光的干涉及其应用

光的干涉及其应用
光的干涉及其应用

光的干涉及其与应用

(作者:赵迪)

摘要我们通过对光的干涉本质、种类及其各种应用做了一定的查阅与思考,汇总成为该文章。中文中重点介绍的是,光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用,由于文章内容和字数的限制,我们不能对所有提到的应用做出详细的表述,仅取其中的几个例子进行具体的介绍。

关键词光的干涉等倾干涉等厚干涉照相技术天文学

1 绪论

我们知道在光学的发展史上,“光的本质”这个问题进行了将近4个世纪的争论,直到爱因斯坦提出“波粒二象性”才将这个问题的争论暂时告一段落,本文所提到的的光的干涉现象就是这段精彩历史上不可磨灭的一部分。

1801年的英国由托马斯·杨设计的杨氏双缝干涉实验使得“微粒说”近乎土崩瓦解,并强有力的支持了“波动说”。1811年,阿拉格首先研究了偏振光的干涉现象。现代生活中,光的干涉已经广泛的用于精密计量、天文观测、光弹性应力分析、光学精密加工中的自控等许多领域。

虽然“波粒二象性”已经作为主流说法,终结了这个问题的争论,但是对于现代生活来说,光的干涉及其理论所带来的影响却是不可或缺的。我们将在本文中简单介绍一下光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用。

2 光的干涉现象与产生

2.1 现象简介

干涉,指满足一定条件的两列相干波相遇叠加,在叠加区域某些点的振动始终加强,某些点的震动始终减弱,即在干涉区域内振动强度有着稳定的空间分布,而忽略时间的影响。

图2-1 复色光的干涉图样

由于光也具有波动性,因此,光也可以产生干涉现象,称为光的干涉。光的干涉通常表现为光场强度在空间作相当稳定的明暗相间的条纹或圆环的分布;有时则表现为,当干涉装置的某一参量随空间改变时,某一固定点处接收到的光强按一定规律作强弱交替变化。

2.2 产生条件

2.2.1 主要条件

两列波的产生干涉的条件是:两列光波频率一致、相位差恒定、振动方向一致的相干光源才能产生光的干涉。

由于两个普通独立的光源发出的光不可能具有相同的频率,更不可能存在更不可能存在固定的相位差,因此,不可能产生干涉现象。

图2-2 单色光的干涉图样

2.2.2 补充条件

由于干涉图样的效果会受到称比度的影响,因此,两列相干波还须满足三个补充条件:①参与叠加的两束光光强不能相差太大;②参与叠加的两束光振动的夹角越小越好,虽然理论上小于2

即可产生叠加,但是对比度效果不好,即最好接近平行;③光程差不能相差太大。

2.3 具体方法

为了使合成波场的光强分布的在一段时间t?内稳定,要求:①各成员波的频率γ(因而波长λ)相同;②两相干波的初相位之差t?内保持不不变。

条件②意味着若干个通常独立发光的光源,即使它们发出相同频率的光,这些光相遇时也不会出现干涉现象。原因在于:通常光源发出的光的初相位是无规则的,振动的方向也是不确定的。分布的大量波列,每一波列持续时间不超过10秒的数量级,就是说,每隔10秒左右,波列的初相位就会做一次随机的改变。而且,任何两个独立的光源发出的波列的初相位又是无法统计的。

由此可以想象,当这些独立光源发出的波列相遇时,只在短暂的时间内产生一副确定的条纹图样,而每过10秒左右,就换成另一副图样迄今尚无任何检测或记录装置能够跟上如此急剧的变化,因而观测到的是上述大量图样的平均效果,即均匀光强而非明暗条纹。不过,近代特制的激光器已经做到发出的波列长达十公里,亦即波列为10秒的数量级。因此可以说,若用时间分辨本领t?比10秒更短的检测器(这样的装置是可以做到的),则两个同频率的独立激光器发出的光波的干涉,也是能够观察到的。另外,以双波干涉为例还要求:③两列波的振幅不得相差悬殊;④在叠加点两波的偏振面大体一致。

