回收处理,则仅可处理25%的塑料垃圾,且因为回收技术跟不上,使得处理费用过高,并且回收产品的性能和使用价值会大大降低[4]。因而,越来越多的人提倡开发和应用降解塑料。

小麦抗性淀粉的研究进展

小麦抗性淀粉的研究进展 摘要:该文主要阐述了抗性淀粉的理化性质、制备工艺和遗传特性的研究现状,最后简介其其在食品工业中应用前景。 关键词:小麦、抗性淀粉、RS3 1983 年,英国生理学家 Hans Englyst 首先将一部分在人体肠胃中不被淀粉酶消化的淀粉定义为抗性淀粉(Resistant Starch,简称 RS)[1]。近年来碳水化合物与健康关系的研究发现,抗性淀粉具有提供能量,降低食物热效应[2],调节、保护小肠, 防止糖尿病和脂肪堆积以及促进锌、钙、镁离子的吸收[3]等功能, 因此 RS 已成为近年来碳水化合物研究的热点之一。 抗性淀粉是一种无异味、持水性低、多孔性白色粉末,抗性淀粉至今尚无化学上精确分类,目前大多根据淀粉来源和人体试验结果,将抗性淀粉分为4种类型:RS1(物理包埋淀粉)、RS2(抗性淀粉颗粒)、RS3(回生淀粉)、(化学改性淀粉),其中 RS3是研究和应用最广泛一种。RS3是指糊化后的淀粉在冷却或储存过程中部分重结晶,由于结晶区的出现,阻止淀粉酶靠近结晶区域的葡萄糖苷键,并阻止淀粉酶活性基团中的结合部位与淀粉分子结合,造成不能完全被淀粉酶作用而产生抗酶解性。 小麦是当今产量最大的粮食作物之一。随着小麦深加工的发展,小麦淀粉工业在我国发展迅速,但由于小麦淀粉加工适应性差,其在实际领域中并未得到很好的应用。因此选择以小麦淀粉为原料开发抗性淀粉产品,具有理论和实际上的重大意义。 一、小麦抗性淀粉的理化性质研究 小麦抗性淀粉的数均分子量为3198,重均分子量为7291,抗性淀粉形成过程中,其分子结构特征没有变化[4]。 Behall 等[5]对 RS 的理化特性进行了分析,表明 RS 为白色无异味的多孔性粉末,平均聚合度在 30-200 之间,在 100-165℃之间直链淀粉晶体熔融,产生吸热反应;耐热性高,持水性低,含热量低。X-衍射表明, RS 在空间上形成双螺旋结构,分离的 RS 的衍射图谱显示其为 B 型晶体结构[6]。 邵秀芝等[7]采用微波—酶法制备小麦抗性淀粉,并对其物理性质惊醒了研究。发现其与原小麦淀粉相比,小麦抗性淀粉表面粗糙,形状变得不规则,结晶结构为B 型和 V 型结合体,持水性大于原淀粉,而乳化能力和乳化稳定性均低于原淀粉;在相同溶液浓度条件下,抗性淀粉粘度比原淀粉低得多。 王娟等等[8]利用压热法制备小麦抗性淀粉 RS3,并考察其部分理化性质及结构性质。结果表明,该产品含抗性淀粉 13.89%,透光率较好,持水力、溶解度和膨胀度都随水浴加热温度的升高而上升。其淀粉-碘复合物最大吸收波长为 594 nm,碘吸收曲线在 580~610 nm之间呈较宽的吸收峰。该产品颗粒形状大部分为圆形,偏光十字明显,多呈十字型,且交叉点均位于颗粒中心;起糊温度为68.7 ℃,糊化不易发生,但较易老化。淀粉颗粒结晶结构为 C 型,仍保留了小麦淀粉红外光谱的特征吸收峰。

