NOx生成及控制措施

NOx生成及控制措施
NOx生成及控制措施

NOx生成及控制措施

一概述

中国是一个以煤炭为主要能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方法利用的。煤燃烧所释放出废气中的氮氧化物(NOx),是造成大气污染的主要污染源之一。氮氧化物(NOx)引起的环境问题和人体健康的危害主要有以下几方面:氮氧化物(NOx)的主要危害:

(1)NOx对人体的致毒作用,危害最大的是NO2,主要影响呼吸系统,可引起支气管炎和肺气肿等疾病;(2)NOx对植物的损害;(3)NOx是形成酸雨、酸雾的主要污染物;(4)NOx与碳氢化合物可形成光化学烟雾;(5)NOx参与臭氧层的破坏。

(2)不同浓度的NO2对人体健康的影响

浓度(ppm) 影响

1.0 闻到臭味

5.0 闻到很强烈的臭味

10-15 眼、鼻、呼吸道受到强烈刺激

50 1分钟内人体呼吸异常,鼻受到刺激

80 3-5分钟内引起胸痛

100-150 人在30-60分钟就会因肺水肿死亡

200以上人瞬间死亡

二、燃煤锅炉NOx生成机理

氮氧化物(NOx)是造成大气污染的主要污染源之一。通常所说的NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和N2O5,其中NO 和NO2是重要的大气污染物,另外还有少量N2O。我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,

因此火力发电厂是NOx 排放的主要来源之一。

煤的燃烧过程中产生的氮氧化物(NOx )主要是一氧化氮(NO )和二氧化氮(NO2),在煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等密切相关。燃烧形成的NOx 生成途径主要由以下三个:为燃料型、热力型和快速型3种。其中快速型NOx 生成量很少,可以忽略不计。

1. 热力型NOx

指空气中的氮气(N2)和氧(O2)燃料燃烧时所形成的高温环境下生成的NO 和NO2的总和,其总反应式为:

22222NO O NO NO

O N ?+?+

当燃烧区域温度低于1000℃时,NO 的生成量较少,而温度在1300℃—1500℃时,NO 的浓度约为500—1000ppm ,而且随着温度的升高,NOx 的生成速度按指数规律增加,当温度足够高时热力型NOx 可达20%。因此,温度对热力型NOx 的生成具有绝对性的作用,过量空气系数和烟气停留时间对热力型NOx 的生成有很大影响。

根据热力型NOX 的生成过程,要控制其生成,就需要降低锅炉炉膛燃烧温度,并避免产生局部高温区,以降低热力型NOX 的生成。

2. 燃料型NOx

燃料型NOx 的生成是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx ,称为燃料型NOx 。燃煤电厂锅炉中产生的NOx 中大约75%~90%是燃料型NOx ,因此燃料型NOx 是燃煤电厂锅炉产生NOx 的主要途径。研究燃料型NOx 的生成和破坏机理,对于控制燃烧过程中

NOx的生成和排放,具有重要的意义。在燃料燃烧生成NOx的过程中,如遇到烃(CH m)或碳(C)时,NO将会被还原成氮分子N2,,这一过程中被称为NO的再燃烧或燃料分级燃烧。根据这一原理,将进入锅炉炉膛的煤粉分层分级引入燃烧,可以有效地控制NOx的生成与排放。

燃料型NOx的生成和破坏过程不仅与煤种特性、燃料中的氮化合物受热分解后在挥发分和焦炭中的比例、成分和分布有关,而且其反应过程还和燃烧条件(如温度和氧)及各种成分的浓度密切相关。在燃料进入炉膛被加热后,燃料中的氮有机化合物首先被热分解成氰(HCN),氨(NH4)和CN等中间产物,它们随挥发份一起从燃料中析出,被称为挥发分N。挥发分N析出后仍残留在燃料中的氮化合物,称为焦炭N。

在一般情况下,燃料型NOx的主要来源是挥发N,其占总量的60%~80%,其余为焦炭N所形成。在氧化性环境中生成的NOx,遇到还原性气氛时,会还原成N2。因此锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着锅炉燃烧条件的改变,生成的NOx可能被还原,或被破坏。煤中的N在燃烧过程中转化为NOx的量与煤的挥发份及燃烧过量空气系数有关,在过量空气系数大于1的氧化性气氛中,煤的挥发分越高,NOx的生成量就越多,过剩空气系数小于1,高挥发份燃煤的NOx生成量较低,其主要原因是高挥发份的燃料迅速燃烧,使燃烧区域氧量降低,不利于NOx的生成。

综合的说,燃料型NOx指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx。其生成量主要取决于空气燃料的

混合比。燃料型NOx约占NOx总生成量的75%~90%。过量空气系数越高, NOx的生成和转化率也越高。

3.快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH 等反应生成NOx。主要是指燃料中碳氢化合物在燃料浓度较高的区域燃烧时所产生的烃,与燃烧空气中的N2发生反应,形成的CN和HCN 继续氧化而生成的NOx。在燃煤锅炉中,其生成量很小,一般在燃用不含氮的碳氢燃料时才予以考虑。

在这三种形式中,快速型NOx所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。控制NOx排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。

三、燃煤锅炉NOx生成因素

1.炉温对NOX生成的影响:炉温主要影响热力NOX的生成量从而影响总的NOX生成量。炉温越高,所占比例越大。

2.过剩空气系数对NOX生成的影响:过剩空气系数对燃料NOX 、热力NOX及快速NOX均有影响,但影响的趋势不同,当α开始增加时,热力NOX和燃料NOX都增加,当超过1.1时热力NOX减少,燃料NOX 继续增加,总的NOX随α的增加而增加。

3.预热空气温度对NOX生成的影响:如果提高预热空气温度,则煤粉着火提前,这样可提高炉内温度水平,使热力NOX增加,同时燃

烧初始区的温度水平,使挥发分大量析出,因而挥发分NOX大量增加。所以预热空气温度越高,NOX生成量越多。

4.煤质对NOX生成的影响:

(1)挥发分的影响:当挥发分增加时,着火提前,温度峰值和平均温度均会有所提高,热力NOX增加;同时挥发分含量增多,使得燃料型NOX也会提高;