以上四点即为通常所说的相干条件。满足这些条件的两个或多个光源或光波,称为相干光源或相干光波。

2.4 光的干涉分类

光的干涉根据产生条件的不同,可以分成三大类:分波阵面法(分波面法)、分振幅法(分光强法)、分振动法。

2.4.1 分波面法

分波面法的典型实验是1801年由托马斯·杨设计的杨氏双缝干涉实验。两个点光源的干涉实验中,两振源是装在同一支架上的振子,其装置如图:

图2-4-1 杨氏实验装置简图

杨氏双缝干涉实验的实验结果是:在观察屏上出现等宽、等间距的、明暗相间的条纹。实验使得“微粒说”近乎土崩瓦解,并强有力的支持了“波动说”。另外,分波面法得到干涉现象典型的实验还有菲涅尔双面镜干涉、菲涅尔双棱镜干涉、劳埃镜干涉不细展开。

2.4.2 分振幅法

分阵幅法的典型例子有两种:等倾干涉和等厚干涉。

为防止重复,后面要介绍的应用中会具体展开相关内容。

3 光的干涉的应用

3.1 等倾干涉的实际应用

与等倾干涉有着莫大联系的重要仪器有:迈克尔逊干涉仪和发布罗-玻罗干涉仪,在这里我们会简单展开一下迈克尔逊干涉仪及其应用,介绍之前,我们先了解一下等倾干涉。

3.1.1 等倾干涉简介

简单地说,等倾干涉是薄膜干涉的一种,是指相干光线在经过一层薄膜时,倾角相同的光会在薄膜厚度为常数h的条件下,发生对应同一级条纹的干涉现象。

3.1.2 迈克尔逊干涉仪及其应用

图3-1-2-a 迈克尔逊干涉实物图

a.迈克尔逊简介

迈克尔逊是美国物理学家,主要从事光学和光谱学方面的研究。以其毕生精力从事光速的精密测量。由于他在光学精密测量仪器、光谱学及基本度量学中的卓越贡献,1907年获得了美国的第一个诺贝尔物理学奖。

b.测量折射率

在迈克尔逊干涉仪的两臂中分别引入mm

0.

100长的玻璃管A、B,其中一个抽成真空,另一个在充以一个大气压空气的过程中观察到2.

107条条纹移动,所用波长为nm

107,则其折射率可以这样求得:

1.

图3-1-2-b 测量折射率简图

设空气的折射率为n

δ

=n

l

nl

-

l

=

)1

2-

(

2

2

相邻条纹或说条纹移动一条时,对应光程差的变化为一个波长,当观察到2.

107条

纹过时,光程差的改变量满足: 0002927.1122.1072.107)1(2=+?

=?=-l

n n l λλ

迈克尔逊干涉仪的两臂中便于放入待测样品,由条纹的变化测量有关参数。

3.1.3 迈克尔逊-莫雷实验

1887年迈克尔逊和莫雷根据设想:如果以太存在而且以太又不完全为地球运动所带动,则地球对于以太的运动速度就是地球的绝对速度。利用地球的绝对速度和光速在方向上的不同,应该在所设计的迈克尔逊干涉仪试验中观测某种预期的结果,从而求得地球相对以太的速度。迈克尔逊-莫雷实验一直被认为是狭义相对论的主要实验支柱。另外,法布尔-玻罗干涉仪也是与等倾干涉原理有很大联系的一种光学仪器,由于内容及字数的限制在此不再展开。

