开关电源的干扰及其抑制

开关电源的干扰及其抑制
开关电源的干扰及其抑制

开关电源的干扰及其抑制

开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因.

基本整流器:基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰.

功率转换电路:功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富.

产生这种脉冲干扰的主要原因是:

①开关管:开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声.

②高频变压器:开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声.

③整流二极管:二次侧整流二极管用作高频整流时,要考虑反向恢复时间的因数.往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过).一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十兆赫.

④电容、电感器和导线:开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声.

开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在.干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化.其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,在电源干扰的几种干扰类型中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响.

开关电源干扰耦合途径:开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式.

1.传导耦合:传导耦合是骚扰源与敏感设备之间的主要耦合途径之一.传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰.按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合.在开关电源中,这三种耦合方式同时存在,互相联系.

⑴电路性耦合:电路性耦合是最常见、最简单的传导耦合方式.其又有以下几种:

①直接传导耦合:导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰.

②共阻抗耦合:由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是共阻抗耦合.形成共阻抗耦合骚扰的有:电源输出阻抗、接地线的公共阻抗等.

⑵电容性耦合:电容性耦合也称为电耦合,由于两个电路之间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路.

⑶电感性耦合:电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰.

2.辐射耦合:通过辐射途径造成的骚扰耦合称为辐射耦合.辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器.通常存在四种主要耦合途径:天线耦合、导线感应耦合、闭合回路耦合和孔缝耦合.

⑴天线与天线间的辐射耦合:在实际工程中,存在大量的无意电磁耦合.例如,开关电源中长的信号线、控制线、输入和输出引线等具有天线效应,能够接收电磁骚扰,形成无意耦合.

⑵电磁场对导线的感应耦合:开关电源的电缆线一般是由信号回路的连接线、功率级回路的供电线以及地线一起构成,其中每一根导线都由输入端阻抗、输出端阻抗和返回导线构成一个回路.因此,电缆线是内部电路暴露在机箱外面的部分,最易受到骚扰源辐射场的耦合而感应出骚扰电压或骚扰电流,沿导线进入设备形成辐射骚扰.

⑶电磁场对闭合回路的耦合:电磁场对闭合回路的耦合是指回路受感应最大部分的长度小于四分之一波长.在辐射骚扰电磁场的频率比较低的情况下,辐射骚扰电磁场与闭合回路的电磁耦合.

⑷电磁场通过孔缝的耦合:电磁场通过孔缝的耦合是指辐射骚扰电磁场通过非金属设备外壳、金属设备外壳上的孔缝、电缆的编织金属屏蔽体等对其内部的电磁骚扰.

抑制干扰的一些措施:形成电磁干扰的三要素是干扰源、传播途径和受扰设备.因而,抑制电磁干扰也应该从这三方面着手,采取适当措施.首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度.目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道.常用的方法是屏蔽、接地和滤波.

⑴采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰,即用电导率良好的材料对电场屏蔽,用磁导率高的材料对磁场屏蔽.屏蔽有两个目的,一是限制内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入该内部区域.为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽.

⑵所谓接地,就是在两点间建立传导通路,以便将电子设备或元件连接到某些叫作"地"的参考点上.接地是开关电源设备抑制电磁干扰的重要方法,电源某些部分与大地相连可以起到抑制干扰的作用.在电路系统设计中应遵循"一点接地"的原则,如果形成多点接地,会出现闭

合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现"一点接地".因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面作为参考地,需要接地的各部分就近接到该参考地上.为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值.在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上.

⑶滤波是抑制传导干扰的有效方法.EMI滤波器作为抑制电源线传导干扰的重要单元,可以

抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰.在设备或系统的电磁兼容设计中具有极其重要的作用.在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性.恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分.

选择滤波器时要注意:

①明确工作频率和所要抑制的干扰频率,如两者非常接近,则需要应用频率特性非常陡峭的滤波器,才能把两种频率分开;

②保证滤波器在高压情况下能够可靠地工作;

③滤波器连续通以最大额定电流时,其温升要低,以保证在该额定电流连续工作时,不破坏滤波器中器件的工作性能;

④为使工作时的滤波器频率特性与设计值相符合,要求与它连接的信号源阻抗和负载阻抗的数值等于设计时的规定值;

⑤滤波器必须具有屏蔽结构,屏蔽箱盖和本体要有良好的电接触,滤波器的电容引线应尽量短,最好选用低引线短电感的穿心电容;

⑥要有较高的工作可靠性,因为作防护电磁干扰用的滤波器,其故障往往比其他元件的故障更难找.

