导数与函数的零点讲义(非常好,有解析)

导数与函数的零点讲义(非常好,有解析)
导数与函数的零点讲义(非常好,有解析)

函数的零点

【题型一】函数的零点个数

【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。

【例1】已知函数3

()31,0f x x ax a =--≠

()I 求()f x 的单调区间;

()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =

的图象有三个不同的交点,

求m 的取值范围。

变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程

()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则

1234_________.

x x x x +++=

【答案】 -8

【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间

[]8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知

1212

x x +=-,

344

x x +=.

所以12341248

x x x x +++=-+=-.

6

【题型二】复合函数的零点个数

复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。

【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况

【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数

1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数

322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两个

相异的实根,求实数a 的取值范围(注:1n2≈0.69):

【题型三】如何运用导数求证函数“存在、有且只有一个”零点

【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即:

如果函数()f x 在区间[]a b ,上是一条连续不断曲线,并且()()0f a f b ?<,则函数()f x 在区间()a b ,上至少有一个零点。即存在一点()0x a b ∈,,使得0()0f x =,这个0x 也就是方程()0f x =的根.

(2)要求证一个函数“有且只有一个”零点,先要证明函数为单调函数,即存在零点;再用“函数零点的存在性定理”求证函数零点的唯一性。其依据为:

如果函数()f x 在区间[]a b ,上是单调函数,并且()()0f a f b ?<,则函数()f x 在区间

()a b ,上至多有一个零点。

【例3】设函数3

2

9()62

f x x x x a =-

+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;

(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.

变式:设函数()ln f x x =,()a

g x x

=

,()()()F x f x g x =+。若方程()f x mx =在区间2[1

,]e 上有唯一实数解,求实数m 的取值范围; 解析:方程()f x mx =在区间2[1,]e 上有唯一实数解等价于

方程ln x m

x

=在区间2

[1,]e 上有唯一实数解。 记2

ln ()[1,]x h x x e x =∈,则2

1ln ()x h x x

-'=, 令()0h x '=,得:x e =, 当[1

,]x e ∈时,()0h x '>,()h x 递增;

当2[,]x e

e ∈时,()0h x '<,()h x 递减。所以max 1()()h x h e e

==

。 易求得:(1)0h =,2

2

2()h e e =

为使方程ln x m x

=

在区间2

[1,]e 上有唯一实数解, 则直线y m =与函数ln ()x

y h x x

==的图象有唯一交点,

根据()h x 的图象可知:1

m

e

=

或 2

20m e ≤<。

故m 的取值范围是2210,e e ?

????????

???。

【例4】已知函数()x f x e mx =-在(1,)-+∞上没有零点,求m 的取值范围;

【题型四】如何运用导数来判断与求证含参函数的零点

【例5】(2013·江苏卷)设函数ax x x f -=ln )(,ax e x g x

-=)(,其中a 为实数.若)

(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论.

基础练习:

1.己知()ln x

f x a x a =--e ,其中常数0a >.

(1)当a =e 时,求函数()f x 的极值;

2.已知函数f (x )=1

2m (x -1)2-2x +3+ln x ,m ∈R .当m >0时,若曲线y =f (x )

在点P (1,1)处的切线l 与曲线y =f (x )有且只有一个公共点,求实数m 的值.

3.已知函数1

()1x f x x e

=-+

(a R ∈,e 为自然对数的底数).若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.

4.已知函数f (x )=13x 3+1-a 2

x 2-ax -a ,x ∈R,其中a >0.若函数f (x )在区间(-2,0)内恰

有两个零点,求a 的取值范围;

5.设1a >,函数a e x x f x

-+=)1()(2

(1) 求)(x f 的单调区间 ;

(2) 证明:)(x f 在(),-∞+∞上仅有一个零点;

参考答案与解析

【例1】解析:(1)'

2

2

()333(),f x x a x a =-=- 当0a <时,对x R ∈,有'

()0,f x >

当0a <时,()f x 的单调增区间为(,)-∞+∞

当0a >时,由'

()0f x >解得x

由'

()0f x <解得x <<

当0a >时,()f x 的单调增区间为(,)-∞+∞;()f x 的单调减区间为

(。

(2)因为()f x 在1x =-处取得极大值, 所以'