3.2 等厚干涉及其应应用

3.2.1等厚干涉简介

与等倾干涉一样,等厚干涉也是薄膜干涉的一种,与之不同的是,等厚干涉是在相干光线与薄膜倾角不变的情况下,照射到薄膜厚度相同的相干光线在反射之后对应着同一级的相干条纹的干涉现象。

a.劈尖及其应用

图3-1-2-a 劈尖

仪器平整度检测

利用干涉现象还可以检测加工过程中工件表面的几何形状与设计要求之间的微小差异。简单的说,首先将两块玻璃构成一个劈尖,然后用单色光从劈尖上

方垂直照射,最后观察条纹形状,如下图所示:

图3-1-2-b 利用劈尖干涉检验光学仪器的平整度

如上图所示,若出现的条纹不是等宽等间距,且平行与棱边,则被测光学仪器的表面不是平整的。精度很高的平面玻璃板(样板)。使样板的平面与待测件的表面接触,于是此二表面间形成一层空气薄膜。若待测表面确是合格的平面,则当光照射时,薄膜形成的干涉光强呈一片均匀或是平行、等间隔的直条纹。如果待测表面在某些局域偏离了平面,则此处的干涉光强与别处不同或者干涉条纹在该处呈现弯曲。从条纹变异的情况可以推知待测表面偏离平面的情况。

测量波长

l n n h l ?=??=?αλλ

22 其中α是两个劈尖之间的夹角,n 是两块玻璃的折射率,λ是待测波长。

除以上两种应用之外,利用劈尖还可以测量精密仪器的微小长度微小长度变化等。

另外还有牛顿环全息干涉同样与人们的生活密不可分。

3.3在天文学方面的应用

3.3.1天体测量

在迈克耳孙测星干涉仪被发明以前,恒星直径的测量始终是天文学上的一个难题,因为已知体积最大的恒星的角直径也只有10角秒。然而即使是迈克耳孙测星干涉仪,其分辨率也只能测量某些巨星的角直径,对质量稍小的恒星就无能为力。正是激光和外差干涉技术的发明,自二十世纪七十年代起在测星干涉领域引发了一场革新。在这些经改进的干涉仪中,望远镜捕捉到的星光与本地的激光发生外差干涉,两者频率非常接近,从而产生了射电频域内的拍频信号;并且由于这个拍频信号的光强来自星光和激光光强的乘积,这种干涉从而能获得更高的

分辨率。此外这些实验大多使用了波长为10.6微米的二氧化碳激光,这也是由于较长的波长能提高外差干涉的分辨率。1974年,约翰森、贝茨和唐尼斯建造了一台基线长度为5.5米的差频干涉仪,使用了功率为1瓦特并经过稳频的二氧化碳激光,其工作波长为10.6微米。他们用这台干涉仪对一系列红外线源进行了观测,包括M型超巨星、米拉变星,并取得了一些星周尘壳的温度和质量分布等信息。而今随着技术和制造工艺的进步,这类干涉仪的基线长度已经可以扩展到几百米的距离,从而克服了最初迈克耳孙测星干涉仪遇到的困难。

天体测量学上的另一个问题是关于天体的位置和运动的测量。通过对恒星进行精确定位,可以将观测到的射电源位置和它们观测到的相应光学位置进行比对,从而直接测量它们的视差并建立宇宙距离尺度。此外这种测量还能帮助确定双星系统轨道的尺寸和形状。这类干涉仪包括位于亚利桑那州的海军原型光学干涉仪(NPOI),它由四个基本部分组成Y形,彼此之间的干涉臂长度为20米,NPOI 对天体的定位可以达到毫角秒的量级;以及太阳系外行星天文干涉仪(ASEPS-0),它通过监视恒星因围绕其运动的行星而引起的反映运动来研究太阳系外行星。

