通信系统建模与仿真课程设计

通信系统建模与仿真课程设计
通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级

题目基于SIMULINK的基带传输系统的仿真姓名学号

指导教师胡娟

2014年6月27日

1任务书

试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。

2基带系统的理论分析

1.基带系统传输模型和工作原理

数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。

g T(t)

n

定时信号

图 1 :数字基带传输系统方框图

发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。

基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。

接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。

抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。

2.基带系统设计中的码间干扰和噪声干扰以及解决方案

由图 1所示,其中发送滤波器的传递函数为G T (f ),冲击响应为g T (t );接收滤波器的传递函数为G R (f ),冲击响应为g R (t )。从{a n }到{a ?n }的传输过程中,各个脉冲信号经过信道与接收滤波器 后可能发生不期望的变形,从而影响接收,这中间既有码间串扰又有噪声的影响。

经过接收滤波器后的输出信号为

y (t )={[∑a k ∞k=?∞δ(t ?kT s )]?g T (t )?c (t )+n (t )}?g R (t )

令y n (t )=n (t )?g R (t ),并令数字基带传输系统总的冲击响应为 h (t )=g T (t )?c (t )?g R (t ) 总的频响函数为 H (f )=G T (f )C (f )G R (f ) 于是

y (t )=∑a k ∞

k=?∞

δ(t ?kT s )?h (t )+y n (t )

=∑a k h (t ?kT s )+y n ∞

k=?∞

(t )

记抽样定时为t =nT s +t 0,得到抽样值,r n =y (nT s +t 0)。t 0是相对固定的时延,不妨将其忽略。于是

r n =y (nT s )=∑a k h (nT s ?kT s )+y n ∞

k=?∞

(nT s )

=a n h (0)+∑a n?m h (mT S )∞

m=?∞m≠0

+y n (nT s )

式中,令m =n ?k 。式中的第一项对应所期望接收的a n 符号,;第二项是其他符号对当前符号a n 的干扰,称为码间串扰或码间干扰(ISI );第三项为噪声影响。

由于随机性的码间串扰和噪声的存在,使抽样判决电路在判决时可能判对,也可能判错。显然,只有当码间干扰和随机干扰很小时,才能保证上述判决的正确;当干扰及噪声严重时,则判错的可能性就很大。

1)码间干扰及解决方案

码间干扰:由于基带信号受信道传输时延的影响,信号波形将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。

解决方案:

① 要求基带系统的传输函数H(f)满足奈奎斯特第一准则:

∑H(f?k T s )

?∞

k=?∞

=常数

若不能满足奈奎斯特第一准则,在接收端加入时域均衡,减小码间干扰。②基带系统的系统函数H(ω)应具有升余弦滚降特性。如图2所示。这样对应的h(t)拖尾收敛速度快,能够减小抽样时刻对其他信号的影响即减小码间干扰。

2)噪声干扰及解决方案

噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。

解决方案:

①在接收端进行抽样判决;②匹配滤波,使得系统输出性噪比最大。

3基带系统设计方案

○1信源的选择:常见的基带信号波形有:单极性波形、双极性波形、单极性归零波形和双极性归零波形。双极性波形可用正负电平的脉冲分别表示二进制码“1”和“0”,故当“1”和“O”等概率出现时无直流分量,有利于在信道中传输,且在接收端恢复信号的判决电平为零,抗干扰能力较强。本次课程设计所采用的曼彻斯特码就是一种典型的双极性不归零码。在simulink的环境下产生该信号需将“Bernoulli Binary Generator”模块和“Pulse Generator”模块各自产生的信号经过一个“Relay”模块判决后再经过一个相乘器“Product”模块。

○2发送滤波器和接收滤波器的选择:基带系统设计的核心问题是滤波器的选取,根据对信源的分析,为了使系统冲激响应h(t)拖尾收敛速度加快,减小抽样时刻偏差造成的码间

干扰问题,要求发送滤波器应具有升余弦滚降特性,同时为了得到最大输出信噪比,在此选择平方根升余弦滤波器作为发送(接收)滤波器,滚降系数为0.5,接收滤波器与发送滤波器相匹配。以得到最佳的通信性能(即误码率最小)

○3信道的选择:信道是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,且含有加性噪声。因此本次系统仿真采用高斯白噪声信道。

○4抽样判决器的选择:抽样判决器是在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。根据曼彻斯特码的码性特点,故在接收中的判决门限为0。即采用由“Pulse Generator”脉冲模块“Relay”判决模块“Product”相乘器模块“Triggered Subsystem”保持模块构成的抽样判决器。

4SIMULINK下基带系统的设计

1信源的建模及相关参数设置

曼彻斯特码基带信号源需用到的simulink模块有“Bernoulli Binary Generator”、“Pulse Generator”、“Relay”、“Product”。

考虑到设计要求,“Bernoulli Binary Generator”参数设置为“Sample time”为“1/1000”,其余参数为默认值;“Pulse Generator”参数设置为“Sample time”为“1e-4”,“Period”为“10”“Pulse Width”为“5”,其余参数为默认值。“Relay”判决门限为0.5,大于0.5输出1,小于0.5则输出-1,其余参数为默认。“Product”所有参数均为为默认值。

其模型搭建方式如下图所示

伯努利二进制信源模块及参数的设置:

