选修2-2 第二章推理与证明

选修2-2 第二章推理与证明
选修2-2 第二章推理与证明

§2.1.1 合情推理(1)

1. 结合已学过的数学实例,了解归纳推理的含义;

2. 能利用归纳进行简单的推理,体会并认识归纳推理在

P 28~ P 30,找出疑惑之处)

(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨; (2)八月十五云遮月,来年正月十五雪打灯.

以上例子可以得出推理是 的思维过程. 二、新课导学

※ 学习探究

探究任务:归纳推理

问题1:哥德巴赫猜想:观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜想:

问题2:由铜、铁、铝、金等金属能导电,归纳出 .

新知:归纳推理就是由某些事物的 ,推出该类事物的 的推理,或者由 的推理.简言之,归纳推理是由 的推理. ※ 典型例题

例1 观察下列等式: 1+3=4=2

2, 1+3+5=9=23, 1+3+5+7=16=2

4, 1+3+5+7+9=25=25, ……

你能猜想到一个怎样的结论?

变式:观察下列等式:1=1

1+8=9,

1+8+27=36,

1+8+27+64=100, ……

你能猜想到一个怎样的结论?

例2已知数列{}n a 的第一项11a =,且n

n

n a a a +=+11(1,2,3...)n =,试归纳出这个数列的通项公式.

变式:在数列{n a }中,11

()2n n n

a a a =+(2n ≥),试猜想这个数列的通项公式.

※ 动手试试

练1.

.

练2. 在数列{n a }中,11a =,122n

n n

a a a +=+(*n N ∈),试猜想这个数列的通项公式.

三、总结提升

※ 学习小结

1.归纳推理的定义.

2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想). ※ 知识拓展

1.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对0

20213F =+=,1

21215F =+=,

2222117F =+=,32321257F =+=,4

242165537F =+=的观察,发现其结果都是素数,提出猜想:对所有的自然数n ,任何形如221n

n F =+的数都是素数. 后来瑞士数学家欧拉发现

5

252142949672976416700417F =+==?不是素数,推翻费马猜想.

2.四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.

※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列关于归纳推理的说法错误的是( ).

A.归纳推理是由一般到一般的一种推理过程

B.归纳推理是一种由特殊到一般的推理过程

C.归纳推理得出的结论具有或然性,不一定正确

D.归纳推理具有由具体到抽象的认识功能 2.若2()41,f n n n n N =++∈,下列说法中正确的是( ).

A.()f n 可以为偶数

B. ()f n 一定为奇数

C. ()f n 一定为质数

D. ()f n 必为合数

3.已知2()

(1),(1)1()2

f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ).

A.4()22x f x =

+ B.2()1f x x =+ C.1()1f x x =+ D.2

()21f x x =+ 4.111()1()23f n n N n +=+++???+∈,经计算得357

(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>

猜测当2n ≥时,有__________________________. 5.

从22211,2343,345675=++=++++=中得出的一般性结论是_____________ .

§2.1.1 合情推理(2)

1. 结合已学过的数学实例,了解类比推理的含义;

.

P 30~ P 38,找出疑惑之处)

1.已知 0(1,2,,)i a i n >=,考察下列式子:111()1i a a ?≥;1212

11

()()()4ii a a a a ++≥;

123123111

()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 .

2. 猜想数列1111,,,,13355779

--????的通项公式是 .

二、新课导学

※ 学习探究

鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理.

新知:类比推理就是由两类对象具有 和其中 ,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由 到 的推理. ※ 典型例题

例2 类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.

新知: 和 都是根据已有的事实,经过观察、分析、比较、联想,再进行 ,然后提出 的推理,我们把它们统称为合情推理.一般说合情推理所获得的结论,仅仅是一种猜想,未必可靠.

※ 动手试试:如图,若射线OM ,ON 上分别存在点12,M M 与点12,N N ,则三角形面积之比

1122

11

22

OM N OM N S OM ON S OM ON ??=

?.若不在同一平面内的射线OP ,OQ 上分别存在点12,P P ,点12,Q Q 和点12,R R ,则类似

的结论是什么?

三、总结提升

※ 学习小结

1.类比推理是由特殊到特殊的推理. 2. 类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质得出一个命题(猜想).

3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法.

※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列说法中正确的是( ).

A.合情推理是正确的推理

B.合情推理就是归纳推理

C.归纳推理是从一般到特殊的推理

D.类比推理是从特殊到特殊的推理

2. 下面使用类比推理正确的是( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?”

C.“若()a b c ac bc +=+” 类推出“a b a b

c c c

+=+

(c≠0)”

D.“n n a a b =n (b )” 类推出“n n

a a

b +=+n (b )

3. 在数列1,1,2,3,5,8,13,x ,34,55……中的x 的值是 .

4. 一同学在电脑中打出如下若干个圆

若将此若干个圆按此规律继续下去,得到一系

列的圆,那么在前2006个圆中有 个黑圆. 5. 在各项为正的数列{}n a 中,数列的前n 项和n S 满足???

? ??+=n n n a a S 121(1) 求321,,a a a ;(2) 由(1)猜想数列{}n a 的通项公式;(3) 求n S

§2.1.2 演绎推理

1. 结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

.

3942

复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理. 复习2:合情推理的结论 . 二、新课导学

※ 学习探究

探究任务一:演绎推理的概念 问题:观察下列例子有什么特点?