淀粉质食品的抗老化研究进展

淀粉质食品的抗老化研究进展 李云波1 胡 燕2 (1.河南科技学院食品学院,河南新乡453003;2.华中农业大学食品科技学院,湖北武汉430070) 摘 要:老化是影响淀粉质食品品质的一大问题。阐述了淀粉质食品的老化机理和影响老化的因素及抗老化的方法。淀粉质食品的成分、贮藏条件、加工工艺等都可以影响老化速度。目前抗老化方法主要有控制贮藏条件、添加蛋白质、酶、乳化剂、多糖等。 关键词:淀粉质食品;抗老化;进展 中图分类号:X792 文献标识码:A 文章编号:1672-3198(2009)10-0272-01 淀粉质食物的品种繁多,风味各异,是人们日常生活中不可或缺的一类食品。如米饭、馒头及其它许多糕点、面点都是典型的淀粉质食品。然而,这些淀粉质食物制作成熟后,会随着时间的推移发生一系列的内在品质变化,比如米饭的变硬、馒头的干缩,面包由松软变硬脆等等。上述这些变化都是由于淀粉的老化现象所致。淀粉的老化是影响淀粉食品货架期的重要原因,对淀粉食品的抗老化研究具有非常重要的现实意义。 1 淀粉的老化机理 经完全糊化的淀粉,在较低温度下自然冷却或慢慢脱水干燥.就会使淀粉分子间发生氢键再度结合,使淀粉乳胶体内水分子逐渐脱出,发生离水作用。这时,淀粉分子则重新排列成有序的结晶而凝沉,淀粉乳老化回生成凝胶体。这种糊化后再回生结晶的淀粉称为老化淀粉(即 淀粉)。老化后的淀粉难以复水并变硬,难以消化吸收。简单地说,淀粉老化是糊化淀粉分子形成有规律排列的结晶化过程。 2 影响淀粉质食品老化的因素 2.1 食品成分对老化的影响 用来源或品种不同的淀粉制成的淀粉类食物,在贮藏过程中,老化的速度是不同的。因为在这些来源不同、品种不同的原料的淀粉组成成分中,支链淀粉和直链淀粉的比例是不同的,因而影响到不同淀粉类食物的老化速度。通常情况下,直链淀粉分子含量较高的食物容易发生老化,而支链淀粉含量较高的食物不太容易发生老化。原因在于支链淀粉的分子呈三维空间分布,形成复杂的网状结构。淀粉分子之间有一定的空间距离,不易形成氢键,妨碍了淀粉分子微晶束形成,阻止了 化淀粉向 化转变。所以选用支链淀粉含量较高的原料做成的淀粉类食物,对延缓食物中的淀粉发生老化是有益的。如果将淀粉分子降解,或是将淀粉糊精化,也可以在很大程度上减缓该类食物老化。 面粉食品在储藏过程中的老化速度与蛋白质的含量有关系。用蛋白质含量高的面粉制成的各式面点比用蛋白质含量低的面粉制成的各式面点,其老化速度明显减慢。 食物所含水分的多少对淀粉老化的速度也是有影响的。当淀粉类食物中的水分含量在30%~60%时,食物中的淀粉最容易发生老化;当淀粉类食物的水分含量在70%以上时,其老化现象就慢一些;当淀粉类食物的水分含量降至10%以下时,食物也不容易发生老化现象。 2.2 环境对老化的影响 以温度变化对米饭老化作用的影响为例,如果把温度控制在60 以上贮存米饭,一般不大容易发生米饭老化的现象。但是如果把米饭放在温度2 ~4 的环境下,米饭的老化速度就要快得多,基本上是米饭老化速度的最高峰。温度与大多数淀粉类食物发生老化关系的一般规律为:在略低于淀粉糊化温度(大约在40 ~60 )以上和淀粉冻结温度以下(大约为-7 左右)时,淀粉类食物一般不容易发生老化现象。而如果把淀粉类食物放置于上述二者温度之间,淀粉类食物的老化程度随着环境温度的不断下降而增加,老化速度也呈逐步加快的趋势。淀粉类食物发生老化作用的最适温度约在2 ~4 之间。 2.3 加工工艺对老化的影响 某些加工工艺对淀粉食品的老化有一定的延缓作用。如食品原料经过膨化处理后,其老化速度明显低于相同条件下未经过膨化处理的淀粉食品。一方面是因为膨化食品中水分含量较少,另一方面可能是因为膨化处理使淀粉的分子结构发生了改变、降解。 3 抗老化方法 3.1 控制储存条件抗老化 将淀粉类食物的储存温度控制在60 以上或-7 以下,淀粉类食物不容易发生老化。另外,当淀粉类食物的水分含量在70%以上或在10%以下时,可有效延缓其老化。 3.2 酶制剂抗老化 在淀粉质食品生产中添加淀粉酶、脂肪酶等酶制剂能起到抗老化的作用。麦芽糖淀粉酶作用于面粉中淀粉部分,使其产生小分子量的糊精,防止淀粉面筋之间的相互作用而产生的老化。 -淀粉酶能将面粉中的损伤淀粉连续不断地水解成小分子糊精和可溶性淀粉,这些小分子糊精阻止了淀粉与面筋蛋白中的麦谷蛋白之间的相互作用,从而起到延缓淀粉老化的作用。 脂肪酶在面团内有双重作用,一是氧化面粉中的色素 272

