备战2019高考数学(理科)大二轮复习练习 专题二函数与导数专题能力训练7Word版含答案

备战2019高考数学(理科)大二轮复习练习 专题二函数与导数专题能力训练7Word版含答案
备战2019高考数学(理科)大二轮复习练习 专题二函数与导数专题能力训练7Word版含答案

专题能力训练7导数与函数的单调性、极值、最

一、能力突破训练

1.已知函数f(x)的导函数为f'(x),且满足f(x)=af'(1)x+ln x,若f'=0,则a=()

A.-1

B.-2

C.1

D.2

2.函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是()

3.若定义在R上的函数f(x)满足f(0)=-1,其导函数f'(x)满足f'(x)>k>1,则下列结论中一定错误的是

()

A.f

B.f

C.f

D.f

4.已知常数a,b,c都是实数,f(x)=ax3+bx2+cx-34的导函数为f'(x),f'(x)≤0的解集为{x|-2≤x≤3}.若f(x)的极小值等于-115,则a的值是()

A.-

B.

C.2

D.5

5.(2018全国Ⅲ,理14)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

6.在曲线y=x3+3x2+6x-1的切线中,斜率最小的切线方程为.

7.设函数f(x)=a e x++b(a>0).

(1)求f(x)在[0,+∞)上的最小值;

(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=x,求a,b的值.

8.设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.

(1)求a,b的值;

(2)求f(x)的单调区间.

9.(2018全国Ⅰ,理21)已知函数f(x)= -x+a ln x.

(1)讨论f(x)的单调性;

(2)若f(x)存在两个极值点x1,x2,证明:

10.已知函数f(x)= x3+x2-ax-a,x∈R,其中a>0.

(1)求函数f(x)的单调区间;

(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;

(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.

二、思维提升训练

11.已知定义在R上的函数f(x)的导函数为f'(x),对任意x∈R满足f(x)+f'(x)<0,则下列结论正确的是

()

A.e2f(2)>e3f(3)

B.e2f(2)

C.e2f(2)≥e3f(3)

D.e2f(2)≤e3f(3)

12.已知f'(x)为定义在R上的函数f(x)的导函数,对任意实数x,都有f(x)

f(m+1)

13.已知函数f(x)=.

(1)求函数f(x)的单调区间;

(2)当x>0时,若f(x)>恒成立,求整数k的最大值.

14.已知函数f(x)=ln x-ax2+x,a∈R.

(1)若f(1)=0,求函数f(x)的单调递减区间;

(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值;

(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥.

15.已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e≈2.718 28…是自然对数的底数.

(1)求曲线y=f(x)在点(π,f(π))处的切线方程.

(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

专题能力训练7导数与函数的单调性、极值、最值

一、能力突破训练

1.D解析因为f'(x)=af'(1)+,所以f'(1)=af'(1)+1,易知a≠1,则f'(1)=,所以f'(x)=又因为

f'=0,所以+2=0,解得a=2.故选D.

2.D解析设导函数y=f'(x)的三个零点分别为x1, x2,x3,且x1<0

3.

所以在区间(-∞,x1)和(x2,x3)上,f'(x)<0,f(x)是减函数,

在区间(x1,x2)和(x3,+∞)上,f'(x)>0,f(x)是增函数,

所以函数y=f(x)的图象可能为D,故选D.

3.C解析构造函数F(x)=f(x)-kx,

则F'(x)=f'(x)-k>0,

∴函数F(x)在R上为单调递增函数.

>0,∴F>F(0).

∵F(0)=f(0)=-1,∴f>-1,

即f-1=,∴f,故C错误.

4.C解析依题意得f'(x)=3ax2+2bx+c≤0的解集是[-2,3],于是有3a>0,-2+3=-,-2×3=,则b=-

,c=-18a.

函数f(x)在x=3处取得极小值,于是有f(3)=27a+9b+3c-34=-115,

则-a=-81,解得a=2.故选C.