2

(1)3(1)30, 1.f a a -=?--=∴= 所以3

'

2

()31,()33,f x x x f x x =--=-

由'

()0f x =解得121,1x x =-=。

由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值(1)1f -=, 在1x =处取得极小值(1)3f =-。

因为直线y m =与函数()y f x =的图象有三个不同的交点,又(3)193f -=-<-,

(3)171f =>,

结合()f x 的单调性可知,m 的取值范围是(3,1)-。 【例2】令3()3f x x x d =-=,则:

()(())()h x f f x c f d c =-=-

(1)先讨论关于d 的方程()=c f d 即33d d c -=根的情况:[]2, 2c ∈-

2()333(1)(1)f d d d d '=-=-+

∴()f d 在区间(),1-∞-上单调递增,在区间()1,1-单调递减,在区间()1,+∞单调递增。

()(1)2f d f ==-极小值 ()(1)2f d f =-=极大值

描绘出函数的草图,并据草图可得:方程()=c f d 根的情况如下表所示:

(2)下面考虑方程()f x d =即33x x d -=根的情况:

据上述表格及图形()f x d =和()=c f d 的根的情况如下表

c 的范围

()f d c =

根d 的范围 ()=d f x 根的个数

C 的取值范围

根的个数 根或根的范围

2c =-

2个根 2d =-或1d =

22c -<< 3个根 1d 、2d 、3d

2c =

2个根

1d =-或2d =

综上所述:

当=2c 时,函数()y h x =有5 个零点; 当2c <时,函数()y h x =有9 个零点。

【例3】解:(1) '

2

()3963(1)(2)f x x x x x =-+=--,

因为(,)x ∈-∞+∞,'

()f x m ≥, 即 2

39(6)0x x m -+-≥恒成立,

所以 8112(6)0m ?=--≤, 得34m ≤-

,即m 的最大值为34

- (2) 因为 当1x <时, '

()0f x >;当12x <<时, '

()0f x <;当2x >时, '

()0f x >; 所以 当1x =时,()f x 取极大值 5

(1)2

f a =

-; 当2x =时,()f x 取极小值 (2)2f a =-;

故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或

52

a >

. 【例4】 方法一:当0n =,可得()()x

x

h x e mx e m ''=-=-,因为1x >-,所以1x

e e

>

, ①当1m e

时,()0x

h x e m '=->,函数()h x 在(1,)-+∞上单调递增,而(0)1h =, 所以只需1(1)0h m e -=+≥,解得1m e ≥-,从而11

m e e

-≤≤.

②当1m e

>

时,由()0x

h x e m '=-=,解得ln (1,)x m =∈-+∞, 当(1,ln )x m ∈-时,()0h x '<,()h x 单调递减;当(ln ,)x m ∈+∞时,()0h x '>,()h x 单调递增.

所以函数()h x 在(1,)-+∞上有最小值为(ln )ln h m m m m =-, 令ln 0m m m ->,解得m e <,所以

1

m e e

<<. 综上所述,1[,)m e e

∈-. 方法二:当0n =,x

e mx =

①当0x =时,显然不成立;

②当1x >-且0x ≠时,x e m x =,令x

e y x

=,则()221x

x x e x e x e y x x --'==,当10x -<<时,0y '<,函数x e y x =单调递减,01x <<时,0y '<,函数x

e y x =单调递减,当1

x >时,0y '>,函数x e y x =单调递增,又11x e y =-=-,1x y e ==,由题意知1

[,)m e e

∈-.

【例5】a x g x

-='e )(≥0在),1(+∞-上恒成立,则a ≤e x ,故:a ≤1e

)0(11)(>-=-=

'x x

ax a x x f . (ⅰ)若0<a ≤1e ,令)(x f '>0得增区间为(0,1

a );

令)(x f '<0得减区间为(1

a

,﹢∞).

当x →0时,f (x )→﹣∞;当x →﹢∞时,f (x )→﹣∞; 当x =1a 时,f (1a )=﹣ln a -1≥0,当且仅当a =1

e

时取等号.

故:当a =1e 时,f (x )有1个零点;当0<a <1

e

时,f (x )有2个零点.