羟丙基淀粉研究进展

羟丙基淀粉研究进展 [摘要] 综述了羟丙基淀粉的理化性质、分析测试方法,合成工艺及以羟丙基淀粉基的复合变性淀粉,并对羟丙基淀粉研究进行了展望。 [关键字] 羟丙基淀粉性质合成工艺复合变性分析测试 [Abstract] This paper examines the physicochemical properties, the instrumental analytical methods, the synthesis technology of hydroxypropyl starch, and the complex modification of hydroxypropyl starch. And this examination includes a prospect of science and technology of hydroxypropyl starch in the last part. [Keywords] hydroxypropyl starch synthesis technology Physicochemical Properties complex modification Analytical Test 羟丙基淀粉是食品、石油、纺织、印刷、造纸、印染等行业不可缺少的生产助剂,随着科技的发展、经济的繁荣、行业竞争的日益激烈,对羟丙基淀粉使用性能、生产工艺、成本控制也提出了更高的要求。 1 羟丙基化对淀粉理化性质的影响 淀粉羟丙基化是指醚化剂与淀粉葡萄糖单元的羟基作用,使淀粉分子在该位置联接一个或多个羟丙基单元,非离子性的羟丙基与淀粉分子之间以强稳定的醚键联结使得羟丙基淀粉具有非常优秀的耐PH值性能。 1.1 降解性 由于羟丙基化使淀粉分子链间隔变大,结晶破坏,因此随摩尔取代度增加淀粉更易降解;但也有实验显示摩尔取度较低的羟丙基淀粉比原淀粉更易水解,但随着摩尔取代度的增加羟丙基淀粉的水解率和水解难易程度都要低于原淀粉,这种现象在马铃薯淀粉,蜡质玉米淀粉,木薯淀粉中都存在,这是由于摩尔取代度高低不同的羟丙基淀粉水解机理不同造成的。 1.2 降滤失性 亲水性羟丙基的引入破坏了淀粉颗粒的内部结构,弱化了分之间的氢键作用力,明显提高了淀粉对水的包容性,降滤失作用。需要注意的是羟丙基淀粉在水中的溶解度随取代度的提高而增大,随温度升高而增大。 1.3 淀粉糊性质 (1)成糊温度:羟丙基淀粉成糊温度随取代度的增加而降低也是本领域公认的事实,James曾测定羟丙基含量每提高1%(W%),成糊温度降低致少6.5℃。(2)糊化

淀粉塑料研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73414 课程名称:生态环境科学 论文题目:热塑性淀粉材料的研究进展与应用 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:雷文 二○一四年五月

热塑性淀粉材料的研究进展与应用 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。 关键字:淀粉塑料;塑化;增强;市场应用 Research progress and application of thermoplastic starch materials WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down. In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch. Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis. Key words: Starch plastics; plasticizers; enhanced; market applications 1 淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水

淀粉泡沫材料研究研究进展

淀粉泡沫材料研究研究进展 作者:周江,佟金来源:吉林大学 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。同时,物料温度的下降和由于水蒸发造成的材料玻璃化温度的上升,使得热塑性淀粉从高弹态回到玻璃态,从而将其中的多孔结构冻结而形成泡沫材料。用挤出发泡技术制备淀粉泡沫包装材料始于20世纪80年代末期,随后又有多项用挤出发泡技术制备淀粉泡沫材料的专利问世。该方法是目前生产缓冲包装使用的淀粉泡沫松散填充材料(loose fill)的主要方法。 2.2 烘焙发泡 Shogren等人利用食品工业中的烘焙技术,在封闭的模具中加热淀粉糊(温度范围175~235℃)制备出淀粉泡沫材料。与挤出发泡技术相比,用烘焙技术得到的淀粉泡沫材料一般在表明层有较