3.1.2引力波探测

引力波是广义相对论所预言的以光速传播的时空扰动,虽然引力波与物质的相互作用非常微弱,但已有间接的天体观测证据表明它确实存在于诸如双星系统这样的天体中,并对这类天体的物理性质有着重要影响。对引力波的直接观测不仅可以验证广义相对论,更重要的是提供了一种有别于基于电磁波观测的传统观测天文学的新观测手段。并且由于电磁波与引力波的不同性质,引力波天文学所研究的将是借助电磁波无法观测到的宇宙的另一个侧面。自二十世纪七十年代起,人们逐渐认识到基于干涉原理的引力波探测器是一种较有希望成功的设计,这类探测器的基本构成都是一架等臂迈克耳孙干涉仪:本质上,激光干涉引力波探测器是对干涉臂的长度变化进行测量,并对所观测得的数据进行分析,寄希望于寻找到其中引力波所导致的影响。即引力波所导致的干涉臂长度变化与干涉臂长度的比值。

其中和是引力波的两个偏振态,和是探测器分别对这两个偏振态的响应,是引力波的应力强度。在实际操作中,来自外界振动、分子热运动、以及光检测器读出的散粒噪声等噪声会叠加到观测数据中,因而对一般来自天体的引力波而

言,如要探测到它们要求探测器的灵敏度要优于并尽可能地降低其他噪声。通过使用较长的干涉臂同时在两端分别增加法布里-珀罗谐振腔,以及采用功率回收技术等方法,可以有效地降低噪声并提高干涉仪的灵敏度。

4 总结

光学的发展史是曲折而多变的,人们对光的本质的认识分为以下几个阶段:17世纪,人们提出了光本性的两种学说“微粒说”与“波动说”。光的“微粒说”由笛卡尔提出,并得到了牛顿的支持。“微粒说”认为光是由一份一份的微粒所组成的。由于牛顿在科学界的威望,以及“波动说”不成熟,在17世纪和18世纪,多数的科学家倾向于“微粒说”。19世纪初,英国科学家托马斯·杨,设计并完成了著名的“杨氏双缝干涉实验”,提出了“光的干涉原理”,动摇了“微粒说”的地位,并有力地支持了“波动说”。与托马斯·杨同一时期的科学家菲涅尔把惠更斯的子波假设和杨氏干涉原理相结合,提出了“惠更斯-菲涅尔原理”。1817年,托马斯·杨证明光波是一种横波,验证了之前惠更斯与菲涅尔的设想,至此,波动说已占尽优势,微粒说几近崩溃。

结合前面对光的干涉的学习与探究,通过对相关知识的查阅与思考,我们编汇了本文,文章重点介绍的是:光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用。从光的干涉的应用较为深入的讨论了它与现代生活的联系之密切,也许你不会想到我们平时用的百元大钞上竟然也包含着干涉的影子。

参考文献

[1] 赵凯华主编《新概念物理教程光学》高等教育出版社,2004

[2] 钟锡华主编《现代光学基础》北京大学出版社,2005

[3] 谢敬辉,赵达尊,阎吉祥《物理光学教程》北京理工大学出版社,2005

[4] 叶玉堂《光学教程》清华大学出版,2005

光的干涉及其应用

光的干涉及其与应用 (作者:赵迪) 摘要我们通过对光的干涉本质、种类及其各种应用做了一定的查阅与思考,汇总成为该文章。中文中重点介绍的是,光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用,由于文章内容和字数的限制,我们不能对所有提到的应用做出详细的表述,仅取其中的几个例子进行具体的介绍。 关键词光的干涉等倾干涉等厚干涉照相技术天文学 1 绪论 我们知道在光学的发展史上,“光的本质”这个问题进行了将近4个世纪的争论,直到爱因斯坦提出“波粒二象性”才将这个问题的争论暂时告一段落,本文所提到的的光的干涉现象就是这段精彩历史上不可磨灭的一部分。 1801年的英国由托马斯·杨设计的杨氏双缝干涉实验使得“微粒说”近乎土崩瓦解,并强有力的支持了“波动说”。1811年,阿拉格首先研究了偏振光的干涉现象。现代生活中,光的干涉已经广泛的用于精密计量、天文观测、光弹性应力分析、光学精密加工中的自控等许多领域。 虽然“波粒二象性”已经作为主流说法,终结了这个问题的争论,但是对于现代生活来说,光的干涉及其理论所带来的影响却是不可或缺的。我们将在本文中简单介绍一下光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用。 2 光的干涉现象与产生 2.1 现象简介 干涉,指满足一定条件的两列相干波相遇叠加,在叠加区域某些点的振动始终加强,某些点的震动始终减弱,即在干涉区域内振动强度有着稳定的空间分布,而忽略时间的影响。

