超分子化学综述

超分子化学综述
超分子化学综述

超分子化学期末论文(设计)题目:超分子化学简介及应用

学院:化学与化工学院

专业:材料化学

班级:材化101 班

学号: 1 0 0 8 1 1 0 0 2 4

学生姓名:朱清元

指导教师:倪新龙

2013年12月10日

贵州大学本科毕业论文(设计)

诚信责任书

本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。

特此声明。

论文(设计)作者签名:

日期:

目录

摘要: (1)

关键字: (1)

Abstract: (1)

Keywords: (1)

第一章.前言 (1)

第二章.超分子化学的理论基础 (2)

第三章.超分子化合物的分类 (2)

3.1杂多酸类超分子化合物 (2)

3.2 多胺类超分子化合物 (3)

3.3 卟啉类超分子化合物 (3)

3.4 树状超分子化合物 (3)

3.5 液晶类超分子化合物 (3)

3.6 酞菁类超分子化合物 (4)

第四章.超分子化合物的特性 (4)

4.1 超分子的自组装 (4)

4.2 超分子的自组织 (5)

4.3 超分子的自复制 (5)

第五章.超分子化学的应用 (6)

5.1、在高科技涂料中的应用 (6)

5.2、在手性药物识别中的应用 (6)

5.3、在油田化学中的应用[1] (7)

5. 4、超分子化合物作为分子器件方面的研究 (7)

5. 5 超分子化合物在色谱和光谱上的应用 (7)

5. 6 超分子催化及模拟酶的分析应用 (8)

5. 7 在分析化学上的应用 (8)

第六章.结语 (8)

第七章.文献资料 (9)

超分子化学简介及应用

摘要:超分子化学是化学领域一个崭新的学科分支,本文综述了超分子理论基础分的有关内容、超分子化学的分类及超分子的应用前景,并指出了超分子化学对科学理论研究的重要意义和广阔的应用前景。

关键字:超分子化学分类应用领域

Abstract: Supramolecular chemistry is a new field of chemistry discipline branch, the paper summarizes the relevant contents of supramolecular theoretical basispoints, over the prospect of molecular classification and application ofsupramolecular chemistry, supramolecular chemistry and pointed out theimportance of a scientific theory significance and broad application prospects.

Keywords: supramolecular chemistry classification applications

第一章·前言

“超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了。超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学。在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能[1]。超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力。如范氏力(含氢键)、亲水或憎水作用等。

1967年,Charles Pedersen偶然发现了冠醚这种新型的大分子化合物,十几年后,一个崭新的化学领域——超分子化学终于诞生了。进入90年代后,Surpramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,像高分子化学一样,已经得到世界各国化学家的普遍认同。在国内,一些高校和科研机构已做了相当多的工作,说明超分子化

学正在迅猛发展。

超分子化学主要研究超分子体系中弱相互作用、基元结构的设计和合成、体系的分子识别和组装、体系组装体的结构和功能及超分子材料和器件等。超分子化合物是由主体分子和1 个或多个客体分子之间通过非价键作用而形成的复杂而有组织的化学体系。主体通常是富电子的分子,可作为电子给体,如碱、阴离子、亲核体等。而客体是缺电子的分子,可作为电子受体(A),如酸、阳离子、亲电体等。超分子化学和配位化学同属于授受体化学,超分子体系中主体和客体之间不是经典的配位键,而是分子间的弱相互作用,大约为共价键的5%~~10%。因此可认为,超分子化学是配位化学概念的扩展。

第二章·超分子化学的理论基础

超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。聚集数可确定或不确定,这与一分子中原子个数严格确定具有本质区别。超分子形成不必输入高能量,不必破坏原来分子结构及价健,主客体间无强化学键,这就要求主客体之间应有高度的匹配性和适应性,不仅要求分子在空间几何构型和电荷,甚至亲疏水性的互相适应,还要求在对称性和能量上匹配。这种高度的选择性导致了超分子形成的高度识别能力。如果客体分子有所缺陷,就无法与主体形成超分子体系。