Bernoulli模块参数

图 2

由伯努利信源产生曼彻斯特码建模及参数设置:

Pulse模块参数 Relay模块参数

图 3

发送滤波器、信道、接收匹配滤波器的建模及参数设置:

发送滤波器参数 AWGN参数

匹配接收滤波器参数

图4

抽样与判决器的建模及参数设置:

Pulse恢复定时模块参数 Relay判决模块参数

图 5

基带传输系统的总模型:

图6 基带传输系统的总模型

5仿真结果分析

1、曼彻斯特编码前与编码后波形

图7

2、发送数据波形与接收数据波形

图8

从以上两图可以看出,曼彻斯特的编码完全正确,发送数据波形与接收数据波形完全吻合,由于误码率很低且示波器的显示范围有限,在图8中看不到传输错误的码元。

通过接收端与发送端时域波形对比,可以看出设计的抽样判决器的抽样判决门限比较合理,可以顺利的完成对基带信号的抽样判决,与理论分析相一致。

3、经过滤波器、信道的各点时域波形

图9

上图第一个波形为发送滤波器输出端时域波形,产生了规律的比较适合信道传输的波形,比较光滑。中间的波形为信道输出端的时域波形,由于信噪比不是太高,对发送滤波器输出的信号影响不明显。最下端的波形为接收滤波器输出时域波形。可以见的,噪声被基本滤除,接收滤波器输出波形比较平滑。

4、曼彻斯特码元与解码后的波形比较

图10

通过这两个波形比较,可以看出数据经过发送滤波器、AWGN信道、接收滤波器、采样、判决恢复后,基本完全与原波形一致。

5、接收眼图波形与分析

图11

(1)从上图中可以看出,眼图的线迹比较细,比较清晰,并且“眼睛”很大,说明误码率比较低,码间串扰与噪声对系统传输可靠性影响不大。

(2)从上图中可以看出最佳时刻是0.2,0.7,1.2,1.7左右等时刻“眼睛”最大即抽样最佳时刻。

(3)因为眼图眼边的斜率比较大,所以看出定时误差灵敏度比较敏感。

(4)“眼睛”张开的宽度为可抽样的时间范围。

(5)抽样时刻,上下两个阴影区的间隔距离之半为噪声容限,若噪声瞬时值超过它就可能发生错判。

6、发送信号与接收信号功率谱估计与分析

发送信号功率谱接收信号功率谱

图12

从两图比较中可以看出,接收信号的功率谱与发送信号的功率谱基本完全一样,说明整个基带传输系统模型的设计是合理的,能满足要求,具有较好的抗码间串扰的能力。

7、误码率统计与分析

图 13

图 14

通过误码率统计“Display”模块可知该系统的误码率为0.0095,且误码率会随着仿真时间的增长逐步降低。由图 14发送数据波形与接收数据波形比较,可以看到中间有一处出现了错误:原码为“0”,接收到的却是“1”。原因可能有以下几个方面:

○1、误码有可能是由于噪声造成的。由于噪声的存在,可能会使原有基带信号的正负电平出现逆转,由于抽样判决门限为0,造成判决出错出现误码。

○2、有可能是码间干扰的原因。虽然理论分析可以完全消除码间干扰,但是由于平方根升余弦滤波器等部件不可能是完全理想的,所以在仿真及实际工程中码间干扰是不会完全消除的。

○3、由于采用相乘器等模块构造解码器,其解码过程也有可能会出错。

6遇到的问题及解决的方法

刚开始拿到这个题目时,觉得很简单,因为通信建模书上有相似的例题,所以只是把两个例题的模块组合到一起,然后修改下要求的参数。但仿真后眼图很乱,而且发送数据和恢复数据波形相比有一定的延时。经过思考影响眼图的因素,最终发现原因在加性高斯信道上,信噪比高,眼图就好,信噪比低,眼图就很乱。由于发送滤波器和接受滤波器的滤波延时均设计为10传输码元间隙,所以在传输中共延时20个时隙,所以接受数据比发送数据延时了20个码元。

7结束语

课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。

这次课程设计虽然很短,但我学到了很多东西。起步的时候仍然遇到一些问题不能深入地思考,对Simulink中的通信系统模型的搭建流程及各种功能模块的作用和参数设置的具体情况理解不够充分。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。通过这次课程设计之后,从理论到实践,翻阅了许多书籍和资料,体会到了MATLAB在实际应用中的强大功能,学会了用软件帮助我们学习通信原理和数字信号处理。这次课程设计终于顺利完成了,在设计中遇到了很多问题,最后在同学的帮助下终于迎刃而解。

8指导教师评语

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

通信系统课程设计

二、毕业设计(论文)书写规范与打印要求 (一)论文书写 论文(设计说明书)要求统一使用Microsoft Word软件进行文字处理,统一采用A4页面(210×297㎜)复印纸,单面打印。其中上边距30㎜、下边距30㎜、左边距30㎜、右边距20㎜、页眉15㎜、页脚15㎜。字间距为标准,行间距为固定值22磅。 字体和字号要求 论文题目:二号黑体 章标题:三号黑体(1□□×××××)节标题:四号黑体(1.1□□××××)条标题:小四号黑体(1.1.1□□×××)正文:小四号宋体 页码:小五号宋体 数字和字母:Times New Roman体 注:论文装订方式统一规定为左装订。 (二)论文前置部分 包括:封面、答辩成绩评定页、评阅意见页、任务书、设计档案页均按学校统一内容和格式填写。