(1)所有的金属都能够导电,铜是金属,所以 ;

(2)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ; (3)在一个标准大气压下,水的沸点是100C ?,所以在一个标准大气压下把水加热到100C ?时, ; (4)一切奇数都不能被2整除,2007是奇数,所以 ; (5)三角函数都是周期函数,sin α是三角函数,所以 ;

(6)两条直线平行,同旁内角互补.如果A 与B 是两条平行直线的同旁内角,那么 . 新知:演绎推理是从 出发,推出 情况下的结论的推理.

简言之,演绎推理是由 到 的推理.

探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

新知:“三段论”是演绎推理的一般模式: 大前提—— ; 小前提—— ; 结论—— .

试试:请把探究任务一中的演绎推理(2)至(6)写成“三段论”的形式.

※ 典型例题

例1 在锐角三角形ABC 中,,AD BC BE AC ⊥⊥,D ,E 是垂足. 求证:AB 的中点M 到D ,E 的距离相等.

新知:用集合知识说明“三段论”: 大前提: 小前提: 结 论:

例2证明函数2()2f x x x =-+在(],1-∞-上是增函数.

例3 下面的推理形式正确吗?推理的结论正确吗?为什么? 所有边长相等的凸多边形是正多边形,(大前提) 菱形是所有边长都相等的凸多边形, (小前提) 菱形是正多边形. (结 论)

小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

※ 动手试试

练1. 用三段论证明:通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列.

练2. 在ABC ?中,AC BC >,CD 是AB 边上的高,求证ACD BCD ∠>∠. 证明:在ABC ?中,,CD AB AC BC ⊥>, 所以AD BD >, 于是ACD BCD ∠>∠. 指出上面证明过程中的错误.

三、总结提升

※ 学习小结

1. 合情推理???

归纳推理:由特殊到一般

类比推理:由特殊到特殊;结论不一定正确.

2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 因为指数函数x y a =是增函数,1()2x y =是指数函数,则1

()2

x y =是增函数.这个结论是错误的,这是因为

A.大前提错误

B.小前提错误

C.推理形式错误

D.非以上错误 2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ?/平面α,

直线a ≠

?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4. 用三段论证明:在梯形ABCD 中,AD//BC ,AB=DC ,则B C ∠=∠.

5. 用三段论证明:3()()f x x x x R =+∈为奇函数.

§2.1 合情推理与演绎推理(练习)

1. 能利用归纳推理与类比推理进行一些简单的推理;

2. 掌握演绎推理的基本方法,并能运用它们进行一些简单的推理; .

2840

复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理.

合情推理的结论 .

复习2:演绎推理是由 到 的推理.

演绎推理的结论 .

二、新课导学

※ 典型例题 例1 观察(1)(2)

000000tan10tan 20tan 20tan 60tan 60tan101;++=000000tan5tan10tan10tan 75tan 75tan51++= 由以上两式成立,推广到一般结论,写出你的推论.

变式:已知:2

3150sin 90sin 30sin 222=

++

2

3125sin 65sin 5sin 222=

++ 通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.

例2 在Rt ABC ?中,若90C ∠=?,则22cos cos 1A B +=,则在立体几何中,给出四面体性质的猜想.

变式:已知等差数列{}n a 的公差为d ,前n 项和为n S ,有如下性质: (1)()n m a a n m d =+-,

(2)若*,(,,,)m n p q m n p q N +=+∈,

则m n p q a a a a +=+,

类比上述性质,在等比数列{}n b 中,写出类似的性质.

※ 动手试试 练1.

若数列{}n a 的通项公式)()1(1

2

+∈+=

N n n a n ,记)1()1)(1()(21n a a a n f -???--=,试通过计算

)3(),2(),1(f f f 的值,推测出.________________)(=n f

练2. 若三角形内切圆半径为r ,三边长为a,b,c ,则三角形的面积1

()2

S r a b c =++,根据类比思想,若四面体

内切球半径为R ,四个面的面积为1234,,,S S S S ,则四面体的体积V = .

三、总结提升

※ 学习小结

1. 合情推理???

归纳推理:由特殊到一般

类比推理:由特殊到特殊;结论不一定正确.

2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

※ 知识拓展

有金盒、银盒、铝盒各一个,只有一个盒子里有肖像,金盒上写有命题p :肖像在这个盒子里,银盒子上写有命题q :肖像不在这个盒子里,铝盒子上写有命题r :肖像不在金盒里,这三个命题有且只有一个是真命题,问肖像在哪个盒子里?为什么?

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 由数列1,10,100,1000,,猜想该数列的第n 项可能是( ). A.10n B.110n - C.110n + D.11n

2.下面四个在平面内成立的结论 ①平行于同一直线的两直线平行

②一条直线如果与两条平行线中的一条垂直,则必与另一条相交 ③垂直于同一直线的两直线平行

④一条直线如果与两条平行线中的一条相交,则必与另一条相交 在空间中也成立的为( ).

A.①②

B. ③④

C. ②④

D.①③

3.用演绎推理证明函数3y x =是增函数时的大前提是( ). A.增函数的定义

B.函数3y x =满足增函数的定义

C.若12x x <,则12()()f x f x <

D.若12x x <, 则12()()f x f x > 4.在数列{}n a 中,已知112,31

n

n n a a a a +==

+*()n N ∈,试归纳推理出n a = .