(2)水分的影响:水分增加,着火延迟,则燃料与空气之间的混合良好,即着火区氧浓度增加,燃料中的氮在着火阶段停留时间增加,反应充分,故燃料型NOX增加。另外,水分增加,发热量降低,温度水平降低,热力型NOX降低,但总NOX的生成量增加。

(3)含氮量的影响:随含氮量的增加,NOX增加。

5.煤粉细度对NOX生成的影响:在不考虑低氮燃烧时,煤粉细度越细,则燃烧越快,温度越高,热力NOX越多;同时,煤粉加热快,温度峰值高,则析出的挥发分多。而且此时与空气混合程度高,燃料NOX多。

6.负荷对NOX的影响:随着负荷的降低,炉膛温度降低,热力型NOX生产量降低,但负荷降低,过量空气系数增加,总的燃烧区过量空气量增加,燃料型NOX增加,因此,在负荷降低过程中,NOX含量先降低后升高。

四、降低燃料型NOx排放的主要技术措施

低NOx燃烧技术:NOx的形成起决定作用的是燃烧区域的温度和过量空气系数,因此,通过控制燃烧区域的温度和空气量,已达到阻

止NOx的生成及降低其排放的目的,我们称该技术为低氮燃烧技术。对低氮燃烧技术的要求是,在降低NOx的同时,使锅炉燃烧稳定,且飞灰含碳量不能超标。为了控制燃烧过程中NOx的生成量所采取的措施原则为:(1)降低过量空气系数和氧气浓度,使煤粉在缺氧条件下燃烧;(2)降低燃烧温度,防止产生局部高温区;(3)缩短烟气在高温区的停留时间等。低NOx燃烧技术主要包括:低过量空气系数、空气分级燃烧、燃料分级燃烧、烟气再循环、低NOx燃烧器。

1、低过量空气燃烧

使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOX的生成。这是一种最简单的降低NOX排放的方法。一般可降低NOX排放15~20%。但如炉内氧浓度过低(3%以下),会增加化学不完全燃烧热损失,引起飞灰含碳量增加,使锅炉燃烧效率下降。因此,在锅炉运行时,应选取最合理的过量空气系数。

2、空气分级燃烧

基本原理是将燃料的燃烧过程分阶段完成,采用倒三角的配风方式。在第一阶段预燃阶段,将从主燃烧器供入炉膛的空气量减少(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOX的反应率,抑制了NOX在这一燃烧中的生成量。第二阶段燃烬阶段,为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门二次风喷口送入炉膛,与第一级燃烧区在

“贫氧燃烧”条件下所产生的烟气混合,在α>1的条件下完成全部燃烧过程。这一方法弥补了简单的低过量空气燃烧的缺点。在第一级燃烧区内的过量空气系数越小,抑制NOX的生成效果越好,但不完全燃烧产物越多,导致燃烧效率降低、引起结渣和腐蚀的可能性越大。因此,为保证既能减少NOX的排放,又保证锅炉燃烧的经济性和可靠性,必须正确组织空气分级燃烧过程。

3、燃料分级燃烧

在燃烧中已生成的NO遇到烃根CHi和未完全燃烧产物CO、H2、C 和CnHm时,会发生NO的还原反应,重新还原为N2。利用这一原理,将主要燃料送入第一级燃烧区,在α>1条件下,燃烧并生成NOX。送入一级燃烧区的燃料称为一次燃料,其余15~20%的燃料则在主燃烧器的上部送入二级燃烧区,在α<1的条件下形成很强的还原性气氛,使得在一级燃烧区中生成的NOX在二级燃烧区(再燃区)内被还原成氮分子,送入二级燃烧区的燃料又称为二次燃料,或称再燃燃料。在再燃区中不仅使得已生成的NOX得到还原,还抑制了新的NOX的生成,可使NOX 的排放浓度进一步降低。在采用燃料分级燃烧时,为了有效地降低NOX 排放,再燃区是关键。因此,需要研究在再燃区中影响NOx浓度值的因素。

4、烟气再循环

目前使用较多的还有烟气再循环法,它是在锅炉的空气预热器前抽取一部分低温烟气直接送入炉内,或与一次风或二次风混合后送入炉内,这样不但可降低燃烧温度,而且也降低了氧气浓度,进而降低了

NOX的排放浓度。但是,在现有设备没再循环就得进行设备改造,还是进行经济性和安全性比较后才能实施。

四、我厂燃烧器布置

我厂燃烧方式采用四角切圆燃烧。一、二次风喷口均可上下摆动,摆动角度能达到设计值,最大摆角为30o。喷口的摆动由能反馈电信号的(4~20mA)的进口气动智能型执行机构来实现,执行机构有足够的扭矩,能使燃烧器摆动灵活,四角同步,每个执行机构要求有一个4~20mA位置反馈并送至DCS,燃烧器上设有摆动角度指示标志。

主风箱设有五层强化着火煤粉喷嘴,在煤粉喷嘴四周布置有燃料风(周界风)。在每相邻两层煤粉喷嘴之间布置有一层辅助风喷嘴,在主风箱上部设有三层紧凑燃烬风喷嘴,在主风箱下部设有一层二次风喷嘴。在主风箱上部布置有高位燃烬风燃烧器,包括三层可水平摆动的分离燃尽风(高位燃烬风)喷嘴。SOFA风喷嘴可上下和左右水

既可自动上下摆

动30°的,又可手

动左右摆动15°

平摆动,来控制炉膛出口烟温偏差。

一次风喷口应采用防止烧坏或磨损的新型合金材料制造,当燃烧器检修时,可以从外部进行拆装。燃烧器的设计和布置应保证NOx排放浓度不超过250mg/Nm3(干基O2=6%)。每台磨煤机出口由四根煤粉管道接至同一层四角布置的煤粉燃烧器,煤粉管道直径Φ530×10mm。在入口弯头和燃烧器之间布置有手动煤闸门,在检修时可以起到隔断的作用。