5.-3解析设f(x)=(ax+1)e x,

可得f'(x)=a·e x+(ax+1)e x=(ax+a+1)e x,

∴f(x)=(ax+1)e x在(0,1)处的切线斜率k=f'(0)=a+1=-2,∴a=-3.

6.3x-y-2=0解析y'=3x2+6x+6=3(x+1)2+3≥3.当x=-1时,y'min=3;当x=-1时,y=-5.

故切线方程为y+5=3(x+1),即3x-y-2=0.

7.解(1)f'(x)=a e x-

当f'(x)>0,即x>-ln a时,f(x)在区间(-ln a,+∞)内单调递增;

当f'(x)<0,即x<-ln a时,f(x)在区间(-∞,-ln a)内单调递减.

①当00,f(x)在区间(0,-ln a)内单调递减,在区间(-ln a,+∞)内单调递增,从而f(x)在区间[0,+∞)内的最小值为f(-ln a)=2+b;

②当a≥1时,-ln a≤0,f(x)在区间[0,+∞)内单调递增,

从而f(x)在区间[0,+∞)内的最小值为f(0)=a++b.

(2)依题意f'(2)=a e2-,解得a e2=2或a e2=-(舍去).

所以a=,代入原函数可得2++b=3,即b=故a=,b=

8.解(1)因为f(x)=x e a-x+bx,

所以f'(x)=(1-x)e a-x+b.

依题设,解得a=2,b=e.

(2)由(1)知f(x)=x e2-x+e x.

由f'(x)=e2-x (1-x+e x-1)及e2-x>0知,f'(x)与1-x+e x-1同号.

令g(x)=1-x+e x-1,则g'(x)=-1+e x-1.

所以,当x∈(-∞,1)时,g'(x)<0,g(x)在区间(-∞,1)上单调递减;

当x∈(1,+∞)时,g'(x)>0,g(x)在区间(1,+∞)上单调递增.

故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,

从而g(x)>0,x∈(-∞,+∞).

综上可知,f'(x)>0,x∈(-∞,+∞).

故f(x)的单调递增区间为(-∞,+∞).

9.(1)解f(x)的定义域为(0,+∞),f'(x)=--1+=-

①若a≤2,则f'(x)≤0,当且仅当a=2,x=1时,f'(x)=0,所以f(x)在(0,+∞)内单调递减.

②若a>2,令f'(x)=0,得x=或x=

当x时,f'(x)<0;

当x时,f'(x)>0.

所以f(x)在内单调递减,在内单调递增. (2)证明由(1)知,f(x)存在两个极值点时,当且仅当a>2.

因为f(x)的两个极值点x1,x2满足x2-ax+1=0,

所以x1x2=1,不妨设x11.

由于=--1+a=-2+a=-2+a,所以

设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)内单调递减,又g(1)=0,从而当x∈(1,+∞)

时,g(x)<0.

所以-x2+2ln x2<0,即

10.解(1)f'(x)=x2+(1-a)x-a=(x+1)(x-a).

由f'(x)=0,得x1=-1,x2=a>0.

当x变化时,f'

故函数f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).

(2)由(1)知f(x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,从而函数f(x)在区间(-2,0)内恰

有两个零点当且仅当解得0

(3)当a=1时,f(x)=x3-x-1.由(1)知f(x)在区间[-3,-1]上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增.

①当t∈[-3,-2]时,t+3∈[0,1],-1∈[t,t+3],f(x)在区间[t,-1]上单调递增,在区间[-1,t+3]上单调递减.因

此f(x)在区间[t,t+3]上的最大值M(t)=f(-1)=-,最小值m(t)为f(t)与f(t+3)中的较小者.

由f(t+3)-f(t)=3(t+1)(t+2)知,当t∈[-3,-2]时,f(t)≤f(t+3),则m(t)=f(t),所以g(t)=f(-1)-f(t).因为f(t)在区间[-3,-2]上单调递增,所以f(t)≤f(-2)=-故g(t)在区间[-3,-2]上的最小值为g(-2)=-

②当t∈[-2,-1]时,t+3∈[1,2],且-1,1∈[t,t+3].