5. 设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,= (用含n 的数学表达式表示).

§2.2.1 综合法和分析法(1)

1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;

2. 会用综合法证明问题;了解综合法的思考过程.

.

4547

复习1:两类基本的证明方法: 和 . 复习2:直接证明的两中方法: 和 . 二、新课导学

※ 学习探究

探究任务一:综合法的应用

问题:已知,0a b >, 求证:2222()()4a b c b c a abc +++≥.

新知:一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法. 反思:

框图表示: 要点:顺推证法;由因导果.

※ 典型例题

例1已知,,a b c R +∈,1a b c ++=,求证:1119a b c

++≥

变式:已知,,a b c R +∈,1a b c ++=,求证:111

(1)(1)(1)8a b c

---≥.

()f n

例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.

变式:设在四面体P ABC -中,

90,,ABC PA PB PC ∠=?==D 是AC 的中点.求证:PD 垂直于ABC ?所在的平面.

小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来.

※ 动手试试

练1. 求证:对于任意角θ,44cos sin cos 2θθθ-=

练2. ,A B

为锐角,且tan tan tan A B A B +, 求证:60A B +=. (提示:算tan()A B +)

三、总结提升

※ 知识拓展

综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 已知22,,"1""1"x y R xy x y ∈≤+≤则是的( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件 2. 如果821,,a a a ???为各项都大于零的等差数列,公差0≠d ,则( )

A .5481a a a a >

B .5481a a a a <

C .5481a a a a +>+

D .5481a a a a = 3. 设23451111

log 11log 11log 11log 11

P =

+++,则( ) A .01P << B .12P << C .23P << D .34P <<

4. 已知a ,b ,c 是全不相等的正实数,求证:3b c a a c b a b c

a b c

+-+-+-++>

5. 在△ABC 中,证明:

2

2221

12cos 2cos b

a b B a A -=-

§2.2.1 综合法和分析法(二)

1. 会用分析法证明问题;了解分析法的思考过程.

.

4850 复习1:综合法是由 导 ;

复习2:基本不等式: 二、新课导学

※ 学习探究

探究任务一:分析法

问题:如何证明基本不等式

(0,0)2

a b

a b +>>

新知:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.

反思:框图表示

要点:逆推证法;执果索因

※ 典型例题

例1>

变式:求证<

小结:证明含有根式的不等式时,用综合法比较困难,所以我们常用分析法探索证明的途径.

例2 在四面体S ABC -中,,SA ABC AB BC ⊥⊥面,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F ,求证

AF SC ⊥.

变式:设,,a b c 为一个三角形的

三边, 1

()2s a b c =++,且22s ab =,试

证2s a <.

小结:用题设不易切入,要注意用分析法来解决问题.

※ 动手试试

练1. 求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.

练2. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:2224c a b ab --+≥

三、总结提升

※ 学习小结

分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ???,直到所有的已知P 都成立. ※ 知识拓展

证明过程中分析法和综合法的区别:

在综合法中,每个推理都必须是正确的,每个推论都应是前面一个论断的必然结果,因此语气必须是肯定的.

分析法中,首先结论成立,依据假定寻找结论成立的条件,这样从结论一直到已知条件. ※ 当堂检测(时量:5分钟 满分:10分)计分:

1. ,其中最合理的是 A.综合法 B.分析法 C.反证法 D. 归纳法

2.不等式①233x x +>;②2b a

a b

+≥,其中恒成立的是

A.①

B.②

C.①②

D.都不正确

3.已知0y x >>,且1x y +=,那么

A.22x y x y xy +<<<

B.22x y xy x y +<<<

C.22x y x xy y +<<<

D.22x y x xy y +<<<

4.若,,a b c R ∈,则22

2a b c ++ ab bc ac ++.

5.将a 千克的白糖加水配制成b 千克的糖水(0)b a >>,则其浓度为 ;若再加入m 千克的白糖(0)m >,糖水更甜了,根据这一生活常识提炼出一个常见的不等式: .

§2.2.1 综合法和分析法(3)

1. 能结合已经学过的数学示例,了解综合法和分析法的思考过程和特点;

2. 学会用综合法和分析法证明实际问题,并理解分析法和综合法之间的内在联系; .

5051 复习1:综合法是由 导 ; 复习2:分析法是由 索 . 二、新课导学

※ 学习探究

探究任务一:综合法和分析法的综合运用

问题:已知,()2

k k Z π

αβπ≠+∈,且2sin cos 2sin ,sin cos sin ,θθαθθβ+=?= 求证:22221tan 1tan 1tan 2(1tan )αβαβ--=++.

新知:用P 表示已知条件、定义、定理、公理等,用Q 表示要证明的结论,则上述过程可用框图表示为:

试试:已知tan sin ,tan sin a b αααα+=-=,求证:222()16a b ab -=.

反思:在解决一些复杂、技巧性强的题目时,我们可以把综合法和分析法结合使用.

※ 典型例题

例 已知,A B 都是锐角,且2

A B π

+≠,(1tan )(1tan )2A B ++=,求证:45A B +=?

变式:已知

1tan 12tan α

α

-=+,求证:3sin 24cos 2αα=-.