图2-1 复色光的干涉图样 由于光也具有波动性,因此,光也可以产生干涉现象,称为光的干涉。光的干涉通常表现为光场强度在空间作相当稳定的明暗相间的条纹或圆环的分布;有时则表现为,当干涉装置的某一参量随空间改变时,某一固定点处接收到的光强按一定规律作强弱交替变化。 2.2 产生条件 2.2.1 主要条件 两列波的产生干涉的条件是:两列光波频率一致、相位差恒定、振动方向一致的相干光源才能产生光的干涉。 由于两个普通独立的光源发出的光不可能具有相同的频率,更不可能存在更不可能存在固定的相位差,因此,不可能产生干涉现象。 图2-2 单色光的干涉图样 2.2.2 补充条件 由于干涉图样的效果会受到称比度的影响,因此,两列相干波还须满足三个补充条件:①参与叠加的两束光光强不能相差太大;②参与叠加的两束光振动的夹角越小越好,虽然理论上小于2 即可产生叠加,但是对比度效果不好,即最好接近平行;③光程差不能相差太大。

光源对干涉的影响及干涉的应用

光源对干涉的影响及干涉的实际应用 【摘要】利用光的波动特性的进行的干涉和衍射现象已用于科学研究和生产实践的各个领域,提高光波的相干性对充分利用干涉和衍射现象具有重要意义。光的干涉的应用广泛且极具价值。 【关键词】干涉条纹;光程差;相干时间;相干长度;应用; The influence of the light source of interference and interference in the practical application Abstract:To make use of light wave characteristics of interference and diffraction phenomenon has been used in the scientific research and production practice each domain, improve the coherence of the waves of light to make full use of interference and diffraction phenomenon has important significance. Light interference and extensive application of extremely value. Key words:interference fringe;Path length difference;coherence time;coherence length;apply; 第一章光源对干涉的影响 1.1单色光源对干涉条纹清晰度的影响 一般使用的单色光源其实并不是单一频率的理想光源,它的光谱线总 是有一定的宽度的,如图1所示,由于在这一波长分布范围内的每一波长的光均会形成各自的一组干涉条纹,而且各组干涉条纹除零级条纹完全重合外,其他各级条纹互相间均有一定的位移。这样各组条纹的非相干叠加的结果就会使条纹的可见度下降。 图1非理想单色光源的波长分布 若理想的单色光源照射双狭缝,产生等间距的平行直条纹,其间距为

光干涉应用的新前景

光干涉应用的新前景 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。 光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。 一.全息照相 但是,光是一种波,从被摄物体上各点反射出来的光不仅强度(它正比于光波振幅的平方)不同,而且位相也不同。全息照相就是一种既记录反射光的强度,又记录反射光的位相的照相术。这种照相术记录的是光波的振幅和位相的全部信息,所以称为全息照相。 全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。 全息照相较之普通照相有许多优点。第一,它再现出来的象是跟原来物体一模一样的逼真的立体像,跟观察实物完全一样;第二,把全息照片分成若干小块,每一小块都可以完整地现出原来物体的像,所以全息照片即使有缺损,也不会使像失真;第三,在同一张感光片上可以重叠记录许多像,这些像能够互不干扰地单独显示出来。 全息照相技术有重要的实际应用:全息照相在一张感光片上可以重叠记录许多像,这为信息的大容量高度储存提供了可能,例如用全息照相方法可以把一本几百页的书的内容存储在只有指甲大小的

