01不定积分复习

01不定积分复习
01不定积分复习

不定积分的概念 问题的提出:
原函数与不定积分的概念
定义: 如果在区间 I 内,可导函数 F ( x ) 的
导函数为 f ( x ) , 即?x ∈ I ,都有 F ′( x ) = f ( x )
已知函数 f ( x )的导数 f ′( x ), 求函数 f ( x ).
或dF ( x ) = f ( x )dx ,那么称函数 F ( x ) 为 f ( x )
在区间 I 内的一个原函数.
1
2
定义 设函数F(x)是函数f(x)的一个原函 数,则f(x)的全体原函数为F(x)+c, 记为 ∫ f ( x)dx ,其中c为任意常数, 即 ∫ f ( x)dx = F ( x) + c 称函数集合F(x)+c为函数f(x)的不定积分.
其中
三、不定积分基本的性质
性质一 1 .[ ∫ f ( x )dx ]′ = f ( x ) 或 d [ ∫ f ( x )dx ] = f ( x ) dx
2.∫ F ′( x)dx = F ( x) + c 或
∫ dF ( x) = F ( x) + c

: 积分号; x : 积分变量;
性质二
f ( x): 被积函数; f ( x)dx : 被积 表达式; c : 积分常数。
3
∫ kf ( x)dx = k ∫ f ( x)dx
性质三
其中k ≠ 0为常数.
∫ [ f ( x) ± g ( x)]dx=∫ f ( x)dx ± ∫ g ( x)dx
4
基本积分表
xα +1 2.∫ xα dx = + c (α ≠ ?1) α +1 1 3.∫ dx = ln x + c x ax + c (a > 0, a ≠ 1) 4.∫ a x dx = ln a 5.∫ e x dx = e x + c
6.∫ sin xdx = ? cos x + c 7.∫ cos xdx = sin x + c
5
1.∫ 0dx = c
1 dx = tan x + c cos 2 x 1 9.∫ csc 2 xdx = ∫ 2 dx = ? cot x + c sin x 1 10.∫ dx = arcsin x + c 1? x2 = ? arccos x + c1 1 11.∫ dx = arctan x + c 1+ x2 = ?arc cot x + c1 8.∫ sec 2 xdx = ∫
6
1

12.∫ sec x ? tan xdx = sec x + c 13.∫ csc x ? cot xdx = ? csc x + c 15.∫ cot xdx = ln sin x + c 14.∫ tan xdx = ? ln cos x + c
20.∫ 21.∫ 22.∫
1 a ?x 1
2 2
dx = arcsin
x +c a
16.∫ sec xdx = ln sec x + tan x + c
x +a 1
2
2
dx = ln x + x 2 + a 2 + c dx = ln x + x 2 ? a 2 + c
17.∫ csc xdx = ln csc x ? cot x + c a+x 1 1 +c dx = 18.∫ 2 ln 2 a ?x 2a a ? x 1 1 x 19.∫ 2 dx = arctan + c 2 a +x a a
7
x ?a
2
2
8
直接积分法:
先对被积函数进行恒等变换 化为基本积分表中的积分类型, 然后求积分.
求不定积分的基本思想
想方设法将被积表 达式化为基本积分 表中的被积式,然 后代公式.
9 10
换元积分法
∫ f (u ) duu = φ (x ) ∫ f
[φ (x )]φ ′(x )dx
∫ f (u ) duu = φ (x ) ∫ f
[φ (x )]φ ′(x )dx
1. 求不定积分∫ f (u ) du较容易, 引入新变量u
2. 求不定积分 ∫ f [φ ( x)] φ ′( x)dx较容易, 引入新函数u = φ ( x)
∫ f [φ ( x)] φ ′( x)dx = ∫ f [φ ( x)] dφ ( x) 令u = φ ( x) ∫ f (u )du
称上述积分法为第一类换元积分法.
∫ f (u )du 令u = φ ( x)∫ f [φ ( x)] φ ′( x)dx
称上述积分法为第二类 换元积分法.
(凑微分法)
11 12
2