小结:牢固掌握基础知识是灵活应用两种方法证明问题的前提,本例中,三角公式发挥着重要作用.

※ 动手试试

练1. 设实数,,a b c 成等比数列,非零实数,x y 分别为a 与b ,b 与c 的等差中项,求证2a c

x y

+=.

练2. 已知54A B π+=,且,()2

A B k k Z π

π≠+∈,求证:(1tan )(1tan )2A B ++=.

三、总结提升

※ 学习小结

1. 直接证明包括综合法和分析法.

2. 比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径.

※ 知识拓展

综合法是“由因导果”,而分析法是“执果索因”,它们是截然相反的两种证明方法,分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决问题的问题中,综合运用,效果会更好,综合法与分析法因其在解决问题中的作用巨大而受命题者的青睐,在历年的高考中均有体现,成为高考的重点和热点之一.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 给出下列函数①3y x x =-,②sin cos ,y x x x =+③sin cos ,y x x =④22,x x y -=+其中是偶函数的有( ). A .1个 B .2个 C .3 个 D .4个

2. m 、n 是不同的直线,,,αβγ是不同的平面,有以下四个命题( ).

①//////αββγαγ???? ;②//m m αββα⊥??⊥?? ;③//m m ααββ⊥??⊥?? ;④////m n m n αα?????

其中为真命题的是 ( ) A .①④ B. ①③ C .②③ D .②④

3. 下列结论中,错用基本不等式做依据的是( ).

A .a ,b 均为负数,则2a b

b a +≥

B 22≥

C .lg log 102x x +≥

D .1

,(1)(1)4a R a a

+∈++≥

4. 设α、β、r 是互不重合的平面,m ,n 是互不重合的直线,给出四个命题: ①若m ⊥α,m ⊥β,则α∥β ②若α⊥r ,β⊥r ,则α∥β ③若m ⊥α,m ∥β,则α⊥β ④若m ∥α,n ⊥α,则m ⊥n 其中真命题是 .

5. 已知:231,:(3)0p x q x x -<-<, 则p 是q 的 条件.

§2.2.2 反证法

1. 结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;

2. 了解反证法的思考过程、特点; .

5254

复习1:直接证明的两种方法: 和 ; .

※ 学习探究

探究任务:反证法

问题(1):将9个球分别染成红色或白色,那么无论怎样染,至少有5个球是同色的,你能证明这个结论吗? 问题(2):三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?

新知:一般地,假设原命题 ,经过正确的推理,最后得出 ,因此说明假设 ,从而证明了原命题 .这种证明方法叫 . 试试:

证明:5,3,2不可能成等差数列.

反思:证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立 方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,

通过证明一个命题的逆否命题的正确,从而肯定原命题真实.

※ 典型例题

例1 已知0a ≠,证明x 的方程ax b =有且只有一个根.

变式:证明在ABC ?中,若C ∠是直角,那么B ∠一定是锐角.

小结:应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).

例2求证圆的两条不是直径的相交弦不能互相平分.

变式:求证:一个三角形中,至少有一个内角不少于60?.

小结:反证法适用于证明“存在性,唯一性,至少有一个,至多有一个”等字样的一些数学问题. ※ 动手试试

练1. 如果1

2

x >

,那么2210x x +-≠.

练2. ABC ?的三边,,a b c 的倒数成等差数列,求证:90B

三、总结提升

※ 学习小结

1. 反证法的步骤:①否定结论;②推理论证;③导出矛盾;④肯定结论.

2. 反证法适用于证明“存在性,唯一性,至少有一个,至多有一个”等字样的一些数学问题. ※ 知识拓展

空城计与反证法

空城计相传三国时代,蜀国丞相兼军师诸葛亮屯兵阳平时派大将魏延领兵攻打魏国,只留下少数老弱军士守城,不料魏国大都督司马懿率大队兵马杀来,靠几个老弱士兵出城应战犹如鸡蛋碰石头,怎么办?诸葛亮冷静思考之后,传令大开城门,让老弱士兵在城门口洒扫道路,自己则登上城楼,摆好香案,端坐弹琴,态度从容,琴声优雅, 司马懿来到城前见此情况,心中疑惑,他想诸葛亮一生精明过人,谨慎有余,今天如此这般与其一生表

现矛盾,恐怕城内必有伏兵,故意诱我入城,决不能中计,于是急令退兵.

诸葛亮正是利用司马懿这种心理上的矛盾,才以“不守城”来达到暂时“守住城”的目的,诸葛亮从问题(守住城)的反面(不守城)考虑,来解决用直接或正面方法(用少数老弱兵士去拼杀)很难或无法解决的问题,在历史上留下美谈,这就是家喻户晓的“空城计”.

※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 用反证法证明命题“三角形的内角至少有一个不大于60?”时,反设正确的是( ). A .假设三内角都不大于60? B .假设三内角都大于60?

C .假设三内角至多有一个大于60?

D .假设三内角至多有两个大于60? 2. 实数,,a b c 不全为0等价于为( ).

A .,,a b c 均不为0

B .,,a b c 中至多有一个为0

C .,,a b c 中至少有一个为0

D .,,a b c 中至少有一个不为0

3.设,,a b c 都是正数,则三个数111

,,a b c b c a

+++( ).