安装滤波器时应注意以下几点:

①电源线路滤波器应安装在离设备电源入口尽量靠近的地方,不要让未经过滤波器的电源线在设备框内迂回;

②滤波器中的电容器引线应尽可能短,以免因引线感抗和容抗在较低频率上谐振;

③滤波器的接地导线上有很大的短路电流通过,会引起附加的电磁辐射,故应对滤波器元件本身进行良好的屏蔽和接地处理;

④滤波器的输入和输出线不能交叉,否则会因滤波器的输入―输出电容耦合通路引起串扰,从而降低滤波特性,通常的办法是输入和输出端之间加隔板或屏蔽层.

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。 1 引言 随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰 ( ElectromagneticInterference , EMI )。 EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容 ( ElectromagneticCompatibility )性。随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。 本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。 2 电磁干扰的产生和传播方式 开关电源中的电磁干扰分为传导干扰和辐射干扰两种。通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。下面将对这两种干扰的机理作一简要的介绍。 2.1传导干扰的产生和传播 传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。 2.1.1 共模( CM )干扰 变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。如图 1 所示,共模干扰电流从具有高 dv/dt 的开关管出发流经接地散热片和地线,再由高频 LISN 网络(由两个 50Ω电阻等效)流回输入线路。

开关电源的干扰及其抑制

开关电源的干扰及其抑制 开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因. 基本整流器:基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰. 功率转换电路:功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富. 产生这种脉冲干扰的主要原因是: ①开关管:开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声. ②高频变压器:开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声. ③整流二极管:二次侧整流二极管用作高频整流时,要考虑反向恢复时间的因数.往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过).一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十兆赫. ④电容、电感器和导线:开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声. 开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在.干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化.其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,在电源干扰的几种干扰类型中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响. 开关电源干扰耦合途径:开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式. 1.传导耦合:传导耦合是骚扰源与敏感设备之间的主要耦合途径之一.传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰.按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合.在开关电源中,这三种耦合方式同时存在,互相联系.

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

开关电源EMI形成原因及常用抑制方法

开关电源EMI形成原因及常用抑制方法 近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。 1开关电源的干扰源分析 开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高 dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换、输出整流二极管的反向恢复电流都是这类干扰源。开关电源中的电压电流波形大多为接近矩形的周期波,比如开关管的驱动波形、MOSFET漏源波形等。对于矩形波,周期的倒数决定了波形的基波频率;两倍脉冲边缘上升时间或下降时间的倒数决定了这些边缘引起的频率分量的频率值,典型的值在MHz范围,而它的谐波频率就更高了。这些高频信号都对开关电源基本信号,尤其是控制电路的信号造成干扰。 开关电源的电磁噪声从噪声源来说可以分为两大类。一类是外部噪声,例如,通过电网传输过来的共模和差模噪声、外部电磁辐射对开关电源控制电路的干扰等。另一类是开关电源自身产生的电磁噪声,如开关管和整流管的电流尖峰产生的谐波及电磁辐射干扰。 如图1所示,电网中含有的共模和差模噪声对开关电源产生干扰,开关电源在受到电磁干扰的同时也对电网其他设备以及负载产生电磁干扰(如图中的返回噪声、输出噪声和辐射干扰)。进行开关电源EMI/EMC设计时一方面要防止开关电源对电网和附近的电子设备产生干扰,另一方面要加强开关电源本身对电磁骚扰环境的适应能力。下面具体分析开关电源噪声产生的原因和途径。 图1开关电源噪声类型图 1.1电源线引入的电磁噪声 电源线噪声是电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的。电源线噪声分为两大类:共模干扰、差模干扰。共模干扰(Common-modeInterference)定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰(Differential-

开关电源的抗干扰解决方法

开关电源的抗干扰解决方法 EMI干扰源对开关电源干扰的解决方案一般来说,来自外界辐射,雷击、或电网的抖动、等对电源开关的相关组成器件如整流二极管,高频变压器,功率开关管等外部环境的干扰是开关电源的EMI干扰源的主要体现。首先:介绍辐射干扰的传输通道 (1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子; (2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间); (3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。其次:是传导干扰的传输通道 (1)容性耦合 (2)感性耦合 (3)电阻耦合 a.公共电源内阻产生的电阻传导耦合 b.公共地线阻抗产生的电阻传导耦合 c.公共线路阻抗产生的电阻传导耦合 以下是EMI干扰源相关的抑制方案: 1.高频变压器的屏蔽 为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。 高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。涡街流量计为防止该噪声,需要对变压器采取加固措施: (1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生; (2)用“玻璃珠”(Glass beads)胶合剂粘结磁心,效果更好。 分开来讲开关电源EMI抑制有9大措施: (1)合理的PCB设计