(ⅱ)若a =0,则f (x )=﹣ln x ,易得f (x )有1个零点. (ⅲ)若a <0,则01

)(>-=

'a x

x f 在)0(∞+,上恒成立, 即:ax x x f -=ln )(在)0(∞+,上是单调增函数, 当x →0时,f (x )→﹣∞;当x →﹢∞时,f (x )→﹢∞. 此时,f (x )有1个零点.

综上所述:当a =1e 或a <0时,f (x )有1个零点;当0<a <1

e 时,

f (x )有2个零点.

练习1、【答案】(1)()f x 有极小值0,没有极大值 【解析】函数()f x 的定义域为(0,)+∞,

(1)当e a =时,()e eln e x

f x x =--,e ()e x

f x x

'=-

, 而e

()e x

f x x

'=-

在(0,)+∞上单调递增,又(1)0f '=, 当01x <<时,()(1)0f x f ''<=,则()f x 在(0,1)上单调递减;

当1x >时,()(1)0f x f ''>=,则()f x 在(1,)+∞上单调递增,所以()f x 有极小值

(1)0f =,没有极大值.

2、【解析】由f ′(x )=mx -m -2+1

x

,得f ′(1)=-1,

所以曲线y =f (x )在点P (1,1)处的切线l 的方程为y =-x +2. 由题意得,关于x 的方程f (x )=-x +2有且只有一个解, 即关于x 的方程1

2m (x -1)2-x +1+ln x =0有且只有一个解.

令g (x )=1

2

m (x -1)2-x +1+ln x (x >0).

则g ′(x )=m (x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)

x

(x >0).

①当0<m <1时,由g ′(x )>0得0<x <1或x >1m ,由g ′(x )<0得1<x <1

m

所以函数g (x )在(0,1)为增函数,在(1,1m )上为减函数,在(1

m

,+∞)上为增函

数.

又g (1)=0,且当x →∞时,g (x )→∞,此时曲线y =g (x )与x 轴有两个交点. 故0<m <1不合题意.

②当m =1时,g ′(x )≥0,g (x )在(0,+∞)上为增函数,且g (1)=0,故m =1符合题意.

③当m >1时,由g ′(x )>0得0<x <1

m 或x >1,由g ′(x )<0得1

m

<x <1,

所以函数g (x )在(0,1m ) 为增函数,在(1

m

,1)上为减函数,在(1,+∞)上为增

函数.

又g (1)=0,且当x →0时,g (x )→-∞,此时曲线y =g (x )与x 轴有两个交点. 故m >1不合题意.

综上,实数m 的值为m =1. 3、【答案】解: 当1a =时,()1

1x f x x e

=-+ 令()()()()111x

g x f x kx k x e =--=-+

, 则直线l :1y kx =-与曲线()y f x =没有公共点, 等价于方程()0g x =在R 上没有实数解. 假设1k >,此时()010g =>,1

1

11101k g k e -??

=-+<

?-??

, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程

()0g x =在R 上没有实数解”矛盾,故1k ≤.

又1k =时,()1

0x

g x e =

>,知方程()0g x =在R 上没有实数解. 所以k 的最大值为1. 解法二:

(Ⅰ)(Ⅱ)同解法一.

(Ⅲ)当1a =时,()11x f x x e

=-+

. 直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程1

11x

kx x e -=-+

在R 上没有实数解,即关于x 的方程: ()11x

k x e -=

(*)

在R 上没有实数解.

①当1k =时,方程(*)可化为

1

0x e =,在R 上没有实数解. ②当1k ≠时,方程(*)化为1

1

x xe k =-.

令()x

g x xe =,则有()()1x

g x x e '=+.

令()0g x '=,得1x =-,

当x 变化时,()g x '的变化情况如下表:

当1x =-时,()min g x e

=-

,同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e ??-+∞????

.

所以当

11,1k e ?

?∈-∞- ?-??

时,方程(*)无实数解, 解得k 的取值范围是()1,1e -.

综上,得k 的最大值为1.