A .都大于2 B.至少有一个大于2 C.至少有一个不小于2 D.至少有一个不大于2 4. 用反证法证明命题“自然数,,a b c 中恰有一个偶数”的反设为 .

5.已知,0x y >,且2x y +>.试证:

11,x y

y x

++中至少有一个小于2.

§2.3 数学归纳法(1)

1. 了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤;

2. 能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;

.

104106 复习1:在数列{}n a 中,

*111,,()1n n n

a

a a n N a +==∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式.

复习2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数?

二、新课导学

※ 学习探究

探究任务:数学归纳法

问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?

新知:数学归纳法两大步:

(1)归纳奠基:证明当n 取第一个值n 0时命题成立; (2)归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.

原因:在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.

试试:你能证明数列的通项公式1

n a n

=这个猜想吗?

反思:数学归纳法是一种特殊的证明方法,主要用于研究与正整数有关的数学问题.

关键:从假设n =k 成立,证得n =k +1成立.

※ 典型例题

例1 用数学归纳法证明

2222*(1)(21)

123,6

n n n n n N +++++

+=

变式:用数学归纳法证明

2*1427310(31)(1),n n n n n N ?+?+?+++=+∈

小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. 例2 用数学归纳法证明:

首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-,前n 项和的公式是1(1)

2

n n n S na d -=+.

变式:用数学归纳法证明:

首项是1a ,公比是q 的等差数列的通项公式是1

1n n a a q -=,前n 项和的公式是1(1)1n n a q S q

-=-.(1q ≠)

小结:数学归纳法经常证明数列的相关问题.

※ 动手试试

练1. 用数学归纳法证明:当n 为整数时,2135(21)n n ++++-=

三、总结提升

※ 学习小结

1. 数学归纳法的步骤

2. 数学归纳法是一种特殊的证明方法,主要用于研究与正整数有关的数学问题. ※ 当堂检测(时量:5分钟 满分:10分)计分:

1. 用数学归纳法证明:

221

11(1)1n n a a a a a a

++-++++=≠-,在验证1n =时,左端计算所得项为

A.1

B.21a a ++

C.1a +

D.231a a a +++ 2. 用数学归纳法证明

时,从n=k 到n=k+1,左端需要增加的代数式为

A. B. C. D.

3. 设*111()()122f n n N n n n

=+++∈++,那么等于( ) A. B. C. D.

4. 已知数列的前n 项和

,而,通过计算,猜想

5. 用数学归纳法证明:

111

1133557

(21)(21)21

n

n n n ++++

=???-++

§2.3 数学归纳法(2)

1.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;

.

107108 复习1:数学归纳法的基本步骤?

复习2:数学归纳法主要用于研究与 有关的数学问题. 二、新课导学

※ 学习探究

探究任务:数学归纳法的各类应用 问题:已知数列 1111,,,,1447710(32)(31)n n ??????-?+,猜想n S 的表达式,并证明.

新知:数学归纳法可以应用于:(1)数列的先猜后证;(2)证明不等式;(3)证明整除性问题;(4)证明几何问题.

试试:已知数列1111,,,,,1223314(1)

n n ???????+,计算123,,S S S ,由此推测计算n S 的公式.

))(12(312)()3)(2)(1(*N n n n n n n n n ∈-???=++++ 12+k )12(2+k 112++k k 13

2++k k )()1(n f n f -+121+n 221

+n 221121++

+n n 221121+-+n n }{n a )2(2

≥=n a n S n n 11=a 432,,a a a =n a

反思:用数学归纳法证明时,要注意从n k =时的情形到1n k =+的情形是怎样过渡的.

※ 典型例题

例1平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2个部分

小结:用数学归纳法证明几何问题的关键是找项,即几何元素从k 到1k +所证的几何量增加多少.

例2 证明:3*5()n n n N +∈能被6整除.

变式:证明:2121n n x y --+能被x y +整除.

小结:数学归纳法证明整除性问题的关键是凑项,而采用增项、减项、拆项和因式分解的手段,凑出n k =的情形,从而利用归纳假设使问题获证. ※ 动手试试

练1. 已知111()123

f n n =+

+++

,求证:*(2)()2

n n

f n N >∈

练2. 证明不等式*|sin ||sin |()n n n N θθ≤∈

推理与证明(教案)

富县高级中学集体备课教案 年级:高二科目:数学授课人:授课时间:序号:第节课题第三章§1.1 归纳推理第 1 课时 教学目标1、掌握归纳推理的技巧,并能运用解决实际问题。 2、通过“自主、合作与探究”实现“一切以学生为中心”的理念。 3、感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。 重点归纳推理及方法的总结中心 发言 人王晓君 难点归纳推理的含义及其具体应用 教具课型新授课课时 安排 1课 时 教法讲练结合学法归纳总结个人主页 教学过程 教一、原理初探 ①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!” ②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在? ③探究:他是怎么发现“杠杆原理”的? 正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。 ④思考:整个过程对你有什么启发? ⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。 二、新课学习 1、哥德巴赫猜想 哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法观察猜想证明 归纳推理的发展过程

高考真题分类汇编——推理与证明 (5)