(三)摘要 摘要是学位论文内容的不加注释和评论的简短陈述,说明研究工作的目的、实验方法、实验结果和最终结论等。应是一篇完整的短文,可以独立使用和引用,摘要中一般不用图表、化学结构式和非公知公用的符号和术语。 中文摘要(100字左右) “摘要”字样(三号黑体),字间空一个字符,“摘要”二字下空一行打印摘要正文(小四号宋体)。 摘要正文后下空一行打印“关键词”三字(小四号黑体),其后为关键词(小四号宋体),关键词是为了便于文献标引从该学位论文中选取出来用以表示全文主题内容信息款目的单词或术语,关键词一般为3~5个,每一关键词之间用分号“;”隔开,最后一个关键词后不打标点符号。 目次页 目次页由学位论文的章、条、款、致谢、参考文献、附录等的序号、名称和页码组成,目次页置于外文摘要后,由另页开始。 目录题头用三号黑体字居中排写,隔行书写目录内容。 目录采用三级标题,按(1 ……、1.1 ……、1.1.1 ……)的格式编写,目录中各章题序的阿拉伯数字用Times New Roman体,第一级标题用小四号黑体,其余用小四号宋体。 (五)论文的主要部分 1、引言(或绪论) 引言(或绪论)简要说明研究工作的目的、范围、前人的工作和知识空白、理论基础和分析、研究设想、研究方法、实验设计、预期结果和意义等。引言(或绪论)不要与摘要

通信系统建模与仿真

《电子信息系统仿真》课程设计 级电子信息工程专业班级 题目FM调制解调系统设计与仿真 姓名学号 指导教师胡娟 二О一年月日

内容摘要 频率调制(FM)通常应用通信系统中。FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。 FM调制解调系统设计是对模拟通信系统主要原理和技术进行研究,理解FM系统调制解调的基本过程和相关知识,利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出对已调信号叠加噪声后信号,非相干解调后信号和解调基带信号的时域波形;最后绘出FM基带信号通过上述信道和调制和解调系统后的误码率与信噪比的关系,并通过与理论结果波形对比来分析该仿真调制与解调系统的正确性及噪声对信号解调的影响。在课程设计中,系统开发平台为Windows XP,使用工具软件为 7.0。在该平台运行程序完成了对FM调制和解调以及对叠加噪声后解调结果的观察。通过该课程设计,达到了实现FM信号通过噪声信道,调制和解调系统的仿真目的。了解FM调制解调系统的优点和缺点,对以后实际需要有很好的理论基础。 关键词 FM;解调;调制;M ATL AB仿真;抗噪性

一、M ATLAB软件简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。其特点是: (1) 可扩展性:Matlab最重要的特点是易于扩展,它允许用户自行建立指定功能的M文件。对于一个从事特定领域的工程师来说,不仅可利用Matlab所提供的函数及基本工具箱函数,还可方便地构造出专用的函数。从而大大扩展了其应用范围。当前支持Matlab的商用Toolbox(工具箱)有数百种之多。而由个人开发的Toolbox则不可计数。 (2) 易学易用性:Matlab不需要用户有高深的数学知识和程序设计能力,不需要用户深刻了解算法及编程技巧。 (3) 高效性:Matlab语句功能十分强大,一条语句可完成十分复杂的任务。如fft语句可完成对指定数据的快速傅里叶变换,这相当于上百条C语言语句的功能。它大大加快了工程技术人员从事软件开发的效率。据MathWorks公司声称,Matlab软件中所包含的Matlab 源代码相当于70万行C代码。

通信系统课程设计

课程设计任务书 学生姓名:周全专业班级:信息sy0901 指导教师:刘新华工作单位:信息工程学院 题目:通信系统课群综合训练与设计 初始条件:MA TLAB 软件,电脑,通信原理知识 要求完成的主要任务: 1、利用仿真软件(如Matlab或SystemView),或硬件实验系统平台上设计 完成一个典型的通信系统 2、学生要完成整个系统各环节以及整个系统的仿真,最终在接收端或者精 确或者近似地再现输入(信源),计算失真度,并且分析原因。 时间安排: 指导教师签名: 2013 年 1 月 1 1日 系主任(或责任教师)签名: 2013 年 1 月 11 日

目录 摘要 (2) Abstract (3) 1设计任务 (4) 2实验原理分析 (5) 2.1 PCM原理介绍 (5) 2.1.1 抽样(Sampling) (5) 2.1.2 量化(quantizing) (5) 3. 基带传输HDB3码 (12) 4.信道传输码汉明码 (14) 5.PSK调制解调原理 (15) 6. AWGN(加性高斯白噪声) (18) 7.仿真结果 (19) 8.心得体会 (23) 9.参考文献 (24) 附录 (25)

摘要 通信系统是一个十分复杂的系统,在具体实现上有多种多样的方法,但总的过程却是具有共性的。对于一个模拟信号数字化传输,过程可分为数字化,信源编解码,信道编解码,调制解调,加扰等。本实验利用MATLAB实现了PCM编码,HDB3码,汉明码,psk调制,AWGN及对应的解调过程,完整实现了一个通信系统的全部过程。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 关键字:通信系统,调制,解调,matlab