下面比较f(-1),f(1),f(t),f(t+3)的大小.

因为f(x)在区间[-2,-1],[1,2]上单调递增,

所以f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).

因为f(1)=f(-2)=-,f(-1)=f(2)=-,

从而M(t)=f(-1)=-,m(t)=f(1)=-所以g(t)=M(t)-m(t)=

综上,函数g(t)在区间[-3,-1]上的最小值为

二、思维提升训练

11.A解析令g(x)=e x f(x),则g'(x)=e x(f(x)+f'(x))<0,

所以g(x)在R上单调递减,所以g(2)>g(3),即e2f(2)>e3f(3).故选A.

12.(-∞,-2)解析若g(x)=,

则g'(x)=>0,

所以g(x)在R上为增函数.

又不等式f(m+1)

即g(m+1)

13.解(1)由f(x)=,知x∈(-1,0)∪(0,+∞).

所以f'(x)=-

令h(x)=1+(x+1)ln(x+1),

则h'(x)=1+ln(x+1).

令h'(x)=0,得x=-1,

易得h(x)在区间内单调递减,在区间内单调递增.

所以h(x)min=h=1->0,∴f'(x)<0.

故f(x)的单调递减区间为(-1,0),(0,+∞).

(2)当x>0时,f(x)>恒成立,

则k<(x+1)f(x).

令g(x)=(x+1)f(x)=,则g'(x)=

令φ(x)=1-x+ln(x+1)(x>0)?φ'(x)=-<0,所以φ(x)在区间(0,+∞)内单调递减.

又φ(2)=ln 3-1>0,φ(3)=2ln 2-2<0,

则存在实数t∈(2,3),使φ(t)=0?t=1+ln(t+1).

所以g(x)在区间(0,t)内单调递减,在区间(t,+∞)内单调递增.

所以g(x)min=g(t)==t+1∈(3,4),故k max=3.

14.解(1)因为f(1)=1-=0,所以a=2.

此时f(x)=ln x-x2+x,x>0.

则f'(x)=-2x+1=(x>0).

令f'(x)<0,则2x2-x-1>0.

又x>0,所以x>1.

所以f(x)的单调递减区间为(1,+∞).

(2)(方法一)令g(x)=f(x)-(ax-1)=ln x-ax2+(1-a)x+1,则g'(x)=-ax+(1-a)=

当a≤0时,因为x>0,所以g'(x)>0.

所以g(x)在区间(0,+∞)内是增函数,

又g(1)=ln 1-a×12+(1-a)+1=-a+2>0,所以关于x的不等式f(x)≤ax-1不能恒成立.

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

2019高考数学复习专题:集合(含解析)

一、考情分析 集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){} 2,2x y y x x =-. (2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----. (3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题. (4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况. (6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展 1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ?B ?A ∩B =A ?A ∪B =B ()()U U A B A B U ?=??=痧 . 3.奇数集:{}{}{} 21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2019-2020年高考数学第二轮专题复习数列教案

2019-2020年高考数学第二轮专题复习数列教案 二、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 三、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。(3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即(a3+a5)2=25. 4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。 6.这几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质. 通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降. 四、复习建议 1.对基础知识要落实到位,主要是等差(比)数列的定义、通项、前n项和.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