分部积分法
∫ udv = uv ? ∫ vdu
13
将不定积分 ∫ f ( x) g ( x) dx改写为∫ udv, 其中微分dv容易凑出来, 不定积分 ∫ vdu 比不定积分 ∫ udv容易算出.
14
不定积分
1.当被积函数为两个不同类型 的函数 的乘积时,可选用分部积分法。
2. ∫ arcsin xdx;
Ⅰ.
∫ arctan xdx;
∫ arccos xdx ∫ ln xdx
∫ P ( x)e dx ∫ P ( x) sin xdx ∫ P ( x) cos xdx
x n n n
u、dv的选择 u = Pn ( x), dv = e x dx u = Pn ( x), dv = sin xdx u = Pn ( x), dv = cos xdx
Ⅱ.
∫ e sinxdx ∫ e cosxdx
x x
u = sin x, dv = exdx u = cos x, dv = exdx
16
15
Ⅲ.
∫ P ( x) ln xdx ∫ P ( x) arcsin xdx ∫ P ( x) arccos xdx ∫ P ( x) arctan xdx ∫ P ( x)arc cot xdx
n n n n n
u = ln x,
dv = Pn ( x)dx
有理函数的积分
有理函数的定义: 两个多项式的商表示的函数.
u = arcsin x, dv = Pn ( x)dx u = arccos x, dv = Pn ( x)dx u = arctan x, dv = Pn ( x)dx u = arccotx, dv = Pn ( x)dx
P ( x ) a0 x n + a1 x n?1 + Λ + an?1 x + an = Q ( x ) b0 x m + b1 x m ?1 + Λ + bm ?1 x + bm
其中 m 、n 都是非负整数;a 0 , a1 ,Λ , a n 及
其中Pn ( x)为x的n次多项式。
17
b0 , b1 ,Λ , bm 都是实数,并且a0 ≠ 0 ,b0 ≠ 0 .
18
3

P ( x ) a0 x n + a1 x n?1 + Λ + an?1 x + an = Q ( x ) b0 x m + b1 x m ?1 + Λ + bm ?1 x + bm
假定分子与分母之间没有公因式
定义 下列有理函数称为部分分式 (或最简真分式)
(1) n < m , 有理函数是真分式; ( 2) n ≥ m , 有理函数是假分式;
利用多项式除法, 假分式可以化成一个 多项式和一个真分式之和.
1.
3.
A x?a
Ax + B x 2 + px + q
2.
4.
A ( x ? a)n
Ax + B ( x 2 + px + q ) n
n = 2,3,....
n = 2,3,... ( p 2 ? 4q < 0)
1 x3 + x + 1 . = x+ 2 x +1 x2 + 1
定理 任意一个真分式都可以分解为部分 分式之和.
19 20
有理函数的原函数都是初等函数.
牛顿 – 莱布尼茨公式
有理函数积分的一般步骤:
定理 函数 , 则
设 F ( x ) 是连续函数 f ( x ) 在 [a, b] 上的一个原
1.将有理函数分解为多项式与真分式的和, 2.分解真分式的分母, 3.将真分式分解为部分分式的和, 4.求不定积分
21
∫a f ( x) dx = F (b) ? F (a)
b
( 牛顿 - 莱布尼茨公式)
22
4

定积分的概念(教学内容)

授课题目定积分的概念 课时数1课时 教学目标理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。 重点与难点重点:定积分的基本思想方法,定积分的概念形成过程。难点:定积分概念的理解。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完导数和不定积分这两个概念后的学习,定积分概念的建立为微积分基本定理的引出做了铺 垫,起到了承上启下的作用。而且定积分概念的引入体 现着微积分“无限分割、无穷累加”“以直代曲、以不变 代变”的基本思想。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。

教学手段 传统教学与多媒体资源相结合。 课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、定积分问题举例 1、曲边梯形的面积 设)(x f y =在区间],[b a 上非负连续。由)(,0,,x f y y b x a x ====所围成的图形称为曲边梯形(见下图),求其面积A ,具体计算步骤如下: (1)分割:在区间],[b a 中任意插入1-n 个分点 b x x x x x a n n =<<<<<=-1210Λ 把],[b a 分成n 个小区间 ],[,],,[],,[12110n n x x x x x x -Λ 它们的长度依次为:n x x x ???,,,21Λ (2)近似代替:区间],[1i i x x -对应的第i 个小曲边梯形面积,)(i i i x f A ?≈?ξ ]).,[(1i i i x x -∈?ξ (3)求和:曲边梯形面积∑∑==?≈?=n i i i n i i x f A A 1 1 )(ξ (4)取极限:曲边梯形面积,)(lim 10∑=→?=n i i i x f A ξλ其中 }.,,m ax {1n x x ??=Λλ 2、变速直线运动路程 设物体做直线运动,已知速度)(t v v =是时间间隔],[21T T 上的非负连续函数,计算这段时间内物体经过的路程s ,具体计算步骤与上相似 x a b y o 1x i x 1-i x i ξ