生产系统建模与仿真课程设计说明书

目录 1、系统描述 (2) 2、系统分析 (2) 3、系统仿真输入数据分析 (3) 4、WITNESS建模与仿真 (9) 2、系统仿真的输出分析 (11) 参考文献 (13) 邮政银行窗口服务系统建模与仿真设计说明书

1 系统描述 中北大学邮政银行系统为全校师生提供存取款、转账等各种银行服务,此服 务系统由取款者、人工服务窗口、银行构成。邮政银行共有3个服务窗口,但由 于端午假期,学校人员较少,需要办理业务的人也不多,故仅开通一个窗口。在日 常的取款过程中经常出现排队等待现象。在高峰期(注:高峰期往往就是中午、下 午与节假日前),同学到达率服从一定概率分布,服务速率依赖于同学办理业务的 类型以及服务人员的工作效率。此次建模的目的就是在假定同学到达时间间隔与 办理业务花费的时间服从一定的概率分布时,考察服务窗口的忙闲情况。 图1:排队模型 2 系统分析 (1)实体: 临时实体:顾客 永久实体:服务窗口 特殊实体:排队队列 (2)状态: 服务窗口:忙、闲 顾客:排队、接受服务 排队队列:队列长度 (3)活动:排队(顾客),服务(服务窗口) a、顾客到达时,若服务窗口处于空闲状态,则顾客进入“等待服务”的阶段;否则,进入“接受服务”阶段。 b、服务窗口完成对某一顾客的服务之后,如果队列处于“非零”状态,则立即开始对下一个顾客的服务;否则进入“闲”的状态。 (4)时间:顾客到达、顾客结束排队(条件事件)、顾客服务完毕离去。 (5)排队规则:先到先服务 (6)系统的流程图描述

图1 邮政银行服务系统实体流程图 3 系统仿真输入数据分析 (1)数据的收集

通信系统建模与仿真课程设计

1 任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号, 发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高 斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps , 要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据 与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功 率谱进行估计。假设接收定时恢复是理想的。 2 基带系统的理论分析 2.1基带系统传输模型及工作原理 基带系统传输模型如图1所示。 发送滤波器 传送信道 接收滤波器 {an} n(t) 图1 基带系统传输模型 1)系统总的传输特性为(w)()()()H GT w C w GR w ,n (t )是信道中 的噪声。 2)基带系统的工作原理:信源是不经过调制解调的数字基带信号, 信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加

性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样 判决器进一步去噪恢复基带信号,从而完成基带信号的传输。 2.2 基带系统设计中的码间干扰及噪声干扰 码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基 带系统工作性能。 1)码间干扰及解决方案 a ) 码间干扰:由于基带信号受信道传输时延的影响,信号波形 将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。 b) 解决方案: ① 要求基带系统的传输函数H(ω)满足奈奎斯特第一准则: 2(),||i i H w Ts w Ts Ts ππ+ =≤∑ 不出现码间干扰的条件:当码元间隔T 的数字信号在某一理想低通 信道中传输时,若信号的传输速率位Rb=2fc (fc 为理想低通截止频 率),各码元的间隔T=1/2fc ,则此时在码元响应的最大值处将不 产生码间干扰。传输数字信号所要求的信道带宽应是该信号传输速 率的一半:BW=fc=Rb/2=1/2T ② 基带系统的系统函数H(ω)应具有升余弦滚降特性。 如图2所示:滚降系数:a=[(fc+fa)-fc]/fc

单片机双机通信系统的课程设计

一.课程设计的目的及基本要求: 实践课程是使学生融会贯通本课程所学专业理论知识,完成一个较完整的设计计算和安装调试过程,以加深学生对所学理论的理解与应用,认识和熟悉元器件和电子测量仪器的性能指标,了解解决实际问题的一般过程,培养学生综合运用基础理论知识和专业知识去解决实际工程设计问题的能力。通过电子技术的综合性工程训练,使学生达到以下的目的和要求: 1、结合模拟电路、数字电路、可编程逻辑 器件、单片机电子线路CAD等课程中所学的 理论知识,按要求独立设计方案,培养学生 独立分析与解决问题的能力; 2、学会查阅相关手册和资料,通过查阅手 册和资料,进一步熟悉常用电子器件的类型 和特性,并掌握合理选用的原则; 3、学会使用常用电子元器件(包括中规模 芯片、专用芯片和可编程器件);

4、掌握基本的现代电子技术设计工具和EDA (Electronic design automation)技术; 5、掌握电子电路的安装与调试技术,进一 步熟悉电子仪器的使用方法; 6、认真撰写总结报告,培养严谨的作风和 科学的态度; 二.课程设计的主要内容: 课题十九单片机双机通信系统 基本要求:设计两个单片机最小系统,能实现有线通信,一方为发送,另一方为接收。 提高要求:两个单片机最小系统能相互通信,并能实现校验。 三.具体要求和时间安排: 每一个学生在教师指导下,独立完成一个应用系统。工作量如下: 1、电路原理图(A3幅面)1张,要求Protel软件绘制; 2、pcb版图(A3及以上幅面)1张;