5、【答案】(1)(),-∞+∞;(2)见解析; 【解析】(1)依题()()()()()

2

22'1'1'10x x

x f x x e x e x e =+++=+≥,

∴ ()f x 在(),-∞+∞上是单调增函数; (2)∵ 1a >,

∴ ()010f a =-<且()()

22110a f a a e a a a =+->+->, ∴ ()f x 在()0,a 上有零点,

又由(1)知()f x 在(),-∞+∞上是单调增函数,

()f x 在(),-∞+∞上仅有一个零点;

【考点定位】导数与函数单调性、零点、不等式,导数的几何意义等知识.

【名师点睛】本题主要考查导数与函数单调性、零点、不等式恒成立,导数的几何意义等基础知识,属于中高档题,解答此题关键在于第(1)问要准确求出()f x 的导数,第(2)问首先要说明()0,a 内有零点再结合函数在(),-∞+∞单调性就易证其结论,第(3)问由导数的几何意义易得()2

2

1m m e a e

+=-

对比要证明的结论后要能认清1m e m ≥+的放缩作用并

利用导数证明1m e m ≥+成立,则易证1m ≤

-.

高考数学(理)总复习:利用导数解决函数零点问题

题型一 利用导数讨论函数零点的个数 【题型要点解析】 对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是: (1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图; (4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )= ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=????? f (x ),f (x )≥ g (x ),g (x ),f (x )0)的零点个数. 【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1 =0或x 2=2 a ,∈a >0,∈x 1

即不等式2a ≤1x 3+3 x 在x ∈[1,2]上有解. 设y =1x 3+3x =3x 2+1 x 3(x ∈[1,2]), ∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∈y =1x 3+3 x 在x ∈[1,2]上单调递减, ∈当x =1时,y =1x 3+3 x 的最大值为4, ∈2a ≤4,即a ≤2. (3)由(1)知,f (x )在(0,+∞)上的最小值为f ?? ? ??a 2=1-4a 2, ∈当1-4 a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+ ∞)上无零点. ∈当1-4 a 2=0,即a =2时,f (x )min =f (1)=0. 又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4 a 2<0,即00, ∈存在唯一的x 0∈?? ? ??1,1e ,使得φ(x 0)=0, (∈)当0

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

导数与函数的切线及函数零点问题专题

导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2 x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t ·4 t =4(当且仅当t =2时等号成立), ∴m ≤? ? ???t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2,

g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点, ∴g(x)为先减后增且有唯一极值点. 由题意g(x)有且仅有一个零点, 则g(x)的极值一定为0, 而g(0)=a0+b0-2=0,故极值点为0. ∴g′(0)=0,即ln a+ln b=0,∴ab=1. 考点整合 1.求曲线y=f (x)的切线方程的三种类型及方法 (1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率 f ′(x ),由点斜式写出方程. (2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f ′(x )解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x ,再由点斜式或两点式写出方程. 2.三次函数的零点分布 三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下: 3.(1)研究函数零点问题或方程根问题的思路和方法 研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图

2020高考数学(文)总复习《导数与函数的零点》

导数与函数的零点 考点一 判断零点的个数 【例1】 (2020·潍坊检测)已知函数f (x )=ln x -x 2+ax ,a ∈R . (1)证明ln x ≤x -1; (2)若a ≥1,讨论函数f (x )的零点个数. (1)证明 令g (x )=ln x -x +1(x >0),则g (1)=0, g ′(x )=1 x -1=1-x x , 可得x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减. ∴当x =1时,函数g (x )取得极大值也是最大值, ∴g (x )≤g (1)=0,即ln x ≤x -1. (2)解 f ′(x )=1 x -2x +a =-2x 2+ax +1x ,x >0. 令-2x 20+ax 0+1=0,解得 x 0=a +a 2+8 4 (负值舍去), 在(0,x 0)上,f ′(x )>0,函数f (x )单调递增; 在(x 0,+∞)上,f ′(x )<0,函数f (x )单调递减. ∴f (x )max =f (x 0). 当a =1时,x 0=1,f (x )max =f (1)=0,此时函数f (x )只有一个零点x =1. 当a >1时,f (1)=a -1>0, f ????12a =ln 12a -14a 2+12<12a -1-14a 2+12 =-????12a -122 -14<0, f (2a )=ln 2a -2a 2<2a -1-2a 2=-2 ????a -122 -12 <0. ∴函数f (x )在区间????12a ,1和区间(1,2a )上各有一个零点. 综上可得:当a =1时,函数f (x )只有一个零点x =1; 当a >1时,函数f (x )有两个零点. 规律方法 1.利用导数求函数的零点常用方法:

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

利用导数研究函数的图像及零点问题(提高)

利用导数研究函数的图像及零点问题 【复习指导】 本讲复习时,应注重利用导数来研究函数图像与零点问题,复习中要注意等价转化、分类讨论等数学思想的应用. 双基自测 1.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =ln x 及函数y =e x 的图像分别交于点A (x 1,y 1),B (x 2,y 2),则2212x x +的值为 .9 2.[10浙江]已知0x 是函数1()21x f x x =+-的一个零点.若10(1,)x x ∈,20(,)x x ∈+∞,则1()f x ,2()f x 的符号分别______________.解:负;正; 3.已知函数()ln x f x e x -=+(e 是自然对数的底数),若实数0x 是方程()0f x =的解,且1020x x x <<<,则1()f x 2()f x (填“>”,“≥”,“<”,“≤”). 4.已知234101()1234101x x x x f x x =+-+-+???+,234101()1234101x x x x g x x =-+-+-???-,若函数()f x 有唯一零点1x ,函数()g x 有唯一零点2x ,则1x ,2x 所在的区间 为 .1(1,0)x ∈-,2(1,2)x ∈ 考点一 函数的图像问题 【例1】对于三次函数32()(0)f x ax bx cx d a =+++≠.定义:设''()f x 是函数 ()y f x =的导数'()y f x =的导数, 若方程''()0f x =有实数解x 0,则称点(x 0,f (x 0))为函数()y f x =的“拐点”;已知函数32()654f x x x x =-++,请回答下列问题; ⑴.求函数()y f x =的“拐点”A 的坐标; ⑵.检验函数()y f x =的图像是否关于“拐点”A 对称,对于任意的三

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

导数与函数的零点讲义(非常好,有解析)

函数的零点 【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x = 的图象有三个不同的交点, 求m 的取值范围。 变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则 1234_________. x x x x +++= 【答案】 -8 【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间 []8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知 1212 x x +=-, 344 x x +=. 所以12341248 x x x x +++=-+=-. 6

【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况 【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两个 相异的实根,求实数a 的取值范围(注:1n2≈0.69): 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即:

导数与函数的零点讲义.docx

【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例 1】已知函数 f ( x) x33ax 1,a0 求 f ( x) 的单调区间; 若 f (x) 在x 1 处取得极值,直线y=m 与y f (x) 的图象有三个不同的交点,求m 的取值范围。 变式:已知定义在R 上的奇函数,满足,且在区间 [0,2]上是增函数,若方程 f ( x) m (m 0) 在区间 [ 8 , 8]上有四个不同的根,则 【答案】 -8 【解析】因为定义在R 上的奇函数,满足,所以,所以,由为奇函数,所以函数图象关于直 线对称且,由知,所以函数是以8 为周期的周期函数,又因为在区间[0,2]上是增函数,所以在区间 [-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间上有四个不同的根,不妨设,由对称性知,.所以. y f(x)=m -8 -6 -4 -2 0 2 4 6x 【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数h( x) f ( f ( x))c的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令f (x) d ,则 h(x) f (d ) c 第一步:先判断 f (d ) c 的零点个数情况 第二步:再判断 f ( x) d 的零点个数情况