一次风煤粉燃烧器采用水平浓淡形式并设置偏置周界风,形成浓淡两股气流喷入炉膛,浓相煤粉在向火侧首先着火,然后点燃位于背火侧的淡相使燃烧稳定持续。在煤粉喷嘴内装设波形钝体结构,一次风粉混合物射流通过钝体时,下游产生一个稳定的回流区,使着火点稳定;钝体前端阻挡块,有利于稳定回流区;波形结构可增加一次风与炉内热烟气接触面积。淡相煤粉配以偏置周界风提高了水冷壁附近的氧量,增加其氧化性气氛,更好地防止结焦、防止高温腐蚀。

五、燃烧调整措施

1.各班组要注意监视脱硝DCS画面各参数是否正常,保证脱硝入口烟气NOx浓度在300 mg/Nm3以下,脱硝出口烟气NOx浓度在100 mg/Nm3以下,如NOx浓度超标,应及时调整。

2.锅炉燃烧氧量必须满足设计要求,依据机组负荷(当机组负荷大于180MW时)及时开启燃尽风挡板,满负荷运行时必须保证燃尽风挡板开度大于70%,氧量高时通过降低各层燃烧器二次风量进行调整,从而实现燃烧区高温低氧、燃烬区低温高氧的燃烧方式。

3.保持水冷壁受热面清洁,在机组负荷大于240MW时,必须投炉吹进行水冷壁吹灰,防止水冷壁结焦造成炉膛温度升高。

4.由于煤粉细度较细时炉内的火焰峰值温度较高,燃烧强度较大,可使NOx排放有一定增加,在不影响飞灰含碳量的前提下,适当的调整煤粉细度。

5.由于降低热二次风温度可以降低炉内温度水平,从而达到降低NOx排放量,在冬季适当控制暖风器出口风温,但必须确保排烟温度满足要求。适当降低一次风量也可以引起Nox排放量的降低。

6.由于负荷对NOx影响是很大的,在低负荷期间由于氧量偏大,致使NOx含量增大,要求在低负荷时加强燃烧的调整,确保低负荷氧量不超过当时负荷所对应的设定值,以减少NOx排放量。

7.在满足磨煤机干燥、通风、磨煤出力的前提下,尽量降低一次风率(保证磨煤机出口风速不低于25m/s),适当提高二次风率,以实现燃烧器分级燃烧的目的。

8.采用调节二次风分风门的方法,合理控制二次风与炉膛差压不低于0.3KPa,但应保证运行燃烧器二次风分门不低于20%,备用不低于5%以保护燃烧器喷咀,最下层不允许低于70%。

9.合理使用SOFA(降低NOx生成最有效方法),锅炉在40-60%BMCR 负荷时,A层SOFA对应开度为0-100%;60-80%BMCR负荷时,A层SOFA 全开,B层SOFA对应开度0-100%;同样在80-100%BMCR负荷时,C 层SOFA对应开度0-100%。

10.开大SOFA对锅炉排烟温度及主再热蒸汽温度等参数可能产生

负面影响,即降低NOx生成与提高锅炉燃烧效率在某个负荷点之前是相矛盾的,应在运行调节过程中摸索规律,寻找平衡点。

船用柴油机氮氧化物排放控制技术规则修正案

船用柴油机氮氧化物排放控制技术规则修正案MEPC 58/23/Add.1 船用柴油机氮氧化物排放控制技术规则修正案 (2008年氮氧化物技术规则) 引言 前言 1997年9月26日,《经1978年议定书修正的〈1973年国际防止船舶造成污染公约〉》(MARPOL 73/78)当事国大会以大会决议2通过了《船用柴油机氮氧化物排放控制技术规则》(《氮氧化物技术规则》)。《防污公约》附则VI,《防止船舶造成空气污染规则》于2005年5月19日生效后,该附则第13条适用的所有船用柴油机都必须符合本规则的规定。2005年7月,环保会第53届会议同意修订《防污公约》附则VI和《氮氧化物技术规则》。2008年10月,环保会第58届会议完成了审议,本《氮氧化物技术规则》(以下简称本规则)就是该过程取得的结果。 作为一般性的背景信息,在燃烧过程中形成氮氧化物的先决条件是氮和氧。这些成分一起构成柴油机吸入空气的99,。在燃烧过程中氧气将被消耗,多余氧气的数量是空气/燃料比的函数,柴油机在此情况下运转。氮在燃烧过程中大多未起反应;但有很小一部分将被氧化形成多种形式的氮氧化物。能够形成的氮氧化物(NO)包括一氧化氮(NO)和二氧化氮(NO),其总量主要是火焰或燃烧温X2 度的函数,以及存在于燃料中有机氮(如果存在)数量的函数,氮氧化物的形成还是氮和多余氧气在柴油机燃烧过程中暴露在高温下时间的函数。换句话说,燃烧温度愈高(如高峰值压力、高压缩比、高供油比率等),所形成的氮氧化物总量就越大。通常低速柴油机所形成的氮氧化物量比高速机要大。氮氧化物能引起酸化,形成对流层臭氧,营养富集等不良环境影响,对全球人类健康造成危害。

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.360docs.net/doc/f413240524.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。 2固定源烟气NOx排放控制原理及技术

氮氧化物控制技术

工业锅炉NOx控制技术指南 (试行) 环境保护部华南环境科学研究所

目次 1 适用范围 (1) 2 引用文件 (1) 3 术语和定义 (1) 3.1工业锅炉INDUSTRIAL BOILER (1) 3.2氮氧化物NITROGEN OXIDES,NO X (1) 3.3控制技术CONTROL TECHNOLOGY (1) 4 工业锅炉氮氧化物排放特性 (1) 5 氮氧化物控制技术 (2) 5.1低氮燃烧技术 (2) 5.2选择性非催化还原脱硝技术 (3) 5.3选择性催化还原脱硝技术 (6) 5.4化学吸收技术 (9) 5.5组合技术 (10) 6 控制技术选用建议 (10) ii