3、设计说明书(20-30页)1本,内含能编译通过的源程序(有必要的注释)。

DPCM通信系统课程设计

课程设计 课程名称: 通信原理 设计题目:DPCM通信系统设计 学院:电力学院 专业:智能电网信息工程 班级:00000000000 姓名:0000 学号:00000000000 成绩: 指导教师:00000 日期:2020 年6月22日—2020 年6月29日

课程设计成绩考核表

设计说明 首先安装MATLAB软件,然后熟悉软件环境以及各个模块并利用MATLAB集成环境下的Simulink仿真平台,建立一个很小的系统,用示波器观察正弦波信号的平方的波形;理解DPCM编码及解码原理图并根据DPCM编解码原理图设计一个DPCM 编码与解码系统;改变不同模块的数据并用示波器观察编码与解码前后的信号波形;最后根据运行结果和波形来分析该系统性能,从而更深入地掌握DPCM编码与解码系统的相关知识使自己受益。 关键词:差分脉冲编码调制;编码;解码

1 绪论 (1) 1.1 课程设计意义 (2) 1.2课程设计的步骤 (2) 1.3 课程设计要求 (2) 2 DPCM通信原理的介绍 (3) 2.1 预测编码简介 (3) 2.2 DPCM的基本原理 (4) 2.3 差分脉冲编码调制原理及性能 (4) 3 Simulink仿真过程分析 (7) 3.1 Simulink仿真建模 (7) 3.2 DPCM编码与解码的参数设置 (7) 3.3仿真结果的分析 (11) 4 程序仿真 (12) 4.1仿真程序 (12) 4.2仿真程序运行结果 (12) 结论......................................................................................................... 错误!未定义书签。参考文献.. (14)

通信系统课程设计

《学科基础课群综合训练》 目录 1. 原理分析与方案论证 (1) 1.1 通信系统架构 (1) 1.2 信源码——PCM码 (2) 1.3 基带码——Miller码 (3) 1.3.1密勒码简介 (3) 1.3.2密勒码原理 (3) 1.4 信道码——汉明码 (3) 1.5 噪声信道——AWGN (4) 2. 各模块的MATLAB实现 (5) 2.1 信号源的实现 (5) 2.2 信源编码——PCM编码 (5) 2.2.1 PCM编码原理 (5) 2.2.2 PCM编码的实现 (7) 2.3. 基带编码——Miller编码 (8) 2.4. 信道编码——汉明码编码 (9) 2.5. ASK调制 (11) 2.6. 信道噪声——AWGN (12) 2.7. ASK解调 (13) 2.8. 汉明码解调 (14) 2.9. Miller译码 (15) 2.10. PCM译码 (16) 2.11. 误码率的计算 (16) 3.仿真结果分析 (17) 3.1 源信号与接收信号波形对比 (17) 3.2 误码率统计 (17) 4. 心得体会 (18) 5. 参考文献 (19)

一.原理分析与方案论证 1.1 通信系统架构 通信的目的是传输信息。通信系统的作用就是将信息从信息源发送到一个或多个目的地。对于任何一个通信系统,均可视为由发送端、信道和接收端三大部分组成(如图1-1所示)。 图1-1 通信系统一般模型 1、信息源:把原始信息变换成原始电信号。 2、信源编码: ①实现模拟信号的数字化传输即完成A/D变化。 ②提高信号传输的有效性。即在保证一定传输质量的情况下,用尽可能少的数字脉冲来表示信源产生的信息。信源编码也称作频带压缩编码或数据压缩编码。 3、信道编码: ①信源编码的目的:信道编码主要解决数字通信的可靠性问题。②信道编码的原理:对传输的信息码元按一定的规则加入一些冗余码(监督码),形成新的码字,接收端按照约定好的规律进行检错甚至纠错。③信道编码又称为差错控制编码、抗干扰编码、纠错编码。 4、数字调制 ①数字调制技术的概念:把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的频带信号。 ②数字调制的主要作用:提高信号在信道上传输的效率,达到信号远距离传输的目的。 ③基本的数字调制方式:振幅键控ASK、频移键控FSK、相移键控PSK。 5、信道: 信道是信号传输媒介的总称,传输信道的类型有无线信道(如电缆、光纤)和有线信道(如自由空间)两种。 6、噪声源: 1通信系统中各种设备以及信道中所固有的,为了分析方便,把噪声源视为各处噪声的集中表现而抽象加入到信道。 1.2 信源码——PCM码 通常是把从模拟信号抽样、量化,直到变换成为二进制符号的基本过程,称为脉冲编码调制PCM,简称脉码调制。在编码器中由冲激脉冲对模拟信号抽样,得到在抽样时刻上的信号抽样值。这个抽样值仍是模拟量。在量化之前,通常由保持电路将其作短暂保存,以便电路有时间对其量化。在实际电路中,常把抽样和保持电路做在一起,称为抽样保持电路。图中的量化器把模拟抽样信号变成离散的数字量,然后在编码器中进行二进制编码。这样每个二进制码组就代表一个量化后的信号抽样值。