由此可见,从简单分子的识别组装到复杂的生命超分子体系,尽管超分子体系千差万别,功能各异,但形成基础是相同的,这就是分子间作用力的协同和空间的互补。这些作用力的实质是永久多极矩、瞬间多极矩、诱导多极矩三者之间的相互作用,相应的能量项可分别称为库仑能、色散能和诱导能。这些弱相互作用还包括疏水亲脂作用力、氢键力、3作用的协同性、方向性和选择性决定着分子与位点的识别。经过精心设计的人工超分子体系也可具备分子识别、能量转换、选择催化及物质传输等功能,其中分子识别功能是其他超分子功能的基础。

第三章·超分子化合物的分类

3.1杂多酸类超分子化合物

杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物。作为一类新型电、磁、非线性光学材料极具开发价值[7],有关新型Keg-gin和Dawson型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注。杜丹等[8]合成了Dawson型磷钼杂多酸对苯二酚超分子膜及吡啶Daw

-son型磷钼多酸超分子膜修饰电极,发现该膜电极对抗坏血酸的催化峰电流与其浓度在

0.35~0.50mol/L范围内呈良好的线性关系。毕丽华等[8]合成了多酸超分子化合物,首次发现了杂多酸超分子化合物溶于适当有机溶剂中可表现出近晶相液晶行为。

3.2 多胺类超分子化合物

由于二氧四胺体系可有效地稳定如Cu(Ⅱ)和Ni(Ⅱ)等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用。

大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视。近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元。李晖等[9]利用了冠醚分子的分子识别能力及蒽醌分子的光敏性,设计合成了一种新的氮杂冠醚取代蒽醌分子,并以该分子作为主体分子,以稀土离子作为客体构成超分子体系,并研究了超分子体系内的能量转移过程。

3.3 卟啉类超分子化合物

卟啉及其金属配合物、类似物的超分子功能已应用于生物相关物质分析,展示了更加诱人的前景,并将推动超分子络合物在分析化学中应用的深入开展。

3.4 树状超分子化合物

树状大分子(dendrimer)是20世纪80年代中期出现的一类新的合成高分子。薄志山等[18]首次合成以阴离子卟啉作为树状分子的核,树状阳离子为外层,基于卟啉阴离子与树状阳离子之间静电作用力来组装树状超分子复合物。镧系金属离子(Ln3+)如Tb3+和Eu3+的发光具有长寿命(微秒级)、窄波长、对环境超灵敏性等特点,是一种优良的发光材料,但镧系金属离子在水溶液中只有很弱的发光。

3.5 液晶类超分子化合物

侧链液晶聚合物具有小分子液晶和高分子材料的双重特性,晏华在《超分子液晶》[11]中详细讨论了超分子和液晶的内在联系,探讨了超分子液晶分子工程和超分子液晶热力学。李敏等从分子设计的角度出发,合成了以对硝基偶氮苯为介晶基团的丙烯酸类液晶聚合物,液晶基元上作为电子受体的硝基和作为电子给体的烷氧基可与苯环、N-N之间形成一个离域的π电子体系。初步的研究表明:电晕极化制备的该类聚合物的取向膜具有二阶非线性光学性质。

3.6 酞菁类超分子化合物

田宏健等[13]合成了带负电荷取代基的中位四(4′-磺酸基苯基)卟啉及锌络合物和带正电荷取代基2,9,16,23 四[(4′-N,N,N三甲基)苯氧基]酞菁季铵碘盐及锌络合物,并用Job 氏光度滴定的方法确定了它们的组成,为面对面的杂二聚体或三明治式的杂三聚体超分子排列。发现在超分子体系中卟啉与酞菁能互相猝灭各自的荧光,用纳秒级的激光闪光光解技术观察到卟啉的正离子在600~650 nm和酞菁负离子自由基在550~600 nm的瞬态吸收光谱。结果表明在超分子体系中存在分子间的光诱导电子转移过程