1 适用范围 本指南适用于以煤、油和气为燃料,单台出力10~65 t/h的蒸汽锅炉、各种容量的热水锅炉及有机热载体锅炉;各种容量的层燃炉、抛煤机炉。 使用型煤、水煤浆、煤矸石、石油焦、油页岩、生物质成型燃料等的锅炉,参照本指南。 本指南不适用于以生活垃圾、危险废物为燃料的锅炉。 2 引用文件 下列文件中的条款通过本指南的引用而成为本指南的条款。凡是不注日期的引用文件,其最新版本适用于本指南。 GB 13271 锅炉大气污染物排放标准 HJ 462 工业锅炉及炉窑湿法烟气脱硫工程技术规范 HJ 562 火电厂烟气脱硝工程技术规范选择性催化还原法 HJ 563 火电厂烟气脱硝工程技术规范选择性非催化还原法 DB44/765 广东省地方标准锅炉大气污染物排放标准 3 术语和定义 3.1 工业锅炉industrial boiler 指提供蒸汽或热水以满足生产工艺、动力以及采暖等需要的锅炉。 3.2 氮氧化物nitrogen oxides, NOx 指由氮、氧两种元素组成的化合物。工业锅炉烟气中的氮氧化物主要为一氧化氮(NO)和二氧化氮(NO2)两种。 3.3 控制技术control technology 针对生活、生产过程中产生的各种环境问题,为减少污染物的排放,从整体上实现高水平环境保护所采用的与某一时期的技术、经济发展水平和环境管理要求相适应,在公共基础设施和工业部门得到应用的,适用于不同应用条件的一项或多项改进、可行的污染防治工艺和技术。 4 工业锅炉氮氧化物排放特性 工业锅炉排放的氮氧化物(NOx)来自燃料燃烧过程,主要类型包括:空气中的氮气在高温下被氧 1

SO2和NOx控制技术和策略

燃煤SO2、NOx污染控制技术现状和减排对策 一、燃煤SO2、NOx污染控制技术概况 在我国现有的火电机组中,燃煤机组约占93%,烧煤造成的环境污染已成为制约我国国民经济和社会持续发展的一个重要影响因素。大量原有的和新建的燃煤发电站和大中型燃煤工业锅炉等还是主要采用烟气脱硫等技术及其革新方法,来解决燃煤污染防治问题。 对于我国,减少SO2污染的最经济的方法是:停止燃烧S≥3%的高硫劣质原煤,改用低硫优质煤以及采用燃烧前对原煤洗选,对原煤洗选可脱除原煤所含硫分中约占一半的黄铁矿硫中的40%。它能实用于S≥1%的中、高硫原煤,是投资和运行费用相对减少的技术措施。另外采用燃烧中的脱硫技术,即家庭和工业锅炉中采用掺有脱硫剂的型煤、循环流化床锅炉和煤粉炉炉内喷钙增湿活化技术。目前在技术管理上有可能大幅度减排SO2的技术还是在燃煤量相对集中的大用户(发电厂等)采用燃烧中和燃烧后的烟气脱硫技术。其中,湿法烟气脱硫可除硫95%以上,但是投资费用约占发电厂总投资的12-15%,日常运行费用也较贵。 与NOx相比,SO2排放控制技术经济的可行性好,环境效益大。减小SO2排放的控制措施有洗煤、化学脱硫、煤的气化或液化等燃烧前脱硫,和采用型煤脱硫、流化床燃烧脱硫或炉内喷钙等燃烧中脱硫,以及燃烧后的烟气脱硫。国际上有多种脱硫技术已经工业化,我国业已开展脱硫技术研究多年,特别是电力行业已有一些成功的试点工程。减少NOx排放量可选用控制技术目前在工业上已成功运行的有二类,一类是改进燃烧技术减少燃烧过程NOx的产生量,以采用低氮燃烧技术为宜;另一类是采用氨选择性催化还原法净化燃烧尾气。削减单位NOx排放量所需费用高于SO2,其原材料的来源也较困难。 二、减排对策 减排对策包括清洁煤技术、节能、重点行业SO2排放技术以及SO2排放的经济技术政策。 清洁煤技术是指在煤炭从开发到利用全过程中,旨在减少污染排放与提高利用效率的加工、燃烧、转化及污染控制等新技术。主要包括煤炭洗选、加工(型煤、水煤浆)、转化(煤炭气化、煤炭液化)、先进燃烧技术(常压循环流化床、加压流化床、整体煤气化联合循环、高效低污染燃烧器)、烟气精华(除尘、脱氮)等方面的内容。 清洁煤技术可主要分为煤炭加工和煤炭的高效洁净燃烧技术,煤炭加工包括煤炭洗选、型煤和水煤浆;而煤炭的高效洁净燃烧技术主要指燃煤锅炉的和发电技术,包括循环流化床、增压流化床、煤气化联合循环和煤炭气化。 循环流化床(CFBC) 是目前国外清洁煤技术中一项成熟的技术,且正在向大型化发展,其煤种适应性广,燃烧效率高,且与采用煤粉炉尾部烟气净化装置进行烟道气脱硫相比,它不仅能脱SO2,而且可减少NOx,投资成本和运行费用也比较低。国外目前运行、在建和计划建设的循环流化床技术发电锅炉已达250多台。我国目前循环流化床技术只相当于发达国家八十年代初的水平,在建设75吨/时及以下的小型循环流化床方面有一定的经验,但脱硫、除尘、防磨等配套技术还有待完善。 增压流化床发电技术(PFBC) 该技术由于实现了联合循环,发电技术高于CFBC发电技术。目前瑞典、日本、美国、