高考真题分类汇编——推理与证明 合情推理与演绎推理 1.[2014·北京卷] 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有() A.2人B.3人C.4人D.5人 答案:B 2.[2014·北京卷] 对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记 T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n), 其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数. (1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值; (2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小; (3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论) 解:(1)T1(P)=2+5=7, T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8. (2)T2(P)=max{a+b+d,a+c+d}, T2(P′)=max{c+d+b,c+a+b}. 当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b. 因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′). 当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b. 因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′). 所以无论m=a还是m=d,T2(P)≤T2(P′)都成立. (3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小, T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52. 3.[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系: ①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________. 答案:6 解析:若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确; 若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4. 若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4; 若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2; 综上所述,满足条件的有序数组的个数为6. 3.[2014·广东卷] 设数列{a n}的前n项和为S n,满足S n=2na n+1-3n2-4n,n∈N*,且S3

选修2-2推理与证明单元测试题(好经典)

《推理与证明》单元测试题 考试时间120分钟 总分150分 一.选择题(共50分) 1.下面几种推理过程是演绎推理的是 ( ) A .在数列{a n }中,a 1=1,a n =12(a n -1+1 an -1 )(n ≥2),由此归纳出{a n }的通项公式 B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人 C .由平面三角形的性质,推测空间四面体的性质 D .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180° 2.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y | =2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ) A .76 B .80 C .86 D .92 3. 观察下列各式:72=49,73=343,74=2401,…,则72012的末两位数字为( ) A .01 B .43 C .07 D .49 4. 以下不等式(其中..0a b >>)正确的个数是( ) 1> ② ③lg 2>A .0 B .1 C .2 D .3 5.如图,椭圆的中心在坐标原点, F 为左焦点,当AB FB ⊥时,有 ()()() 2 2 2 2 2 c b b a c a +++=+ ,从而得其离心率为 ,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为( ) A . 12 B .12+ C 6.如图,在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰 是由6颗珠宝构成的正六边形, 第三件首饰是由15颗珠宝构成的正六边形, 第四件首饰是由28颗珠宝构成的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,依此推断第8件首饰上应有( )颗珠宝。 第2件 第3件 第1件

高中数学选修2-2推理与证明教案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

高考数学:专题三 第三讲 推理与证明配套限时规范训练

第三讲 推理与证明 (推荐时间:50分钟) 一、选择题 1.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项 公式为 ( ) A .a n =3 n -1 B .a n =3n C .a n =3n -2n D .a n =3n -1+2n -3 2.已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2 -2-4 =2,依照以上各 式的规律,得到一般性的等式为 ( ) A.n n -4+8-n 8-n -4 =2 B.n +1n +1-4+n +1+5n +1-4=2 C.n n -4+n +4n +1-4 =2 D.n +1n +1-4+n +5n +5-4 =2 3. “因为指数函数y =a x 是增函数(大前提),而y = ??? ?13x 是指数函数(小前提),所以函数y = ??? ?13x 是增函数(结论)”,上面推理的错误在于 ( ) A .大前提错误导致结论错 B .小前提错误导致结论错 C .推理形式错误导致结论错 D .大前提和小前提错误导致结论错 4.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”; ②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”; ④“t ≠0,mt =xt ?m =x ”类比得到“p ≠0,a ·p =x ·p ?a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”. 以上的式子中,类比得到的结论正确的个数是 ( ) A .1 B .2 C .3 D .4 5.已知定义在R 上的函数f (x ),g (x )满足f x g x =a x ,且f ′(x )g (x )

高二数学选择进修2-2第二章推理与证明

高二数学选修2-2第二章推理与证明 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ?/平面α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的, 这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 5、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2+…+a n +1=a a n --+112 , (a ≠1,n ∈N)”时,在验证n=1 成立时,左边应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3 7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时

2019高考数学一轮复习第11章复数算法推理与证明第3讲合情推理与演绎推理分层演练文

第3讲 合情推理与演绎推理 一、选择题 1.观察下列各式:a +b =1,a 2 +b 2 =3,a 3 +b 3 =4,a 4 +b 4 =7,a 5 +b 5 =11,…,则a 10 +b 10 =( ) A .121 B .123 C .231 D .211 解析:选B .法一:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n + a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123. 法二:由a +b =1,a 2 +b 2 =3,得ab =-1,代入后三个等式中符合,则a 10 +b 10 =(a 5 +b 5)2 -2a 5b 5 =123. 2.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( ) A .21 B .34 C .52 D .55 解析:选D .因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55. 3.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( ) A .(7,5) B .(5,7) C .(2,10) D .(10,2) 解析:选B .依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有 n (n +1) 2 个“整 数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每 个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7). 4.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB

推理与证明综合测试题

一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数 列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 6.观察式子:213122+ <,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n + +++<-L ≥ B.22211111(2)2321n n n + +++<+L ≥ C.222111211(2)23n n n n -+ +++,,∥.若 EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出: ma mb EF m m +=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △, OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之 比为:m n ,则OEF △的面积0S 与12S S ,的关系是( ) A.120mS nS S m n +=+ B.120nS mS S m n +=+

高中数学选修2-2推理与证明-直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

高中数学-推理与证明单元测试卷

绝密★启用前 高中数学-推理与证明单元测试卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.【题文】用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是() A.假设三个内角都不大于60度 B.假设三个内角至多有一个大于60度 C.假设三个内角都大于60度 D.假设三个内角至多有两个大于60度 2.【题文】菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中() A .大前提错误B .小前提错误 C .推理形式错误D .结论错误 3.【题文】由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面( ) A .各正三角形内一点 B .各正三角形的某高线上的点 C .各正三角形的中心 D .各正三角形外的某点 4.71115>,只需证() A .22)511()17(->- B .22)511()17(+>+ C .22)111()57(+>+ D .22)111()57(->-