杭电通信系统课程设计报告实验报告

通信系统课程设计实验报告 XX:田昕煜 学号:13081405 班级:通信四班 班级号:13083414 基于FSK调制的PC机通信电路设计

一、目的、容与要求 目的: 掌握用FSK调制和解调实现数据通信的方法,掌握FSK调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程. 课程设计任务:设计并制作能实现全双工FSK调制解调器电路,掌握用Orcad Pspice、Protel99se进行系统设计及电路仿真。 要求:合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。 二、总体方案设计 信号调制过程如下: 调制数据由信号发生器产生(电平为TTL,波特率不超过9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为30kHz和40kHz(发“1”时产生30kHz方波,发“0”时产生40kHz方波),再经过低通滤波器2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。

信号的解调过程如下: 首先经过带通滤波器1,滤除带外噪声,实现信号的提取。在本设计中FSK 信号的解调方式是过零检测法。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器1实现信号的解调,最后经过比较器使解调信号成为TTL电平。在示波器上会看到接收数据和发送数据是一致的。 各主要电路模块作用: 电平/幅度调整电路:完成TTL电平到VCO控制电压的调整; VCO电路:在控制电压作用下,产生30KHz和40KHz方波; 低通2:把30KHz、40KHz方波滤成正弦波; 线圈:完成单端信号和差分信号的相互转换; 带通1:对带外信号抑制,完成带信号的提取; 限放电路:正弦波整形成方波,同时保留了过零点的信息; 微分、整流、脉冲形成电路:完成信号过零点的提取; 低通1:提取基带信号,实现初步解调; 比较器:把初步解调后的信号转换成TTL电平 三、单元电路设计原理与仿真分析 (1)带通1(4阶带通)-- 接收滤波器(对带外信号抑制,完成带信号的提取) 要求通带:26KHz—46KHz,通带波动3dB; 阻带截止频率:fc=75KHz时,要求衰减大于10dB。经分析,二级四阶巴特沃斯带通滤波器来提取信号。 具体数值和电路见图1仿真结果见图2。

通信系统的组成

通信系统的组成 1.2.1 通信系统的一般模型 实现信息传递所需的一切技术设备和传输媒质的总和称为通信系统。以基本的点对点通信为例,通信系统的组成(通常也称为一般模型)如图 1-1 所示。 图 1-1 通信系统的一 般模型 图中,信源(信息 源,也称发终端)的作 用是把待传输的消息转 换成原始电信号,如电 话系统中电话机可看成是信源。信源输出的信号称为基带信号。所谓基带信号是指没有经过调制(进行频谱搬移和变换)的原始电信号,其特点是信号频谱从零频附近开始,具有低通形式,。根据原始电信号的特征,基带信号可分为数字基带信号和模拟基带信号,相应地,信源也分为数字信源和模拟信源。 发送设备的基本功能是将信源和信道匹配起来,即将信源产生的原始电信号(基带信号)变换成适合在信道中传输的信号。变换方式是多种多样的,在需要频谱搬移的场合,调制是最常见的变换方式;对传输数字信号来说,发送设备又常常包含信源编码和信道编码等。 信道是指信号传输的通道,可以是有线的,也可以是无线的,甚至还可以包含某些设备。图中的噪声源,是信道中的所有噪声以及分散在通信系统中其它各处噪声的集合。 在接收端,接收设备的功能与发送设备相反,即进行解调、译码、解码等。它的任务是从带有干扰的接收信号中恢复出相应的原始电信号来。 信宿(也称受信者或收终端)是将复原的原始电信号转换成相应的消息,如电话机将对方传来的电信号还原成了声音。 图 1-1 给出的是通信系统的一般模型,按照信道中所传信号的形式不同,可进一步具体化为模拟通信系统和数字通信系统。 1.2.2 模拟通信系统 我们把信道中传输模拟信号的系统称为模拟通信系统。模拟通信系统的组成可由一般通信系统模型略加改变而成,如图 l-2 所示。这里,一般通信系统模型中的发送设备和接收设备分别为调制器、解调器所代替。 对于模拟通信系统,它主要 包含两种重要变换。一是把连续 消息变换成电信号(发端信息源 完成)和把电信号恢复成最初的 连续消息(收端信宿完成)。由 信源输出的电信号(基带信号) 由于它具有频率较低的频谱分 量,一般不能直接作为传输信号而送到信道中去。因此,模拟通信系统里常有第二种变换,即将基带信号转换成其适合信道传输的信号,这一变换由调制器完成;在收端同样需经相反的变换,它由解调器完成。经过调制后的信号通常称为已调信号。已调信号有三个基本特性:一是携带有消息,二是适合在信道中传输,三是频谱具有带通形式,且中心频率远离零频。因而已调信号又常称为频带信号。 必须指出,从消息的发送到消息的恢复,事实上并非仅有以上两种变换,通常在一个通信系统里可能还有滤波、放大、天线辐射与接收、控制等过程。对信号传输而言,由于上面

通信系统课程设计之基于MATLAB的FM通信系统

西南科技大学 课程设计报告 课程名称:通信系统课程设计 设计名称:基于MATLAB的FM通信系统设计 姓名:容晓庆 学号: 20096025 班级:通信0901班 指导教师:侯宝林 起止日期: 2012.6.17-2012.6.25 西南科技大学信息工程学院

课程设计任务书 学生班级:通信0901班学生姓名:容晓庆学号: 设计名称:基于MATLAB的FM通信系统仿真 起止日期:2012.06.10-2012.06.25 指导教师:侯宝林 课程设计学生日志