2019年全国一卷高考数学试题分析

2019年高考数学试题整体分析 1.试题突出特色: “突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法 分析问题、解决问题的能力。”2019年高考数学卷一个突出的特点是,试题突出 学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映 我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会 实际,在数学教育、评价中落实立德树人的根本任务。 2.试题考查目标: (1)素养导向,落实五育方针 2019年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷 站在落实“五育”方针的高度进行整体设计。理科Ⅰ卷第4题以著名的雕塑 “断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。文 科Ⅰ 卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡 导高质量的劳动成果。理科Ⅰ卷第(15)题引入了非常普及的篮球运动,以其 中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学 方法分析、解决体育问题。这些试题在考查学生数学知识的同时,引导学生加 强体育锻炼,体现了对学生的体育教育。(2)突出重点,灵活考查数学本质2019年高考数学试题,突出学科素养导向,将理性思维作为重点目标,将基 础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和 逻辑推理能力。固本强基,夯实发展基础。理科(4)题源于北师大版必修五67页;理科(22)题源于北师大版4-4第53页;理科(16)和华师大附中五月押题卷(14)几乎一模一样。理科(21)题可视为2011清华大学七校联考自主招生考试 题的第15题改编。题稳中有变,助力破解应试教育。主观题在各部分内容的布局 和考查难度上进行动态设计,打破了过去压轴题的惯例。这些改革释放了一个明显 的信号:对重点内容的考查,在整体符合《考试大纲》和《考试说明》要求的前提下,在各部分内容的布局和考查难度上都可以进行调整和改变,这在一定程度上有 助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重 点知识和重点内容,同时有助于破解僵化的应试教育。 (3)情境真实,综合考查应用能力数学试题注重考查数学应用素养,体现综合性 和应用性的考查要求。试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。 理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置 了排列组合试题,体现了中国古代的哲学思想。理科第(21)题情境结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数 学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中 学的素质教育有很好的导向和促进作用。

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

2019年高考试题汇编理科数学--数列

(2019全国1理)9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A.25n a n =- B.310n a n =- C.228n S n n =- D.2 122 n S n n =- 答案: A 解析: 依题意有415146045 S a d a a d =+=??=+=?,可得13 2a d =-??=?,25n a n =-,24n S n n =-. (2019全国1理)14.记n S 为等比数列{}n a 的前n 项和,若113 a =,2 46a a =,则5S = . 答案: 5S = 121 3 解答: ∵113 a = ,2 46a a = 设等比数列公比为q ∴32 5 11()a q a q = ∴3q = ∴5S = 121 3 2019全国2理)19. 已知数列{}n a 和{}n b 满足11=a ,01=b ,4341+-=+n n n b a a ,4341--=+n n n a b b . (1)证明: {}n n b a +是等比数列,{}n n b a -是等差数列; (2)求{}n a 和{}n b 的通项公式. 答案: (1)见解析 (2)21)21(-+=n a n n ,2 1)21(+-=n b n n . 解析: (1)将4341+-=+n n n b a a ,4341--=+n n n a b b 相加可得n n n n n n b a b a b a --+=+++334411, 整理可得)(2111n n n n b a b a += +++,又111=+b a ,故{}n n b a +是首项为1,公比为2 1 的等比数列. 将4341+-=+n n n b a a ,4341--=+n n n a b b 作差可得8334411+-+-=-++n n n n n n b a b a b a , 整理可得211+-=-++n n n n b a b a ,又111=-b a ,故{}n n b a -是首项为1,公差为2的等差数列. (2)由{}n n b a +是首项为1,公比为 21的等比数列可得1)2 1 (-=+n n n b a ①;

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2019年高考数学试题分类汇编——集合

2019年高考数学试题分类汇编 集合部分(共12道试题) 试题编号2019001 (2019北京文1)(共20题的第1题 8道选择题第1题 150分占5分) 已知集合{}12A x x =-<<,{}1B x x =>,则A B =U ( ) A.()1,1- B.()1,2 C.()1,-+∞ D.()1,+∞ 答案:C 解:因为{}12A x x =-<<,{}1B x x =>,所以{}1A B x x =>-U , 故选C 。 试题编号2019002 (2019全国卷Ⅱ文1)(共23题的第1题 12道选择题第1题 150分占5分) 已知集合{}=1A x x >-,{}2B x x =<,则A B =I ( ) A.()1,-+∞ B.(),2-∞ C.()1,2- D.? 答案:C 解:{}{}{}=1212A B x x x x x x >-<=-<

相关文档
最新文档