5.【题文】命题“对于任意角θ,θθθ2cos sin cos 44=-”的证 明:4cos θ-“4sin θ=θθθθθθθ2cos sin cos )sin )(cos sin (cos 222222=-=+-.”该过程应用了() A .分析法 B .综合法 C .间接证明法 D .反证法 6.【题文】观察式子:232112<+,353121122<++,47 4131211222<+++,…,可归纳出式子为() A .121 1 3121 1222-< + +++ n n B .121 1 3121 12 22 +< ++++n n C .n n n 1 21 3121 12 22 -<++++ D .1221 312 1 12 22 +< ++++n n n 7.【题文】已知圆()x y r r 222+=>0的面积为πS r 2=?,由此推理椭圆 ()x y a b a b 22 22+=1>>0的面积最有可能是() A .πa 2?B .πb 2?C .πab ? D .π()ab 2 8.【题文】分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0<”索的因应是() A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 9.【题文】对于数25,规定第1次操作为3325133+=,第2次操作为 3313+3355+=,如此反复操作,则第2017次操作后得到的数是() A.25 B.250 C.55 D.133

选修1 2推理与证明

选修1 2推理与证明 选修1 2推理与证明选修1 2推理与证明 考纲导读 (一)合情推理与演绎推理 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 3.了解合情推理和演绎推理之间的联系和差异。 (二)直接证明与间接证明 1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。 2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。 (三)数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。高考导航 1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。 2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。 1、由数列1,10,100,1000,……猜测该数列的第n项可能是( ) A.10n; B.10n-1; C.10n+1; D.11n.

2、类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是( ) ①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 A.①; B.①②; C.①②③; D.③。 3、下列表述正确的是( ) ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。 A.①②③; B.②③④; C.②④⑤; D.①③⑤。 4、演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法( ) A.一般的原理原则; B.特定的命题; C.一般的命题; D.定理、公式。 5、实数a、b、c不全为0的条件是( ) A.a、b、c均不为0; B.a、b、c中至少有一个为0; C.a、b、c至多有一个为0; D.a、b、c至少有一个不为0。 6、设m≠n,x=m4-m3n,y=n3m-n4,则x与y的大小关系为( ) A.x>y; B.x=y; C.x 来源网络搜集整理,仅作为学习参考,请按实际情况需要自行编辑

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.360docs.net/doc/0011075259.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

推理与证明练习题汇编

合情推理与演绎推理 1.下列说法正确的是 ( ) A.类比推理是由特殊到一般的推理 B.演绎推理是特殊到一般的推理 C.归纳推理是个别到一般的推理 D.合情推理可以作为证明的步骤 2.下面使用类比推理结论正确的是 ( ) A .“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =”; B .“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?”; C .“若()a b c ac bc +=+” 类推出“a b a b c c c +=+ (c ≠0)”; D .“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、下面几种推理是合情推理的是( ) (1)由正三角形的性质,推测正四面体的性质; (2)由平行四边形、梯形内角和是360?,归纳出所有四边形的内角和都是360?; (3)某次考试金卫同学成绩是90分,由此推出全班同学成绩都是90分; (4)三角形内角和是180?,四边形内角和是360?,五边形内角和是540?, 由此得凸多边形内角和是()2180n -? A .(1)(2) B .(1)(3) C .(1)(2)(4) D .(2)(4) 4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→ 明文(解密).已知加密规则为:明文,,,a b c d 对应密文2,2,23,4a b b c c d d +++, 例如,明文1,2,3,4,对应密文5,7,18,16,当接收方收到密文14,9,23,28时,则解密 得到的明文为( ) A .4,6,1,7 B .7,6,1,4 C .6,4,1,7 D .1,6,4,7 5.观察以下各式:???=++++++=++++=++=;710987654;576543,3432;112 222, 你得到的一般性结论是______________________________________________________. 6、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004 折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 7、黑白两种颜色的正六形地面砖块按 如图的规律拼成若干个图案,则第五 个图案中有白色地面砖( )块. A.21 B.22 C.20 D.23

选修2-2 第二章 推理与证明(B)

实用文档 选修2-2 第二章 推理与证明(B) 一、选择题 1、某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1) 种走法,从平地上到第二级台阶时有f (2)种走法,……则他从平地上到第n (n ≥3)级台阶 时的走法f (n )等于( ) A .f (n -1)+1 B .f (n -2)+2 C .f (n -2)+1 D .f (n -1)+f (n -2) 2、已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2 ,可推知扇形面 积公式S 扇等于( ) A.r 22 B.l 22 C.lr 2 D .不可类比 3、设凸n 边形的内角和为f (n ),则f (n +1)-f (n )等于( ) A .n π B.(n -2)π

C.π D.2π 4、“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是 ( ) A.正方形都是对角线相等的四边形 B.矩形都是对角线相等的四边形 C.等腰梯形都是对角线相等的四边形 D.矩形都是对边平行且相等的四边形 5、设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出 f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是( ) A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立 B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立 C.若f(7)<49成立,则当k≥8时,均有f(k)