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

刍议如何控制开关电源电磁干扰

刍议如何控制开关电源电磁干扰 摘要:通信开关电源是通信系统中的一种主要的干扰源之一,由于它本身工作特点使得电磁干扰问题相当突出,从通信电源电磁干扰的机理着手,分别论述了有源滤波技术、pcb设计技术、扩频调制技术等来抑制电磁干扰,改善了开关电源电磁兼容的性能,为工程设计人员提供了理论参考。 关键词:开关电源;电磁干扰;抑制措施 abstract: communication switching power supply is the major source of interference in a communication system, due to its own features make the issue of electromagnetic interference are quite prominent, and the mechanism of electromagnetic interference from the communication power to proceed, discusses active filtering technology, pcb design technology, spread spectrum modulation techniques such as electromagnetic interference suppression, improved the performance of the switching power supply electromagnetic compatibility, provide a theoretical reference for the engineering staff.keywords: switching power supply; electromagnetic interference; suppression measures 中图分类号:o552.4+24文献标识码:a 1 通信开关电源的干扰 通信开关电源要稳定工作就要有很强的抗电磁干扰能力,对于

形成开关电源电磁干扰的三要素及解决方案

形成开关电源电磁干扰的三要素及解决方案 深圳市森树强电子科技有限公司 形成开关电源电磁干扰的三要素是干扰源、传播途径和受扰设备 首先应该抑制开关电源干扰源,直接消除干扰原因; 其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径; 第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。 目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底 板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之 间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的 分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两 层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网 传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完 全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为 一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的 作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可 以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应, 所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点 与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏 蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。 在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导 电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近 接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。 图1 电压型控制的原理框图 电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。信号。从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电

开关电源的内部干扰与外部干扰

开关电源的内外部干扰 开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。两者都涉及到人为因素和自然因素。 开关电源内部干扰:开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。 基本整流器:基本整流器的整流过程是产生EMI最常见的原因。这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰。 功率变换电路:功率变换电路是开关稳压电源的核心,它产带较宽且谐波比较丰富。产生这种脉冲干扰的主要元器件为: 1)开关管开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,关电源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。 2)高频变压器开关电源中的变压器,用作隔离和变压,但由于漏感的原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。 3)整流二极管二次侧整流二极管用作高频整流时,由于反向恢复时间的因素,往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过)。一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十MHz。 4)电容、电感器和导线开关电源由于工作在较高频率,会使低频元件特性发生变化,由此产生噪声。 开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在。干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化。其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等。 能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响。

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源的抗干扰技术

开关电源的抗干扰技术上网时间:2011-07-01 中心议题: 开关电源的干扰源和抗干扰措施 解决方案: 在电路布局上优化布局 合理接地 采用适当的电路隔离方式 单片机的开关电源工作时,其内部电压和电流波形都以非常短的时间上升和下降,所以开关电源本身就是一个射频干扰产生源。开关电源产生的干扰,按噪声干扰源种类来分,可以分为尖锋干扰和谐波干扰;若按耦合通路来分,可分为传导干扰和辐射干扰,开关电路框图如图1。 1开关电源的主要干扰 1.1 一次整流回路的干扰 开关电源中的主要噪声干扰之一是由二极管断开时的反向恢复现象引起的,一次整流回路中的整流二极管正向导通时有较大的正向电流流过,它受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失前的一段时间,电流会反向流动,从而导致很大的电流变化。即一次整流回路的干扰。 1.2 开关回路的干扰 电源工作时,开关处于高频通断状态,在高频电流环路中,可能会产生较大的空间辐射噪声。 1.3 二次整流回路的干扰 电源工作时,整流二极管处于高频通断状态,由脉冲变压器、整流二极管以及滤波电容构成的高频开关电流环路,可能向空间辐射噪声。 1.4 控制回路的干扰 控制回路中的脉冲控制信号是主要的干扰源。 1.5 分布电容引起的噪声干扰 2抗干扰措施 降低干扰是开关电源稳定工作的前提,其主要方法如下。 2.1 在电路设计上要优化布局 对于开关电路来说,合理的布局可以对电路中产生的辐射噪声加以抑制。