氮氧化物控制技术的综述

燃煤电厂氮氧化物控制技术的综述 摘要:随着社会的发展,工业发展速度加快,大气的污染状况也越来越严重,近几年,由于生产和发展的需要,我国在石油化工、机动车辆的生产上突飞猛进,虽然在一定程度上推动了社会的发展,但对大气环境却造成了比较严重的污染。目前,国际上对大气环境保护越来越重视,声音越来越强烈,我国也出台了些相关的法律法规以保护大气环境。由于氮氧化合物对大气污染影响特别严重并且来源广泛,因此,对大气污染过程中氮氧化物的研究越发迫切。 关键字:氮氧化物、严重、迫切。 Abstract With the development of society, the industrial development speed, the air pollution status also more and more serious, in recent years, due to the production and the need for the development of our country in the petroleum chemical industry, motor vehicle production by leaps and bounds, although in a certain extent by the development of the society, but to atmosphere but caused serious pollution. Now, the atmosphere environment protection pay more and more attention to, the voice is more and more intense, our country also introduced some relevant laws and regulations to protect the air environment. Because of nitric oxide of atmospheric pollution source especially serious influence and widely, therefore, the air pollution in the process of nitrogen oxides more urgent research Keywords: nitrogen oxide 、serious、urgent. 1 大气污染过程中的主要污染物 经调查,大气的污染主要包括氧化碳、碳氢化合物、氮氧化合物、铅、二氧化硫、二氧化碳、微粒、醛类、粉尘、电辐射、噪声等。目前,在工农业生产、开发过程中,氮氧化物的无序排放对环境的影响极大。 2 大气污染过程中氮氧化物的主要来源、生成机理及危害 2.1 大气中氮氧化合物的主要来源 大气污染过程中氮氧化合物主要来自三方面:工业污染、生活污染、交通污染 ①工业污染主要是由于在工业生产过程中(特别是在石油化工企业)燃烧化石燃料而产生的,它主要包括二部分:一是在工艺生产过程中排放的泄漏的气体污染物,如化工厂及煤制气厂;二是在工业生产用的各种锅炉、窑炉排放的污染物;

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 中国环境学会 2011年03月31日 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.360docs.net/doc/f413240524.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1 我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。

氮氧化物的形成及控制

氮氧化物的形成及控制技术 孙铁朦 (中南大学能源科学与工程学院,湖南长沙,410083) 摘要:随着我国经济的快速发展和能源生产与消费量的急速增长,氮氧化物排放量也随之增加。有关研究表明,氮氧化物排放加剧了大气酸沉降、光化学烟雾和城市灰霾的污染。由于氮氧化物可以在大气层中长距离输送,引起的全球性或区域性污染问题也日渐突出。如果对此不加以控制,氮氧化物的持续增加将会明显抵消掉二氧化硫减排所取得的重大环境效益。我国氮氧化物排放控制还处于起步阶段,氮氧化物排放控制技术有待进一步普及,并提出氮氧化物排放治理的一些方法。 关键词:氮氧化物;危害;控制技术。 The formation of nitrogen oxide and control technology Sun tie meng (School of Energy Science and Engineering, Central South University, Changsha 410083, China) Abstract: With the rapid growth of China's rapid energy production and consumption,nitrogen oxide emissions have increased. The study showed that nitrogen oxide emissions contribute to atmospheric acid deposition,photochemical smog and urban haze pollution. Due tolong-range transport of nitrogen oxides in the atmosphere which caused by global or regional pollution problems have become increasingly prominent. If this is left unchecked, the continued increase of the nitrogen oxides will be significantly offset by the significant environmental benefits achieved by the sulfur dioxide emission reduction. Due to nitrogen oxides emission reduction program in china is still in its initial stages,nitrogen oxide control technology needs further popularization and provide some methods on nitrogen oxide emission control. Key words:nitrogen oxide;damage:control technology. 1前言 氮氧化物是大气中主要的气态污染物之一,包括多种化合物,如氧化亚氮(N O)、一氧化 2 )、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。其中氮(NO)、二氧化氮(NO 2 N2O3、N2O4、N2O5很不稳定,常温下很容易转化成NO和NO2。大气中含量较高的氮氧化物主O、NO和NO2。其中,NO和NO2是大气中主要的氮氧化物。 要包括N 2 自然界中的NOx主要来自雷电,森林草原火灾,氧化大气中的氮和土壤中微生物的消化作用,这些氮氧化物在大气系统中均匀分散,并参加在环境中的氮循环。人类活动产生的氮

氮氧化物控制措施技术一览

氮氧化物控制措施技术一览 --------------------------------------- 一、氮氧化物形成之原因 在燃烧过程中形成氮氧化物(以下简称NOx)的机构(mechanism)可分为两类:其一是燃烧空气中大气氮的热稳定(thermal fixation),产生'热NOx'(thermal NOx)另一是燃料中氮份之转化,产生所谓的'燃料NOx'(fucl NOx)。虽然NOx主要包括NO,NO2和N2O等化合物,但由实验数据显示,发电厂烟囱排出的NOx中,NO占95%以上。 一般而言,使用天然气和轻馏出油做为燃料主要产生'熬NOx';而残余油和煤则产生'燃料NOx'为主。二、燃烧技术改进降低氮氧化物 由上节之讨论可知,热NOx产生之主因在于温度及停留时间;而燃料NOx之产生较受平衡比φ之影响。因此,在NOx的控制方面可由以下几个原则着手。 (一)减少主火焰区O2量 1.减少氧气量 2.控制燃料与空气之混合 3.在主火焰区采用富燃料(fuel-rich) (二)减少暴露在高温下之时间 1.降低烽焰温度 (1) 排气循环 (2) 注入水或蒸汽 (3) 降低燃烧温度 2.减少在主火焰区的停留时间 (三)基于上述之原则,目前已发展的技术有: 1.阶段燃烧法 2.排气循环法

3.浓淡燃烧法(亦称Bias燃烧法) 4.水或蒸汽注入法 5.低NOx燃烧器 其型式有以下5种 (1) 燃气PM燃烧器 (2) 燃油PM燃烧器 (3) 燃煤PM燃烧器 (4) SE燃烧器 (5) PG-DRB燃烧器 三、'烟气处理'降低氮氧化物 燃烧控制技术NOx去除率有其一定的限制,如低NOx燃烧器的制造厂商,保证其燃烧器应用在燃煤锅炉可达250ppm之NOx的排放量。若在NOx之排放标准要求更加严格的情况下,势必要采取烟气处理(Flue gas treatment)。以下将介绍几种目前常用的烟气处理设备。 (一)选择无触媒还原(Selective Non-Catalytic,以下简称SNR)法 原理: SNR法又称高热脱硝(Thermal De-NOx)法,它是利用注入NH3的烟气中的NO反应成N2和H2O;此一反应必须在高温下进行。其反应式如下: 4NO+4NH3+O2→4N2+6H2O (1) 4NH3+5O2→4NO+6H2O (2) 反应式(1)发生的反应温度在1070~1270°K;而反应式(2)则发生在1370°K以上的温度。所以,SNR法的温度控制必须在1200~1300°K之间。 (二)选择触媒还原(Selective Catalytic Reduction,以下简称SCR)法 原理:

氮氧化物对环境的危害以及污染控制技术

氮氧化物对环境的危害以及污染控制技术 ℃时几乎没有热力型NOX,只有当燃烧温度超过1600℃时,热力型NOX才可能占到25~30%。对于常规燃烧设备,NOX的燃烧控制主要是通过降低燃料型NOX而实现的。 机动车排放的NOX也是不可忽视的排放源,机动车排放的NOX主要是热力型NOX和燃料型NOX。 1.低NOx燃烧技术 凡通过改变燃烧条件来抑制NOx生成或破坏已生成的NOx达到减少NOx排放的技术称为低NOX燃烧技术。它包括低过量空气燃烧.二段燃烧和烟气再循环。在各种NOx污染控制技术中,低NOX燃烧技术是应用最广.相对简单.经济有效的方法。 (1)低过量空气系数运行技术 NOx排放量随着炉内空气量的增加而增加,锅炉采用低空气过量系数运行,不仅可以降低NOx排放,而且能够减少锅炉热损失,提高锅炉热效率。但有可能导致CO.碳氢化合物 /h1 和炭黑等污染物以及飞灰中可燃物质量的增加,从而使燃烧效率下降。因此,在确定空气过剩系数时必须同时满足锅炉热效率.燃烧效率及降低NOX等要求。

(2)二段燃烧技术 二段燃烧技术是在两段燃烧装置中,燃料在接近理论空气量下燃烧。燃烧所用的空气分两次通入,亦即燃烧分两段进行。第一段通入的空气约占总空气量的80%~95%,燃烧在富燃烧贫氧条件下进行,形成低氧燃烧区,火焰温度低,因而抑制了NOx的生成。第二段将其余的空气从温度较低的区域送入,使第一段剩余的不完全燃烧产物CO.碳氢化合物得到完全燃烧。在二次空气供入后,虽然氧过剩,但由于烟气温度较低而限制了NOx的生成量。采用两段燃烧,避免了在高温.高氧条件下的燃烧状况,因而NOx的生成量可大降低。 (3)烟气再循环技术 对烟气进行再循环是减少NOx形成的很有效的方法。其原理为:部分冷却了的烟气再循环被送回到燃烧区,起到降低氧浓度和燃烧区温度的作用,达到减少NO生成的目的。烟气的循环率在25%~40%的范围内最为适宜,NOx的抑制效果最佳。

氮氧化物生成机理及控制技术

氮氧化物生成机理及控制技术 前言:能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。 循环流化床锅炉是最近二十年里发展起来的一种新型燃烧技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx 排放量的措施,为循环流化床锅炉的设计、运行提供参考。 1NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。 (2)燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。 (3)快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。其中燃料型NOx是最主要的,它占总生成量的

氮氧化物控制技术小结

氮氧化物控制技术小结 在火电机组排放的多种大气污染物中,氮氧化物是最近三十多年来受到世界极大关注的一种污染物。氮氧化物的排放对人体的致毒作用、对植物的损害以及对酸雨和光化学烟雾的形成、对臭氧层的破坏中所起的作用已经得到了科学的证明。有关NO x的治理方法有几十种之多,这些方法大体上可以分为两大类:一级污染预防(primary pollution prevention)措施和二级污染预防(secondary pollution prevention)措施。具体措施如下图: 低氮燃烧技术: 低氮燃烧技术就是根据燃料在燃烧过程中氮氧化物的生成机理,通过改进燃烧技术来降低氮氧化物生成和排放的技术,尤其适用于燃用烟煤和褐煤的锅炉。一般情况下,采用低氮燃烧技术比不采用低氮燃烧技术的锅炉NO x排放量低20% ~40%。 选择性催化还原法(SCR法): 此法的原理为:使用适当的催化剂,在一定温度下以氨作 为催化反应的还原剂,使氮氧化物转化成无害的氮气和水蒸 汽。反应式如下:4NO+4NH3+O2→4N2+ 6H2O,8NH3+6NO2→7N2+2H2O。催化剂不同,反应所需温度也不一样。以二氧化钛为载体的钯、铂催化剂,所需的反应温度为300~400 ℃,而以焦炭为催化剂,反应温度为100~150 ℃。此法具有

净化率高(可达85 %以上) ,工艺设备紧凑,运行可靠,氮气放空,无二次污染等特点,但此法存在投资与运行费用(投资费用80美元/kW)较高,消耗氨液,氮氧化物不能回收等不足之处。 非催化选择性还原性(SNCR法): 该法原理同SCR 法,由于没有催化剂的帮助,反应所需温度较高,为900~1200 ℃。反应式为:4NH3十6NO→5N2十6H2O。由于反应温度高,此法要控制好反应温度,以免氨被氧化成氮氧化物。此法的净化率为50 %~60 %,其特点是不需催化剂,旧设备改造少,投资较SCR法小(投资费用15美元/kW)。但氨液消耗量较SCR法多。近来研究用尿素代替NH3作为还原剂,使得操作系统更加安全可靠,而不必担心因NH3的泄漏造成新污染。 选择性非催化还原与选择性催化还原联合法: SNCR-SCR法具有2个反应区,首先通过布置在锅炉炉墙上的喷射系统,将还原剂喷入炉膛,在高温下脱除部分NO x;然后逸出的未反应完的还原剂再进入SCR反应器,与未脱除的NO x进行催化还原反应。其最主要的优点是省去了SCR 工艺设置在烟道里的复杂的氨喷射格栅系统,大幅度减少了催化剂的用量,净化效率可调,达25%~70%。还原剂喷入炉膛脱除部分氮氧化物,逸出的NH3再与未脱除的氮氧化物进行催化还原反应的一种脱硝方法。 几种方法的特点和比较:(1)低氮燃烧技术工艺成熟,投资与运行费用较低,其应作为燃煤电厂在役机组和新建机组氮氧化物控制的首选技术。(2)SCR 技术氮氧化物去除率高、应用成熟,但投资费用与运行费用高,适合在煤质多变、机组负荷变动频繁以及对空气质量要求较高的区域的新建燃煤机组上使用。(3)SNCR技术投资与运行费用较低,但氮氧化物去除率有限,适用于对采用了低氮燃烧技术的在役机组的改造。(4)SCR-SNCR技术弥补了SCR与SNCR两项技术的不足,但其综合效果有待论证,尚不成熟,可先做示范工程再进一步推广。参考文献: [1]吴晓青.我国大气氮氧化物污染控制现状存在的问题与对策建议[J].中国科技产业,2009( 8) : 13-16. [2]马风哪, 程伟琴. 国内火电厂氮氧化物排放现状及控制技术探讨[J]. 广州化工, 2011, 39(15):57-59. DOI:10.3969/j.issn.1001-9677.2011.15.018. [3]吴庆魁. 烟气硫氧化物和氮氧化物控制技术小结[J]. 广东化工, 2011, 38(3):32-33. DOI:10.3969/j.issn.1007-1865.2011.03.015.