课程设计评语表

基于MATLAB 的FM 通信系统仿真 一、设计目的和意义 (1)熟悉MATLAB 文件中M 文件的使用方法,包括函数、原理和方法的应用。 (2)加深对FM 信号调制原理的理解。 (3)增强在通信原理仿真方面的动手能力与自学能力。 (4)在做完FM 调制仿真之后,在今后遇到类似的问题,学会对所面对的问题进行系 统的分析,并能从多个层面进行比较。 二、设计原理 图1 模拟通信系统模型 调制器: 使信号与信道相匹配, 便于频分复用等。发滤波器: 滤除调制器输出的无用信号。收滤波器: 滤除信号频带以外的噪声,一般设N(t)为高斯白噪声,则Ni(t)为窄带白噪声。 在通信系统中一般需要将信号进行相应调制,以利于信号在信道上的传输,调制是将用原始信号去控制高频振荡信号的某一参数,使之随原始信号的变化而成规律变化。调制可分为线性调制和非线性调制。线性调制有AM 、DSB 等,非线性调制有FM 、PM 等,这里主要讨论FM 调制通信系统 1.FM 调制原理 角调制不是线性调制,角调制中已调信号和调制信号频谱之间不是线性关系而是产生出新的与频谱搬移不同的新的频率分量,呈现非线性特性,故又成为非线性调制。FM 调制中瞬时角频率是关于调制信号的线性函数, 瞬时角频率偏移量 )(t f k w FM =?, 则, 瞬时角频率为 )(t f k w w FM c += FM k 为频偏指数 则, 调频信号为 ))(cos()(dt t f k t w S FM c t FM ?+= 当调制信号是单频余弦时,调制信号为 )sin cos()cos cos()(t w t w A dt t w A k t w A S m FM c m m FM c t FM β+=?=+ ,

《生产物流系统建模和仿真》课程设计报告

《生产物流系统建模与仿真》课程设计 2012-2013学年度第一学期 姓名孙会芳 学号 099094090 班级工093 指导老师暴伟霍颖

目录 一、课程任务书 (3) 1.题 目............................................................... (3) 2.课程设计内容 (3) 3.课程设计要求 (4) 4.进度安排 (4) 5.参考文献 (4) 二、课程设计正文 (5) 1、题目 (5) 2、仿真模型建立 (5) (1)实体元素定义 (5) (2)元素可视化的设置 (6) (3)元素细节设计 (8) (4 ) 模型运行和数据.................................................................. . (10) (5)模型代码 (12) (6)模型改进 (16) 3.实验感想 (17)

三、参考文献 (18) 《生产物流系统建模与仿真》课程设计任务书 1. 题目 离散型流水作业线系统仿真 2. 课程设计内容 系统描述与系统参数: (1)一个流水加工生产线,不考虑其流程间的空间运输。 (2)两种工件A,B分别以正态分布和均匀分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,等待检验。(学号最后位数对应的仿真参数设置按照下表进行) (3)操作工人labor1对A进行检验,每件检验用时2分钟,操作工人labor2对B进行检验,每件检验用时2分钟。 (4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A的合格率为65%,B的合格率为95%。 (5)工件A送往机器M1加工,如需等待,则在Q3队列中等待;B送往机器M2加工,如需等待,则在Q4队列中等待。 (6)A在机器M1上的加工时间为正态分布(5,1)分钟;B在机器M2上的加工时间为正态分布(8,1)分钟。

通信系统课设

课程设计报告 课程名称现代通信系统设计 课题名称现代通信系统之EPON光接入实训 专业通信工程 班级 学号

姓名 指导教师胡瑛乔汇东张鏖烽 2014 年12月20日

湖南工程学院 课程设计任务书 课程名称现代通信系统设计 课题现代通信系统之EPON光接入实训 专业班级通信工程 学生姓名 学号 指导老师胡瑛乔汇东张鏖烽 审批 任务书下达日期2014 年12月1 日 任务完成日期2014年12月20日

目录 一、固网通信系统拓扑图 (1) 二、简单理论介绍 (1) 三、设备介绍及设备在固网通信系统的作用 (3) 3.1 EPON-MA5680T产品 (3) 3.2 HG813e设备 (7) 四、平台硬件连接图 (8) 五、数据规划 (8) 六、代码分析 (9) 七、结果 (9) 八、体会 (11) 九、评分表 (12)