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

高等数学第四章 不定积分教案

第四章 不定积分 知识结构图: ???????? ???????????????????????分部积分法第二换元积分法 第一换元积分法直接积分法求不定积分基本公式性质 几何意义定义不定积分原函数 教学目的要求: 1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不 定积分的几何意义与基本性质。 2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一 类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。 3.了解不定积分在经济问题中的应用。 教学重点: 1.原函数与不定积分的概念 2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点: 1.不定积分的几何意义 2.凑微分法、分部积分法求不定积分 第一节 不定积分的概念与基本公式 【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。直接积分法求函数的不定积分。 【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。 【教学重点】1.原函的概念;2.不定积分的概念;3.不定积分的几何意义;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。 【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。 【教学时数】2学时 【教学进程】

一、原函数与不定积分的概念 (一)原函数的概念 前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题, 如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。 ②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义 定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有 )()(x f x F ='或dx x f x dF )()(= 则称函数)(x F 是函数)(x f 的一个原函数。 例1 指出下列函数的原函数: ①x x f cos )(= ②23)(x x f = ③x a x f =)( ④x x f 1)(= 教师将举例分析:如(cos )sin x x '-=,则cos x -是sin x 在R 上的一个原函数。 2()2x x '=,则 2x 是2x 的一个原函数。 教师再问:(1)是否所有的函数都有原函数?什么样的函数才有原函数存在呢?在此, 我们不作讨论.我们只给出一个重要的结论. 结论:如果函数()f x 在某区间上连续,则其原函数一定存在 (2)25x +是不是2 x 在R 上的一个原函数呢?学生回答:是 (3)提出一个函数若存在原函数,则有几个呢?引入 2.原函数个数 定理4.1 如果函数()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数,且()f x 的所有原函数都具有()F x C +的形式(C 为任意常数). (二)不定积分的概念 教师指出:在以上的分析中我们看到一个函数()f x 有原函数存在,则有无数多个,它们都可以表示为()F x C +的形式,我们把它叫做()f x 的不定积分。 1.不定积分定义 定义4.2 如果函数()F x 是()f x 的一个原函数,则称()f x 的全体原函数()F x C +(C 为任意常数)为()f x 的不定积分,记作 C x F dx x f +=?)()(

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

高等数学第四章不定积分课后习题详解

高等数学第四章不定 积分课后习题详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)

思路: 被积函数52 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C ---=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到22222 1111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★ (8)23(1dx x -+? 思路:分项积分。 解 :2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★ (9) 思路 = 11172488x x ++==,直接积分。 解 :715888.15x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。 解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)211 x x e dx e --?

有关定积分问题的常见题型解析(全题型)

有关定积分问题的常见题型解析 题型一 利用微积分基本定理求积分 例1、求下列定积分: (1) ( ) 1 3 31x x dx -+? (2) 4 1dx ? (3) ? --2 2 24x 分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。 评注:利用微积分基本定理求定积分 dx x f a b )(?的关键是找出)()(/ x f x F =的函数)(x F 。 如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求 其面积。 题型二 利用定积分求平面图形的面积 例2 如图 ,求直线y=2x+3与抛物线y=x 2 所围成的图形面积。 分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。 评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。 关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。 知识小结:几种典型的曲边梯形面积的计算方法: (1)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≥0)围成的曲边梯形的面积: S = ()?b a dx x f ,如图1。 (2)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≤0)围成的曲边梯形的面积: S = ()()??-=b a b a dx x f dx x f ,如图2。 (3)由两条直线x=a 、x=b (a <b )、两条曲线y=()x f 、y=()x g (()()x g x f ≥)围成的平面图形的面积:S = ()()?-b a dx x g x f ][,如图3。