【例 2】已知函数 f (x) x33x 设 h(x) f ( f ( x)) c ,其中 c [ 2 ,2] ,求函数 y h(x) 的零点个数 1 .(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 f ( x) x33ax 29a2 x(a 0) .若方程 f ' ( x) 121nx 6ax 9a2 a 在[l,2]恰好有两 个相异的实根, 求实数 a 的取值范围 ( 注:1n2 ≈: 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】( 1)要求证一个函数存在零点,只须要用“ 函数零点的存在性定理” 即可证明。 即: 如果函数 f ( x) 在区间a, b 上是一条连续不断曲线,并且 f ( a) f (b)0 ,则函数 f (x) 在区间a, b上至少有一个零点。即存在一点x0a, b,使得 f (x0)0 , 这个 x0也就是方程 f (x)0 的根. (2)要求证一个函数“ 有且只有一个”零点,先要证明函数为单调函数,即存在零点;再用“ 函数零点的存在性定理”求证函数零点的唯一性。其依据为: 如果函数 f ( x) 在区间a, b 上是单调函数,并且 f (a) f (b) 0 ,则函数 f ( x) 在区间 a, b 上至多有一个零点。 【例 3】设函数f ( x) x39 x26x a . 2 ( 1)对于任意实数x,f(x) m 恒成立,求 m 的最大值; ( 2)若方程 f ( x) 0 有且仅有一个实根,求 a 的取值范围.

2021届高三数学之函数与导数(文理通用)专题04 函数与导数之零点问题

专题04 函数与导数之零点问题 一.考情分析 零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面: ①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点. 二.经验分享 1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法: (1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断. (2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题. (3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点. 2.导数研究函数图象交点及零点问题 利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

第3讲 导数与函数的切线及函数零点问题

第3讲 导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t · 4t =4(当且仅当t =2时等号成立), ∴m ≤? ????t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2, g ′(x )=a x ln a +b x ln b 且g ′(x )为单调递增,值域为R 的函数.∴g ′(x )一定存在唯一的

导数和函数零点问题

导数和函数零点问题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-= (1)求函数)(x f 的解析式;

第16讲-导数与函数的零点(解析版)

第16讲-导数与函数的零点 一、 经典例题 考点一 判断零点的个数 【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x -4ln x 的零点个数. 解 (1)∵ f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3. (2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2 ,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(x ),g (x )的取值变化情况如下表: X (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) + 0 - 0 + g (x ) 极大值 极小值 当03时,g (e 5)=e 5-3e 5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.

导数研究函数零点问题

利用导数研究方程的根 函数与x 轴即方程根的个数问题解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 1、已知函数()e ,x f x x =∈R . (Ⅰ) 求f (x )的反函数的图象上图象上点(1,0)处的切线方程; (Ⅱ) 证明: 曲线y = f (x) 与曲线211 2 y x x =++有唯一公共点. 【答案】解:(Ⅰ) f (x)的反函数x x g ln )(=,则y=g(x)过点(1,0)的切线斜率k=(1)g'. 1(1)g'x 1 (x)g'==?= k .过点(1,0)的切线方程为:y = x+ 1 (Ⅱ) 证明曲线y=f(x)与曲线12 1 2++=x x y 有唯一公共点,过程如下. 则令,,121 121)()(22R x x x e x x x f x h x ∈---=---= 0)0('',0)0('0)0(,1)('')(',1)('===-=--=h h h e x h x h x e x h x x ,,且的导数 因此, 单调递增 时当单调递减时当)('0)(''0;)('0)(''0x h y x h x x h y x h x =?>>=?<<0)(,0)0(')('===≥=?x R x h y h x h y 个零点上单调递增,最多有一在所以 所以,曲线y=f(x)与曲线12 12 ++=x x y 只有唯一公共点(0,1).(证毕) 2、已知函数()1x a f x x e =-+ (a R ∈,e 为自然对数的底数). (1)求函数()f x 的极值; (2)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值. (1)()1x a f x e '=- , ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,得x e a =,ln x a =. (),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>. 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增, 故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.

导数和函数零点问题精选文档

导数和函数零点问题精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根? 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131 )(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间;

(2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(23>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++==5)(31)('与的图象有三个不同的交 点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-= (1)求函数)(x f 的解析式; (2)若函数)(x f y =在R 上恰有5个零点,求实数a 的取值范围。

高考数学导数与函数零点问题教师版

导数与函数零点问题 函数零点问题是高考中的热点,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论. 例题分类精讲 一、函数零点个数问题 用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值 结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的 对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数. 【例1】若函数f(x)=x3-3x+a 有三个不同的零点,则实数 a 的取值范围是___ . 【答案】(-2,2) 【分析】客观题中函数零点个数问题,可借组图象求解,先根据导函数的符号确定原函数的单调性,由单调性作出函数图象,再确定零点个数. 【解析】由f(x)=x3-3x+a,得f′x)(=3x2-3,由f′(x)=3x2-3=0,得x=±1,f(x)极大值=f(-1)=2+a,f(x)极小值=f(1)=a-2,要使函数f(x)=x3-3x+a有三个不同的零点,则有2+a>0,a-2<0,即- 21; f ′x)(>0 时,0