现代通信系统之EPON光接入实训 一、固网通信系统拓扑图 EPON协议为OLT到每个ONU建立一条逻辑链路,从OLT到ONU的下行数据流被封装为以太网报文,从OLT到ONU的下行数据流被封装为以太网报文,ODN中的光分路器将数据流广播到各个支路,所有ONU都可接收到下行以太数据帧。从ONU到OLT的上行方向上,各个ONU采用时分复用的机制共享上行带宽。EPON通过MPCP协议定义ONU向OLT注册发现、OLT向ONU分配时隙授权、ONU向OLT 报告带宽请求等机制,实现了一种高效简洁的TDM-PON模型。 图1 通信系统拓扑图 二、简单理论介绍 以太网无源光网络(Ethernet Passive Optical Network:EPON)是一种新型的光纤接入网技术,是当今世界上新兴的覆盖最后一公里的宽带光纤接入技术,它采用点到多点结构、无源光纤传输,在以太网之上提供多种业务。它在物理层采用了PON技术,在链路层使用以太网协议,采用PON的拓扑结果实现了以太网的接入。因此,它综合了PON技术和以太网技术的优点。中间采用光分路等无源设备,光纤接入各个用户点(ONU),更多地节省光缆资源,并具有带宽资源共享、节省机房投资、设备安全性高、建网速度快、综合建网成本低等优点。因此无论是在技术优越性和运营效率方面来说,EPON都具有其不可替代的优势。EPON技术在日本、欧美等发达国家已经在大规模的应用,中国的电信运营商为了在新的竞争环境中处于不败之地,也正在大规模的推广使用EPON接入网技术。特别是在中国信息产业迅速发展的今天,相信EPON技术将会得到更加充分的推广和使用,将会在以后的宽带IP接入中发挥至关重要的作用,一定将越来越多的得到应用。EPON 系统采用WDM(Wavelength Division Multiplexing)技术,实现单纤双向传输,EPON(Ethernet Passive

生产系统建模与仿真课程设计

目录 一、系统描述 .................................................................... .. (2) 二、仿真目的 .................................... .......................... .. (2) 三、收集数据 .................................................................... .. (2) 对排队系统各项数据进行统计分析 (2) 分布图 .................................................................... (4) 四、数据处理 .................................................................... (5) 五、模型设计.................................................................... . (7) 模型特点. ................................................. .............. (7)

流程图....................................................... ............ .. (8) 六、系统建模与仿真.................................................. .............. .. (9) 元素定义............................................................ ...... .. (9) 元素可视化(Display)设置 .................................................................. . (9) 元素细节设置................................................................... .. (11) 七、模型运行和数据报告.................................................................. . (12) 八、课程设计的体会.................................................................. .. (15) 九、参考文献.................................................................. . (16)

通信课程设计

一、时间 18~ 19周 上午:8:00---11:30 下午:14:00---17:00 二、题目及分组 基于matlab/simulink的QPSK通信系统仿真 基于matlab/simulink的16QAM通信系统仿真 2PSK、2DPSK系统仿真 脉冲编码调制PCM系统设计与仿真 线性分组码编解码系统仿真设计与分析 分组: 101---119 杨树伟 (周五) 120---138 张元国(周二) 139---210 周建梁(周三) 211---229 李厚荣(周一) 230---247 陈光军(周四) 三、工具 (1)MATLAB7.0 (2)simulink MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案。 程序如下: M=16; k=log2(M); n=100000; %比特序列长度 samp=1; %过采样率 x=randint(n,1); %生成随机二进制比特流 stem(x(1:50),'filled'); %画出相应的二进制比特流信号 title('二进制随机比特流'); xlabel('比特序列');ylabel('信号幅度');

x4=reshape(x,k,length(x)/k); %将原始的二进制比特序列每四个一组分组,并排列成k行length(x)/k列的矩阵 xsym=bi2de(x4.','left-msb'); %将矩阵转化为相应的16进制信号序列 figure; stem(xsym(1:50)); %画出相应的16进制信号序列 >> help bi2de BI2DE Convert binary vectors to decimal numbers. D = BI2DE(B) converts a binary vector B to a decimal value D. When B is a matrix, the conversion is performed row-wise and the output D is a column vector of decimal values. The default orientation of the binary input is Right-MSB; the first element in B represents the least significant bit. In addition to the input matrix, two optional parameters can be given: D = BI2DE(...,P) converts a base P vector to a decimal value. D = BI2DE(...,FLAG) uses FLAG to determine the input orientation. FLAG has

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

simulink通信系统建模与仿真

通信系统建模与仿真课程设计 2008 级通信工程专业0813072 班级 题目基于SIMULINK的2ASK频带传输系统的仿真姓名李春艳学号081307211 指导教师胡娟闫利超贾晓兰 2011年6月1日

1 任务书 试建立一个ASK 频带传输模型,产生一段随机的二进制非归零码的基带信号,对其进行ASK 调制后再送入加性高斯白噪声(AWGN )信道传输,在接收端对其进行ASK 解调以恢复原信号,观察还原是否成功,改变AWGN 信道的信噪比,计算传输前后的误码率,绘制信噪比-误码率曲线,并与理论曲线比较进行说明。另外,对发送信号和接收信号的功率谱进行估计。 2 二进制振幅键控(2ASK )的理论分析 2.1 2ASK 调制原理 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。 设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P ,发送1符号的概率为1-P ,且相互独立。该二进 wct nTs t ang wct t s t sASK cos ])([cos )()(∑-== 制符号序列可表示为 其中: ?? ?=10an 0是以概率p 出现,而1是以概率1-p 出现。 二进制振幅键控信号时间波型如图1 所示。 由图1 可以看出,2ASK 信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK 信号)。 二进制振幅键控信号的产生方法如图2 所示,图(a)是采用模拟相乘的方法实现, 图(b)是采用数字键控的方法实现。 由图1 可以看出,2ASK 信号与模拟调制中的AM 信号类似。所以,对2ASK 信号也能够采用非相干解调(包络检波法)和相干解调(同步检测法),其相应原理方框图如图3 所示。2ASK 信号非相干解调过程的时间波形如图4 所示。

相关文档
最新文档