2.1.1 元器件布局时的抗干扰措施 (1)根据印制板的安装方式,将散热元器件如功率开关器件、稳压器、变压器等安装在印制板的上方,以利于散热;热敏元件应尽量远离散热元件。 (2)在高频电路中,尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰;尽量减小由高频脉冲电流所包围的面积。 (3)输入和输出元件应尽量远离。 (4)在双面印制板设计中,适当加入滤波电容,以便减小电源线阻抗,缩小电流环路,使电路工作更加稳定可靠。 (5)尽量减少环路面积。这是减少辐射噪声的重要途径,为此,要求开关电源的元件彼此间紧密排列。 原创文章:"https://www.360docs.net/doc/007756028.html,/public/art/artinfo/id/80011580" 【请保留版权,谢谢!】文章出自电子元件技术网。、 开关电源的抗干扰技术上网时间:2011-07-01 如图2为环路面积较大的开关电路,图3为环路面积较小的开关电路。 2.1.2 印制板(PCB)布线抗干扰的措施 印制电路板的抗干扰设计不仅与布局有关,而且与布线也有相当大的关系。布线的原则如下:(1)相邻电路之间走线尽量避免平行;若平行走线无法避免,则应在平行信号线之间加一条起屏蔽作用的地线,且尽量加大平行信号线间距,以降低两线之间电磁干扰。 (2)控制回路与输出回路分开,采用单点接地方式。 (3)根据PCB板电流的大小,尽量加粗电源线、接地线,减少环路阻抗;同时使电源线、地线的走向和数据传递的方向一致,这有助于增强抗噪声能力;对于密度很高的PCB板,采用多层板;在双面板设计中,还应该在电源线和地线之间留出一定的空间,以便安装高频特性好的去耦电容。 (4)印制线不要突然拐角,以免发生反馈耦合。 (5)电容引线不能太长,尤其是高频旁路电容不能有引线。 2.2 合理接地 电源系统的接地包括公共参考接地和安全及抗干扰接地。在电路设计中,要尽量减小接地回路中的公共电阻,且应遵循“一点接地”原则。如果形成多点接地,会出现闭合的接地环路,从而在磁力线穿过回路时将产生磁感应噪声。通常利用一个导电平面作为参考地,将接地的各部分就近接到该参考地上。 2.2.1 接地过程应遵循的规则 (1)交流电源地与直流电源地分开。一般情况下交流电源的零线是接地的,且该零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和直流电路的正常工作产生影响。通常采用“浮地技术”将交流电源地与直流电源地分开,这样可以隔离来自交

利用Snuer电路消除开关电源和ClassD功放电路中的振铃

?>?设计支持?>?技术文档?>?应用笔记?>?供电电路?> APP 6287 关键词:?开关电源, Class D功放,振铃 应用笔记6287 利用Snubber电路消除开关电源和Class D功放电路中的振铃 Frank Pan, CPG部门高级应用工程师 摘要:开关电源和Class D功放,因为电路工作在开关状态,大大降低了电路的功率损耗,在当今的电子产品中得到了广泛的应用。由于寄生电感和寄生电容的存在,电路的PWM开关波形在跳变时,常常伴随着振铃现象。这些振铃常常会带来令人烦恼的EMC问题。本文对振铃进行探讨,并采用snubber电路对PWM 开关信号上的振铃进行抑制。? 振铃现象 在开关电源和Class D功放电路中,振铃大多是由电路的寄生电感和寄生电容引起的。寄生电感和寄生电容构成LC谐振电路。LC谐振电路常常用两个参数来 描述其谐振特性:振荡频率(),品质因数(Q值)。谐振频率由电感量和电容量决定:。品质因数可以定义为谐振电路在一个周期内储存能量与消耗能量之比。并联谐振电路的Q值为:,其中R P是并联谐振电路的等效并联电 阻。串联谐振电路的Q值为:,其中R S为串联谐振电路的等效串联电阻。 在描述LC电路的阶跃跳变时,常用阻尼系数() 来描述电路特性。阻尼系数跟品质因数的关系是:或。在临界阻尼(=1)时,阶跃信号能在最短时间内跳变到终值,而不伴随振铃。在欠阻尼(<1)时,阶跃信号在跳变时会伴随振铃。在过阻尼(>1)时,阶跃信号跳变时不伴随振铃,但稳定到

终值需要花费比较长的时间。在图一中,蓝,红,绿三条曲线分别为欠阻尼(<1),临界阻尼(=1),过阻尼(>1)时,对应的阶跃波形。 图一不同阻尼系数对应的阶跃信号 (从左至右分别为欠阻尼,临界阻尼,过阻尼时对应的阶跃信号) 我们容易得到并联LC谐振电路的阻尼系数:。在我们不改变电路的寄生电感和寄生电容值时,调整等效并联电阻可以改变谐振电路的阻尼系数,从而控制电路的振铃。 阶跃信号因振铃引起的过冲跟阻尼系数有对应的关系:。OS(%)定义为过冲量的幅度跟信号幅度的比值,以百分比表示。表一列出了不同阻尼系数对应的过冲OS(%)。

:开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

相关文档
最新文档