淀粉物理性能的研究进展

淀粉物理性能的研究进展 摘要:本文介绍了淀粉的分类、淀粉的组成、淀粉颗粒的性质以及淀粉的凝沉性和粘度等性质。比较了玉米淀粉、马铃薯淀粉、木薯淀粉以及小麦淀粉之间等各种淀粉的各组分组成含量及其目前各淀粉的发展研究情况。 关键词:淀粉组分含量性质影响因素 正随着国民经济的高速发展,我国淀粉工业也得到了相应的发展。我国拥有丰富的淀粉工业原料,玉米产量9000多万吨,居世界第二,薯类居第一,这些是我国发展点淀粉工业的基础[1]。淀粉是植物的重要储藏物质,随着淀粉工业的发展,淀粉深加工产品的数量不断增加,淀粉的应用范围不断扩大,对淀粉品质的要求也越来越高。 一、淀粉的分类 淀粉根据其分子形状可分为直链淀粉和支链淀粉,支链淀粉是由α-1,4 葡萄糖苷键连接的线性葡聚糖,二支链淀粉是由α-1,4 和α-1,6 糖苷键连接的具有分支结构的葡聚糖。直链淀粉在水溶液中并不是线性分子,而在分子内氢键的作用下分子链卷曲成螺旋状,每个螺旋含有6个葡萄糖残基。在显微镜下,淀粉都是形状和大小不同的透明颗粒,其形状有圆形、卵形(椭圆形)、多角形等三种[2]。不同淀粉粒平均颗粒大小不同:马铃薯淀粉粒65μm,小麦淀粉粒20μm,甘薯淀粉粒15μm,玉米淀粉粒16μm,稻米淀粉粒5μm。就同一种淀粉而言,淀粉粒的大小也不均匀,如玉米淀粉粒中最大的为26μm,最小的为5μm。在常见的淀粉中马拉松淀粉的颗粒最大,稻米淀粉的颗粒最小。支链淀粉易分散在冰水中,而直链淀粉不易分散在冰水中。天然淀粉粒完全不溶于冷水。在68-80℃时,直链淀粉在水中溶胀而形成胶体,支链淀粉则仍为颗粒,但是,一旦支链淀粉溶解后冷却则不易析出。 二、淀粉的组成 1.水分 淀粉中的含水量取决于储存环境的温度和相对湿度,一般在10-20%范围内。在相同条件下,马铃薯淀粉的含量较高。淀粉的含水量随环境条件的变化而变化,环境的相对湿度越大,淀粉的含水量越高。在饱和湿度条件下,吸水量多,并引起淀粉颗粒膨胀。玉米,马铃薯,木薯淀粉的吸水量分别为39.9%、50.9%、47.9%(干基淀粉计)颗粒直径分别增大9.1%、12.7%、28.4%。淀粉的这种吸水性表明淀粉颗粒具有渗透性,水及水溶液能自由渗入颗粒内部,淀粉与稀碘溶液很快变蓝,再与硫代硫酸钠溶液蓝色消失就说明这点。 2.脂类化合物

淀粉的糊化、老化

淀粉的糊化、老化 对烹饪科学化发展的重要性 一、概述 1、淀粉的一般特性: 众所周知,淀粉属于天然高分子碳水化合物,根据其分子中含有的α-1,4糖苷键和α-1,6糖苷键的不同而分为两种性质差异很大的直链淀粉和支链淀粉。直链淀粉在水中加热糊化后,是不稳定的,会迅速老化而逐步形成凝胶体,这种胶体较硬,在115-120度的温度下才能向反方向转化。支链淀粉在水溶液中稳定,发生凝胶作用的速率比直链淀粉缓慢的多,且凝胶柔软。 2、淀粉的糊化: 淀粉在常温下不溶于水,但当水温升至53℃以上时,发生溶胀,崩溃,形成均匀的粘稠糊状溶液。本质是淀粉粒中有序及无序态的淀粉分子间的氢键断开,分散在水中形成胶体溶液。 淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化。 3、淀粉的老化: 淀粉的老化是指经过糊化的淀粉在室温或低于室温下放置后,会变得不透明甚至凝结而沉淀。老化是糊化的逆过程,实质是在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。 二、淀粉的糊化、老化的影响因素 (一)、糊化 1、淀粉自身:支链淀粉因分支多,水易渗透,所以易糊化,但它们抗热性能差,加热过度后会产生脱浆现象。而直链淀粉较难糊化,具有较好“耐煮性”,具有一定的凝胶性,可在菜品中产生具有弹性、韧性的凝胶结构。 2、温度:淀粉的糊化必须达到其溶点,即糊化温度,各种淀粉的糊化温度不同,一般在水温升至53度时,淀粉的物理性质发生明显的变化。 3、水:淀粉的糊化需要一定量的水,否则糊化不完全。常压下,水分30%以下难完全糊化。 4、酸碱值:当PH值大于10时,降低酸度会加速糊化,添加酸可降低淀粉粘度,碱有利于淀粉糊化,例如,熬稀饭时加入少量碱可使其粘稠。 5、共存物:高浓度的糖可降低淀粉的糊化程度,脂类物质能与淀粉形成复合物降低糊化程度等。 (二)、老化 1、淀粉的种类:直链淀粉比支链淀粉易于老化,例如,糯米、粘玉米中的支链多,不易老化。 2、水:含水量在30%-60%之间,易发生老化现象,含水量低于10%或高于60%

相关文档
最新文档