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

牛顿环光的等厚干涉的应用

实验十九光的等厚干涉的应用 【预习思考题】 1.光的干涉条件是什么 2.附加光程差产生的条件是什吗 3.什么是等候干涉 4.说出你所知道的测量微小长度的方法。 光的干涉是光的波动性的一种表现。若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。 牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉。 【实验目的】 1.观察和研究等厚干涉现象和特点。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.熟练使用读数显微镜。 4.学习用逐差法处理实验数据的方法。 【实验仪器】 测量显微镜,钠光光源,牛顿环,劈尖。

【实验原理】 1. 牛顿环 “牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度。但由于他主张光的微粒说(光 的干涉是光的波动性的一种表现)而未能对它做出正确的解释。直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。 图1 牛顿环干涉光路图 1.读数鼓轮 2.物镜调节螺钉 3.

偏振光的干涉及其应用

§4 偏振光的干涉及其应用 习题4.1:平行于光轴切割一块方解石晶片,放置在主截面成350角的一对尼科耳棱镜之间,晶片的光轴平分此角,求: (1)从方解石晶片射出的O 光和E 光的振幅和光强。 (2)由第二个尼科耳棱镜射出的O 光和E 光的振幅和光强。 设入射自然光的光强为I 0=A 2。 习题4. 1解答: 如图所示: 已知:o 5.17=α (1)从方解石晶片射出的O 光和E 光的振幅和光强。 设由第一个尼科耳棱镜P1射出线偏振光的光强为I 1: 22 1021211A I A I === 得 A A 21 1= 从方解石晶片射出的O 光和E 光的振幅为:

o E o O A A A A A A 5.17cos 2 1cos 5.17sin 21sin 11====αα 从方解石晶片射出的O 光和E 光的强度为: o E E o O O I A I I A I 5.17cos 215.17sin 2 1202202 ==== (2)由第二个尼科耳棱镜射出的O 光和E 光的振幅和光强。 由第二个尼科耳棱镜射出的O 光和E 光的振幅为: o E Ep o O Op A A A A A A 5.17cos 2 1cos 5.17sin 2 1sin 2222====αα 光强为: o Ep o OP I A I I 5.17cos 2 15.17sin 2 1402402== 习题4.2:光强为I 0单色平行光通过正交尼科耳棱镜,中间插入四分之一波片,其主截面与第一个尼科耳轴棱镜的主截面夹角为600,求出射光强度。

习题4. 2解答: 如图: 已知:o o 30,60==βα 设入射自然光的光强为I 0=A 2 由第一个尼科耳棱镜P1射出线偏振光的光强为I 1: 22 1021211A I A I === 得 A A 21 1= 从方解石晶片射出的O 光和E 光的振幅为: o E o O A A A A A A 60cos 2 1cos 60sin 21sin 11====αα 由第二个尼科耳棱镜射出的O 光和E 光的振幅为:

光的等厚干涉现象与应用

实验11 光的等厚干涉现象与应用 当频率相同、振动方向相同、相位差恒定的两束简谐光波相遇时,在光波重叠区域,某些点合成光强大于分光强之和,某些点合成光强小于分光强之和,合成光波的光强在空间形成强弱相间的稳定分布,这种现象称为光的干涉。光的干涉是光的波动性的一种重要表现。日常生活中能见到诸如肥皂泡呈现的五颜六色,雨后路面上油膜的多彩图样等,都是光的干涉现象,都可以用光的波动性来解释。要产生光的干涉,两束光必须满足:频率相同、振动方向相同、相位差恒定的相干条件。实验中获得相干光的方法一般有两种——分波阵面法和分振幅法。等厚干涉属于分振幅法产生的干涉现象。 一、实验目的 1.通过实验加深对等厚干涉现象的理解; 2. 掌握用牛顿环测定透镜曲率半径的方法; 3. 通过实验熟悉测量显微镜的使用方法。 二、实验仪器 测量显微镜、牛顿环、钠光灯、劈尖装置和待测细丝。 三、实验原理 当一束单色光入射到透明薄膜上时,通过薄膜上下表面依次反射而产生两束相干光。如果这两束反射光相遇时的光程差仅取决于薄膜厚度,则同一级干涉条纹对应的薄膜厚度相等,这就是所谓的等厚干涉。 本实验研究牛顿环和劈尖所产生的等厚干涉。 1.等厚干涉 如图11-1所示,玻璃板A 和玻璃板B 二者叠放起来,中间加有一层空气(即形成了空气劈尖)。设光线1垂直入射到厚度为d 的空气薄膜上。入射光线在A 板下表面和B 板上表面分别产生反射光线2和2′,二者在A 板上方相遇,由于两束光线都是由光线1分出来的(分振幅法),故频率相同、相位差恒定(与该处空气厚度d 有关)、振动方向相同,因而会产生干涉。 我们现在考虑光线2和2′的光程差与空气薄膜厚度 的关系。显然光线2′比光线2多传播了一段距离2d 。 此外,由于反射光线2′是由光密媒质(玻璃)向光疏媒质(空气)反射,会产生半波损失。故总的光程差还应加上半个波长2/λ,即2/2λ+=?d 。 根据干涉条件,当光程差为波长的整数倍时相互加强,出现亮纹;为半波长的奇数倍

光的干涉在生活中的应用

光的干涉在生活中的应用 这次物理演示实验课我们学的是光学,我对其中光的干涉这一部分非常的感兴趣。所以课后我就对其在生活中的应用做了简单的了解。 干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象.1801年,英国物理学家托马斯?杨(1773—1829)在实验室里成功地观察到了光的干涉.两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象。只有两列光波的频率相同,相位差恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。 光的干涉在生活中的应用有很多方面,根据光的干涉原理可以进行长度的精密计量。例如用迈克耳孙干涉仪校准块规的长度。其方法如下,用单色性很好的激光束(波长为λ)作为光源,并在迈克耳孙干涉仪的可动镜臂上装有精密的触头,先使触头接触块规的一端,然后撤去块规,令可动镜移动。这时,每移动λ/2,两臂中光路的光程差就增加λ,从而置于干涉视场中心的检测器就输出一次强弱变化,使记数器的数字增加1。直到触头接触基面(块规的另一端面原来放在基面上)为止。若记数器总共增加的数为n,则测得块规的长度为nλ/2;利用干涉现象还可以检测加工过程中工件表面的几何形状与设计要求之间的微小差异。例如要加工一个平面,则可首先用精密工艺制造一个精度很高的平面玻璃板(样板)。使样板的平面与待测件的表面接触,于是此二表面间形成一层空气薄膜。若待测表面确是很好的平面,则空气膜到处等厚或者是规则的楔形。当光照射时,薄膜形成的干涉光强呈一片均匀或是平行、等间隔的直条纹。如果待测表面在某些局域偏离了平面,则此处的干涉光强与别处不同或者干涉条纹在该处呈现弯曲。从条纹变异的情况可以推知待测表面偏离平面的情况。偏离量为波长的若干分之一是很容易观察得到的。 光的干涉在生活中的应用还有很多很多,相信目前我们所学到的只是一些皮毛而已。在以后的学习道路中,我们一定要再接再厉,学习更多有用的知识,来为我们的生活服务。

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图2-基本线性配置 SJ6000全套镜组:

图3-SJ6000全套镜组 镜组附件: 轻型线性附件远距离线性附件可调转向镜直线度附件 图4-SJ6000 镜组附件 镜组安装配件: 镜组安装件测头夹具垂直度安装三脚架 图5-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图6-线性测量构建图 图7-水平轴线性测量样图图8-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析

激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。 图9-激光干涉仪应用于机床校准 图10-激光干涉仪应用于三坐标机校准 SJ6000软件置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

相关文档
最新文档