氮氧化物产生与控制分析

氮氧化物产生与控制分析

前言 能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。 循环流化床锅炉是最近二十年里发展起来的一种新型燃烧 技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,为循环流化床锅炉的设计、运行提供参考。 1NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。

煤,尤其是其挥发分中的各种元素比也会影响到NOx的排放量。显然,O/N比越大,NOx排放量较高。H/C比越高,则NO 越难于被还原,故NOx排放量也越高。另外,S/N比会影响到各自的排放水平,因为S和N氧化时会相互竞争,故SO2排放量越高,NOx排放量越低。 2.2 过量空气系数的影响 当风不分级时,降低过量空气系数,在一定程度上可限制反应区内的氧浓度,因而,对热力型NOx和燃料型NOx的生成都有一定的控制作用,采用这种方法可使NOx排放量降低 15%~20%,但是CO浓度会增加,燃烧效率会下降。 当风分级时,可有效地降低NOx的排放量。一般情况下,二次风从床上一定距离送入较好,如果过低则对NOx的排放量影响甚小。随着一次风量的减少、二次风量的增加,N被氧化的速度下降,NOx排放量也随之下降,并在某一风量分配下达到最小值。 2.3 燃烧温度的影响 燃烧温度对NOx的排放量的影响已取得共识,即随着炉内燃烧温度的提高,NOx的排放量将升高,因此,可以通过降低床温来控制NOx的排放量。但是,床温的降低会带来两个不利的后果,一个是CO炉内浓度将增加,不完全燃烧热损失增大,从而使得燃烧效率下降;另一个是不利于N2O分解,从而使得N2O的排放浓度增加。 2.4 脱硫剂的影响

氮氧化物的污染控制技术

浅谈氮氧化物的控制技术的进展 摘要:针对目前国内外的现状,介绍了燃煤过程中NOx的形成机理,以及相关 的控制技术进展,了解控制技术的原理,从而加深对氮氧化物处理技术的理解与本专业知识的学习。 关键字:NOx 形成机理控制技术进展 近年来,随着国内经济的快速发展,氮氧化物( NOx) 污染物的排放量迅速增加,严重污染了生态环境,已成为制约社会经济发展的重要因素之一。有研究表明,氮氧化物是生成臭氧的重要前体物之一,也是形成区域细粒子污染和灰霾的重要原因,从而使我国珠江三角洲等经济发达地区大气能见度日趋下降,灰霾天数不断增加。 氮氧化物的主要来源是火力发电、机动车排放和工业锅炉炉窑排放,本论文通过对火电行业和锅炉的NOx的形成机理、并了解NOx控制所存在问题,和相关控制技术进展全面回顾,对氮氧化物的控制技术有进一步的了解,巩固和扩展自身的专业知识。 1. NOx的形成机理 1.1热力型氮氧化物[1] 热力型NOx源于燃烧过程中空气中的氮气被氧化成NO,它主要产生于温度高于1800 K 的高温区,反应的大概机理为: 2N + O →NO +N2;N + O →NO +O;N + OH →NO +H 控制热力型NOx生成的主要方法有:(1)降低燃烧温度水平;(2)降低氧气的浓度;(3)降低空气量以降低氮浓度;(4)缩短在高温区的停留时间。 在工程实践中,采用烟气再循环、浓淡燃烧、水蒸气喷射以及新发展起来的高温空气燃烧技术等都是利用上述原理来控制热力型NOx的生成措施。[2] 1.2快速型氮氧化物 快速型NOx是碳氢类燃料在过量空气系数<1 的富燃料条件下,在火焰面内快速生成的Nox,它的形成机理较为复杂,中间反应过程较多,存在的时间也相对较短,大致的反应过程为:2CH + N →HCN +N2 ;2CH + N →HCN +NH。 控制快速型NOx的生成的主要手段有:(1)添加水或水蒸气,CHi与OH 的反应抑制其与N2的反应;(2)纯氧燃烧;(3)预混(稀薄)燃烧。 1.3燃料型氮氧化物 燃料型NOx指燃料中的氮在燃烧过程中经过一系列的氧化还原反应而生成的NOx,它是煤燃烧过程NOx的生成的主要来源。燃料型NOx的生成经历多个复杂过程,有关研究使用过的反应动力学模型中所包含的反应过程超过200 多个[3],它受燃烧温度、过量空气系数、燃料性质等因素的影响。 2.氮氧化物的主要控制技术 2.1无氮燃烧技术 2.1.1化学链燃烧技术[4] 化学链燃烧技术(Chemical-looping combustion)是一种新颖的无火焰燃烧