实用文档 6、已知p =a +1 a -2 (a >2),q =2-a 2+4a -2 (a >2),则( ) A .p >q B .p 0,则1a +1b +1c 的值( ) A .一定是正数 B .一定是负数 C .可能是零 D .正、负不能确定 8、如果x >0,y >0,x +y +xy =2,则x +y 的最小值是( ) A.32 B .23-2 C .1+ 3 D .2-3 9、设f (n )=1n +1+1n +2+…+1 2n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.1 2n +2

人教A版选修1-2推理与证明测试题及答案

第二章 推理与证明 单元检测题 一、选择题(本大题共12小题,每小题5分,共60分) 1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面所有直线;已知直线b ?/平面 α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“ n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3.在十进制中0 1 2 3 2004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 2004 4. 设 0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010 ()f x =( ) A.cos x B .-cos x C .sin x D -sin x 5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 6.下面几种推理是类比推理的是( ) A .两条直线平行,同旁角互补,如果∠A 和∠ B 是两条平行直线的同旁角,则∠A +∠B =1800 B .由平面三角形的性质,推测空间四边形的性质

高考数学推理与证明

第十二章推理与证明 考纲解读 分析解读 本部分是新课标内容,高考考查以下几个方面:1.归纳推理与类比推理以选择题、填空题的形式出现,考查学生的逻辑推理能力,而演绎推理多出现在立体几何的证明中;2.直接证明与间接证明作为证明和推理数学命题的方法,常以不等式、立体几何、解析几何、函数为载体,考查综合法、分析法及反证法.本节内容在高考中的分值分配:①归纳推理与类比推理分值为5分左右,属中档题;②证明问题以解答题形式出现,分值为12分左右,属中高档题.

五年高考 考点一合情推理与演绎推理 1.(2016北京,8,5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊. 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( ) A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛 C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛 答案 B 2.(2017北京,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i)男学生人数多于女学生人数; (ii)女学生人数多于教师人数; (iii)教师人数的两倍多于男学生人数. ①若教师人数为4,则女学生人数的最大值为;

②该小组人数的最小值为. 答案①6 ②12 3.(2016课标全国Ⅱ,16,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是. 答案1和3 4.(2016山东,12,5分)观察下列等式: π- +π - =×1×2; π- +π - +π - +π - =×2×3; π- +π - +π - +…+π - =×3×4; π- +π - +π - +…+π - =×4×5; …… 照此规律, π- +π - +π - +…+π - = . 答案 5.(2015陕西,16,5分)观察下列等式 1-= 1-+-=+ 1-+-+-=++ …… 据此规律,第n个等式可为. 答案1-+-+…+ - -=++…+ 6.(2014课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市;

第53讲 推理与证明(解析版)

简单已测:1994次正确率:87.2 % 1.下列表述正确的是( ) ①归纳推理是由部分到整体的推 理;②归纳推理是由?般到?般的推理;③演绎推理是由?般到特殊的推理;④类?推理是由特殊到?般的推理;⑤类?推理是由特殊到特殊的推理.A.①②③ B.②③④C.①③⑤ D.②④⑤ 考点:归纳推理的常??法、类?推理的常??法知识点:归纳推理、类?推理答案:C 解析:所谓归纳推理,就是从个别性知识推出?般性结论的推理. 故①对②错; ?所谓演绎推理是由?般到特殊的推理.故③对; 类?推理是根据两个或两类对象有部分属性相同,从?推出它们的其他属性也相同的推理.故④错⑤对.故选:. ?般已测:2488次正确率:82.5 % 2.图是“推理与证明”的知识结构图,如果要加?“归纳”,则应该放在( ) A.“合情推理”的下位 B.“演绎推理”的下位 C.“直接证明”的下位 D.“间接证明”的下位 考点:归纳推理的常??法、类?推理的常??法知识点:归纳推理、类?推理答案:A 解析:合情推理包括归纳推理与类?推理,因此答案为. C A

简单已测:1990次正确率:95.2 % 3.给出下列表述:①综合法是由因导果法;②综合法是顺推证法;③分析法是执果索因法;④分析法是间接证明法; ⑤分析法是逆推证法.其中正确的表述有( )A.个B.个C.个D. 个 考点:分析法的思考过程、特点及应?、综合法的思考过程、特点及应?知识点:综合法、分析法答案:C 解析:结合综合法和分析法的定义可知①②③⑤均正确,分析法和综合法均为直接证明法,故④不正确. ?般 已测:3748次 正确率:87.4 % 4.观察下列各式:,则的末四位数字为( ) A.B.C.D. 考点:有理数指数幂的运算性质、归纳推理的常??法知识点:有理数指数幂的运算法则、归纳推理答案:D 解析:, 可以看出这些幂的最后位是以为周期变化的, , 的末四位数字与的后四位数相同,是, 故选D ?般已测:1886次正确率:81.9 % 5.观察下列各式:,, ,,, ,则=( ) A.B.C. 23455=3125,5=15625,5=78125,?5 6 7520113125562506258125 ∵5=3125,5=15625,5=781255 675=390625,5=1953125,5=9765625,5=48828125? 89101144∵2011÷4=502?3∴52011578125a +b =1a +b =322a +b =433a +b =744a +b =1155…a +b 10102876123

相关文档
最新文档