导数在函数零点中的应用

方程根的个数 图像法 1. 已知函数?(x )=2 -x e x (1)求?(x )的单调区间 增),3(+∞减)3,2()2,( -∞ (2)判断关于x 的方程e x =k(x-2)(k ∈R)的解的情况 2已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++= 利用单调性 1已知二次函数)(x f 的二次项系数为a ,且不等式)(x f >x 2的解集为(-1,3)。 (1)若方程a x f 7)(-=有两个相等的实数根,求)(x f 的解析式 34)(2++-=x x x f (2)若函数)()(x xf x g =在区间?? ? ??∞-3,a 内单调递减,求a 的取值范围 (]1,-∞- (3)当a =-1时,证明:方程12)(3 -=x x f 仅有一个实数根 2、已知a >0,l x n x ax x f ),1(112)(2+++-=是曲线)(x f y =在点))0(,0(f P 处的切线 (1)求l 的方程 1+-=x y (2)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值 2 1=a (3)证明:对任意的),(*N ∈=n n a 函数)(x f y =总有单调递减区间,并求出)(x f 的单调递减区 间的长度的取值范围(区间[]21,x x 的长度=12x x -) (] 2,1 分离参数求值域 1. 已知函数=)(x f log 4)()14(R x kx x ∈++是偶函数 (1)求k 的值 2 1-=k (2)若方程0)(=-m x f 有解,求m 的取值范围 m ≥ 21

利用导数研究函数零点问题

利用导数研究函数零点问题 数形结合法研究零点问题 [典例引领] 已知f (x )=ax 2(a ∈R ),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性; (2)若方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围. 【解】 (1)F (x )=ax 2-2ln x , 其定义域为(0,+∞), 所以F ′(x )=2ax -2x =2(ax 2-1)x (x >0). ①当a >0时,由ax 2-1>0,得x >1 a , 由ax 2-1<0,得0<x < 1a , 故当a >0时,F (x )在区间?? ??1a ,+∞上单调递增,在区间? ???0,1 a 上单调递减. ②当a ≤0时,F ′(x )<0(x >0)恒成立. 故当a ≤0时,F (x )在(0,+∞)上单调递减. (2)原式等价于方程a =2ln x x 2在区间[2,e]上有两个不等解. 令φ(x )=2ln x x 2,由φ′(x )=2x (1-2ln x )x 4易知,φ(x )在(2,e)上为增函数,在(e ,e)上为 减函数, 则φ(x )ma x =φ(e)=1 e , 而φ(e)=2e 2,φ(2)=ln 2 2 . 由φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 2e 22e 2<ln 81-ln 2 7 2e 2 <0,

所以φ(e)<φ(2). 所以φ(x )min =φ(e), 如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e . 即f (x )=g (x )在[2,e]上有两个不相等的解时a 的取值范围为[ln 22,1 e ). 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数图象,根据图象特征求参数的范围. 利用函数性质研究函数零点 [典例引领] 已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x (a 为实数). (1)当a =4时,求函数y =g (x )在x =0处的切线方程; (2)如果关于x 的方程g (x )=2e x f (x )在区间???? 1e ,e 上有两个不等实根,求实数a 的取值范围. 【解】 (1)当a =4时,g (x )=(-x 2+4x -3)e x ,g (0)=-3, g ′(x )=(-x 2+2x +1)e x ,g ′(0)=1, 所以,所求的切线方程为y +3=x -0,即y =x -3. (2)由g (x )=2e x f (x ), 可得2x ln x =-x 2+ax -3,a =x +2ln x +3x . 设h (x )=x +2ln x +3 x (x >0), 所以h ′(x )=1+2x -3x 2=(x +3)(x -1) x 2 , 所以x 在???? 1e ,e 上变化时,h ′(x ),h (x )的变化如下:

相关文档
最新文档