2008年氮氧化物技术规则

船用柴油机氮氧化物排放控制技术规则修正案 (2008年氮氧化物技术规则) 引言 前言 1997年9月26日,《经1978年议定书修正的〈1973年国际防止船舶造成污染公约〉》(MARPOL 73/78)当事国大会以大会决议2通过了《船用柴油机氮氧化物排放控制技术规则》(《氮氧化物技术规则》)。《防污公约》附则VI-《防止船舶造成空气污染规则》于2005年5月19日生效后,该附则第13条适用的所有船用柴油机都必须符合本规则的规定。2005年7月,环保会第53届会议同意修订《防污公约》附则VI和《氮氧化物技术规则》。2008年10月,环保会第58届会议完成了审议,本《氮氧化物技术规则》(以下简称本规则)就是该过程取得的结果。 作为一般性的背景信息,在燃烧过程中形成氮氧化物的先决条件是氮和氧。这些成分一起构成柴油机吸入空气的99%。在燃烧过程中氧气将被消耗,多余氧气的数量是空气/燃料比的函数,柴油机在此情况下运转。氮在燃烧过程中大多未起反应;但有很小一部分将被氧化形成多种形式的氮氧化物。能够形成的氮氧化物(NO X)包括一氧化氮(NO)和二氧化氮(NO2),其总量主要是火焰或燃烧温度的函数,以及存在于燃料中有机氮(如果存在)数量的函数,氮氧化物的形成还是氮和多余氧气在柴油机燃烧过程中暴露在高温下时间的函数。换句话说,燃烧温度愈高(如高峰值压力、高压缩比、高供油比率等),所形成的氮氧化物总量就越大。通常低速柴油机所形成的氮氧化物量比高速机要大。氮氧化物能引起酸化,形成对流层臭氧,营养富集等不良环境影响,对全球人类健康造成危害。 本规则旨在为船用柴油机试验、检验和发证规定强制性程序,以使柴油机制造厂、船东和主管机关能够确保所有适用的船用柴油机符合附则VI第13条规定的关于氮氧化物排放限值。在制定一系列简单实用的要求(其中对确保符合氮氧化物排放允许值的措施作了定义)时,已认识到精确制定船用柴油机实际加权平均氮氧化物排放量的困难。 鼓励主管机关在适当受控条件下能进行精确试验的试验台上,对船用推进系统和辅柴油机的排放性能进行评估。本规则的一个重要特点就是在这个初始阶段确保符合附则VI第13条。其后的船上试验将不可避免地受限于范围和精确度两方面,其目的应为推理或推断排放性能和证实柴油机的安装、操作和维护遵循了制造厂的规范,以及任何调整或改装没有偏离制造厂初次试验和发证确立的排放性能。

火电厂锅炉氮氧化物排放控制技术发展

火电厂锅炉氮氧化物排放控制技术发展 随着国民经济的发展,电力需求越来越大,燃煤锅炉不断扩建,煤炭需求量明显增加。煤炭的燃烧产生大量氮氧化物,其中,大气污染物中的氮氧化物,70%来自于煤炭的燃烧,而火力发电厂发电用煤又占了全国燃煤的70%。氮氧化物的过量排放给人们的生产和生活坏境带来了严重的破坏,危害人体呼吸系统的健康,室内氮氧化物的质量浓度不能超过5mg/m3。参与形成光化学烟雾,造成环境污染,氮氧化物还会破坏大气臭氧层和形成酸雨,危害社会发展。 标签:火电厂锅炉;氮氧化物;排放控制技术 氮氧化物是生成臭氧的气体,是导致细颗粒污染和灰霾的原因,氮氧化物排放的增加在很大程度上抵消了二氧化碳节能减排带来的环境效益。因而,“十二五”期间,国家将氮氧化物作为大气污染物控制的主要对象。氮氧化物的主要来源是火力发电、机动车排放物以及工业燃烧锅炉的排放,其中火力发电厂是氮氧化物最主要的来源。加强火电厂锅炉氮氧化物排放控制,成为对大气污染物控制的研究重点。 1 氮氧化物生成机理 1.1 热力型T-NOx(ThermalNOx) 由燃烧用空气中的氮气在高温下氧化而生成。其生成机理多用捷里道维奇(Zeldovich)反应式表示,如图1所示,温度是影响T-NOx生成最重要和最显著的因素,随着温度的升高,T-NOx的生成速度按指数规律迅速增加。研究表明,当燃烧温度低于1500℃时,几乎没有T-NOx生成,只有当温度高于1500℃时,T-NOx的生成反应才变得明显起来。T-NOx的控制方法主要包括:降低燃烧温度,降低氧气浓度,使燃烧在远离理论空气比的条件下进行,缩短在高温环境下的燃烧时间。 1.2 燃料型F-NOx(FuelNOx) 燃料中含有的氮化合物(如杂环氮氧化物)在燃烧过程中氧化生成氮氧化物。其形成过程包括挥发性NO与焦炭性NO两种途径,F-NOx的生成量与火焰附近氧浓度密切相关。从图1中可以看出,与T-NOx不同,F-NOx生成过程的温度水平较低,且在初始阶段,温度影响明显,在高于1400℃后趋于稳定。 1.3 快速型P-NOx(PromptNOx) 由空气总氮和燃料中碳氢离子团如CH等反应生成NOx。P-NOx在CH类原子团较多、氧气浓度相对较低的富燃料燃烧时产生,其生成对温度的依赖性很低。 2 火电厂锅炉氮氧化物控制技术

NOX形成机理,如何控制NOX浓度

NOX形成机理,如何控制NOX浓度 1、NOx的危害: 氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。 2、NOx生成机理和特点 2.1 NOx生成机理 在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种: (1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即 O2+N→2O+N, O+N2→NO+N, N+O2→NO+O 在高温下总生成式为 N2+O2→2NO, NO+0.5O2→NO2 随着反应温度T的升高,其反应速率按指数规律增加。当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。 (2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。

(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。在生成燃料型NOx 过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。 2.2 NOx生成特点 在这3种途径中,快速型NOx所占的比例不到5%,在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。由NOx的生成机理可以看出,NOx的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况,其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等;⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。 3、降低NOx的主要控制技术 降低NOx排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx 的产生,从源头上减少NOx生成量;二级脱氮技术则是利用各种措施,尽可能减少已生成NOx的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。 3.1、级脱氮技术 3.1.1、气分级 3.1.1.1、根据NOx的生成机理,燃烧区的氧浓度对各种类型的NOx生成都有很大影响。当过量空气系数α<1,燃烧区处于“缺氧燃烧”状态时,抑制NOx的生成量有明显效果[6]。根据这一原理,将燃料的燃烧过程分阶段完成,把供给燃烧区的空气量减少到全部燃烧所需用空气量的80%左右,形成富燃区,从而降低了燃烧区的氧浓

相关文档
最新文档