定积分的基本概念

定积分的基本概念 摘要:定积分的概念,原理,思想方法。 关键词:分割,求和,取极限。 通过了一个学期的学习,我们的专业课数学分分析从开始接触时的一窍不通到现在的马马虎虎。使我迷茫的学习慢慢的清晰起来,其中给我学以致用的就是定积分了。可以用来做很多方面的问题。下面来和大家分享一下我学习定积分的感悟。 定积分的概念 1)定积分概念的引入 2)“分割、近似求和、取极限”数学思想的建立 3)定积分的数学定义 重点:定积分的数学定义 难点:“分割、近似求和、取极限”变量数学思想的建立 定积分概念的引入 在熟悉定积分的概念的同时我们应该明确定积分的基础思想。 在灵活运动定积分可以求曲边梯形的面积和变力所做的功,下面来分别的求它们的面积。我们可以从中比较一下,以给我们带来启发。 1曲边梯形的面积 中学里我们已经学会了正方形,三角形,梯形等面积的计算,这些图形有一个共同的特征:每条边都是直线段。但我们生活与工程实际中经常接触的大都是曲边图形,他们的面积怎么计算呢?我们通常用一些小矩形面积的和来近似它。

近似看成多边形面积来计算。现在我们来计算一下溢流坝上部断面面积。 我们分别取n=10, 50, 100用计算机把它的图像画出来,并计算出面积的近似值: 1.当n=10时,用10个小矩形的面积之和作为曲边梯形的面积时,则S10 0.7510。(见下图)

2.当n=50时,用50个小矩形的面积之和作为曲边梯形的面积时,则S50≈0.6766。 3.当n=100时,用100个小矩形的面积之和作为曲边梯形的面积时,则S100≈0.6717。 由此可知,分割越细,越接近面积准确值,而这个和求极限也是同出一则。把它这样简化来理解也就不再那么的难了。 再看一个变力做功的问题。 设质点m受力F(x)的作用,沿直线由A点运动到B点,求力 F(x)的做的功。 F虽然是变力,但在很短一段时间内△x,F的变化不大,可近似看着是常

定积分的基本概念

教 学 内 容 方法与手段 定积分的概念 大家好,这节课我们开始学习定积分的概念,主要分 为三个内容: 定积分概念引入 定积分的定义 定积分的几何性质 首先我们来看第一部分 一、定积分概念引入 说起定积分的思想,其萌芽是特别早的,可以追溯至古代,最具有代表人物就是阿基米德(公元前287年—公元前212年),我们比较熟悉的就是他的浮力原理,其实阿基米德还和高斯、牛顿并列为世界三大数学家,是个非常牛的牛人,有兴趣的可以找找这个人的一些资料,当时他就开始思考定积分问题。那么到底定积分问题是什么样子的呢我们先看一个例子。 1曲边梯形的面积问题: 我们知道矩形面积:S ah = 梯形的面积:() 2 a b S h += 曲边梯形的面积:设()y f x =在区间[a,b]上非负连续,由直线x=a,x=b,y=0及曲线()y f x =所围成的面积。 导入 幻灯 幻灯 幻灯 幻灯 详讲 详讲 详讲 幻灯

那么这样的问题怎么求呢 首先,我们考虑用一个矩形去近似计算其面积。a,b 的区间长度代表其宽,b点的函数值代表其高。我们可以得到一个近似的面积值。 好,现在我们将[a,b] 区间分为两个,同样我们用这两个区间的长度代表其宽,两个区间的右端点代表其高,然后计算这两个矩形的面积求和,作为曲边梯形的面积,可以发现,通过切分,其面积更接近曲边梯形的面积。我们就有这样的思考,是不是切分的越多,其面积越近似我们再将其分为四份,我们发现好像面积越来越接近真实面积。下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。 事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。 好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。 解决步骤: 大化小:在区间中任意插入个分点 ,用直线将一个曲边梯形分成个小的曲边梯形;详讲总结

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

高等数学第四章不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()() ()??'=' dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5.=y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )?=dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是||sin )(x x f =的原函数。

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

[2020理数]第三章 第一节 导数的概念及运算定积分

第三章 导数及其应用 第一节 导数的概念及运算、定积分 [考纲要求] 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数定义求函数y =c (c 为常数),y =x ,y =1 x ,y =x 2,y =x 3,y =x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 5.了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数. 6.了解定积分的概念,了解微积分基本定理的含义. 突破点一 导数的运算 [基本知识] 1.导数的概念 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0 Δy Δx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx .称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式

f (x )=e x f ′(x )=e x f (x )=ln x f ′(x )=1 x 基本初等函数 导函数 f (x )=x α(α∈Q *) f ′(x )=αx α- 1 f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,a ≠1) f ′(x )=a x ln_a f (x )=log a x (a >0,a ≠1) f ′(x )= 1x ln a 3.导数运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)???? f x g x ′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [基本能力] 一、判断题(对的打“√”,错的打“×”) (1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 答案:(1)× (2)× (3)√ 二、填空题 1.函数y =x cos x -sin x 的导数为________. 答案:-x sin x 2.已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x , ∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3 3.已知函数f (x )=f ′????π4cos x +sin x ,则f ????π4的值为________. 解析:∵f ′(x )=-f ′????π4sin x +cos x , ∴f ′????π4=-f ′????π4×22+22 ,

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 2 2 -?=( ) A.233 B.31 C.34 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分

【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(1 22 -?=123 153 x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭 图形的面积为( ) A 、22 B 、42 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函数一般表示为曲边梯形上边界的函数减去下边界的

函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由 ???==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 8103412 9 942 30 3 =??? ? ?-=-=?x x dx x x S ,故选D. 3.22 -? 2 412x x -+dx =( ) A.π4 B.π 2 C.π D.π3 【分值】5分 【答案】A

【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y=2 4 x- +,即(x-2)2+y2=16(y≥0). 12x ∵22-?2 x- +dx表示以4为半径的圆的四分之一12x 4 面积.∴22-?2 x- +dx=π4. 12x 4 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A设定v=3t2+1(m/s)的速度在一直线赛道上行驶,老款赛车B设定在A的正前方5 m处,同时以v=10t(m/s)的速度与A同向运动,出发后赛车A 追上赛车B所用的时间t(s)为( )

高等数学第五章定积分及自测题

第五章定积分 一、基本要求: 1.理解定积分的概念、几何意义、物理意义及定积分的性质. 2.理解积分上限的函数,并掌握其求导法则. 3.掌握牛顿——莱布尼兹公式. 4.掌握定积分的换元法和分布积分法. 5.理解反常积分(广义积分)的概念,会计算反常积分,了解反常积分的审敛法. 6.了解定积分的近似计算方法. 二、主要内容

Ⅰ. 定积分概念: 1. 定积分定义:设()f x 在区间[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=.把[,]a b 分成n 个小区间1[,],(1,2, ,)i i x x i n -=,小 区间的长度记为1,(1,2, ,)i i i x x x i n -?=-=,在1[,]i i x x -上任意取一点i ξ,作1 ()n i i i f x ξ=?∑, 若0 1 lim ()n i i i f x λξ→=??∑ 1(max{})i i n x λ≤≤=?存在. 就称该极限为()f x 在[,]a b 上的定积分. 记为 1 ()lim ()n b i i a i f x dx f x λξ→==??∑? 当上述极限存在时,称()f x 在[,]a b 上可积. 2. 若()f x 在[,]a b 上连续,则()f x 在[,]a b 上可积。 3. 若()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上可积. Ⅱ. 定积分的几何意义 定积分 ()b a f x dx ? 在几何上表示:由曲线()y f x =,直线x a =和x b =以及x 轴所围图形面 积的代数和 (x 轴上方的面积取正,x 轴下方的面积取负) Ⅲ. 定积分的性质 1. 补充规定:(1)当a b =时, ()0b a f x dx =? (2)当a b >时, ()()b a a b f x dx f x dx =-?? 2. 性质: (1) [()()]()()b b b a a a f x g x dx f x dx g x dx - -+=+? ?? (2) ()(),()b b a a kf x dx k f x dx k =? ?为常数 (3) ()()()b c b a a c f x dx f x dx f x dx =+? ?? (4) b a dx b a =-? (5) 若在[,]a b 上,()0f x ≥,则 ()0,()b a f x dx a b ≥

相关文档
最新文档