第四章·超分子化合物的特性

4.1 超分子的自组装

自组装通常涉及一个主体和一个或多个客体,沿用生物学中的术语,前者即受体,后者为基质。当自组装成超级分子时,较大的受体的结合位通常是会聚的,被结合的较小基质的结合位则是发散的,两者在电子性能和几何空间上互补。在生物过程中,基质和蛋白质受体的结合,酶反应中的锁钥关系,蛋白质-蛋白质络合物的组装,免疫抗体抗原的结合,分子间遗传密码的读码翻译和转录,神经递素诱发信号,组织的识别等,都涉及这种自组装作用。超分子化学不仅研究自然界中现实的自组装作用,还要人工合成具有这种作用的组装体。在形成组装体时,最基本的功能是分子的识别、转化和移位。

(1)分子识别

分子识别(molecular recognition)是主体(或受体)对客体(或底物)选择性结合并产生某种特定功能的过程。它是不同分子间的一种特殊的、专一的相互作用,既满足相互结合的分子间的空间要求,也满足分子间各种次级键力的匹配,体现出锁

和钥匙原理[6]在超分子中,一种接受体分子的特殊部位具有某些基团,正适合与另一种底物分子的基团相结合。当接受体分子和底物分子相遇时,相互选择对方,一起形成次级键;或者接受体分子按底物分子的大小尺寸,通过次级键构筑起适合底物分子居留的孔穴的结构[7]。所以分子识别的本质就是使接受体和底物分子间有着形成次级键的最佳条件,互相选择对方结合在一起,使体系趋于稳定。

(2)分子催化

自组装的超分子配合物具有反应性和催化作用。催化可由反应的阳离子受体分子实现,如图3是大环聚醚受体在氨基上结合了一个二肽的对硝基苯酚酯基质。由于空间的匹配,反应时使硝基苯酚基与二肽切断分离。反应过程对作用择性和手性识别能力强。这种酯断裂过

程常见于酶反应中。在生物医学上可用作药物的抗体催化,专一选择识别反应物、过渡态和反应,实现反应的低活化能、高选择性,实现一些普通催化化学难以实现的反应。目前抗体催化已用于酰基转移、β-消去、C-C键形成及断裂、水解、过氧化及氧化还原等反应中[8]。

(3)分子传递

组装后的超级分子常能促进光子、电子或离子的传递,这对分子器件的意义重大。现已人工模拟的电子泵中的分子导线多为一种π电子系统。图4是一个磷脂囊泡[9],泡外是授体二硫羰酸钠,是一个还原剂,泡内是受体铁氰酸钾 K3Fe(CN) 3是一个氧化剂,它的两端是两性离子,中间是一个很长的共轭双键长链,是一个π电子系统。实验表明,在150,000 个磷脂分子中掺以150个导线分子后,电子传递的能力提高了8 倍。自组装技术的重要作用主要体现在以下几方面:

a·在合成材料或制备功能体系时,科技工作者可以在更广的范围内选择原料;

b·自组装材料的多样性,通过自组装可以形成单分子层、膜、囊泡、胶束、微管以及更为复杂的有机/无机、生物/非生物的复合物等其多样性超过其他方法所制备的材料;

c·多种多样、性能独特的自组装材料将被广泛应用在光电子、生物制药、化工等领域,并对其中某些领域产生未可预知的促进作用;

d·自组装技术代表着一类新型的加工制造技术,对电子学等有很大的促进作用。自组装技术应用最广的是制备超薄膜,这最早是由Decher等[10]提出的用带相反电荷的聚电解质在液/固界面通过静电作用交替沉积形成多层膜技术。它只需将离子化的基片交替浸入带有相反电荷的聚电解质溶液中,静置一段时间,取出洗净,循环以上过程就可以得到多层膜体系[11]。此技术构筑的多层膜尽管有序度不如LB膜高,但制备过程简单,不需要复杂的仪器设备,成膜物质丰富,成膜不受基底大小和形状的限制,制备的薄膜具有良好的机械和化学稳定性,薄膜的组成和厚度可控等诸多优点,近年来被广泛的采用。

4.2 超分子的自组织

自组织通常指许多相同的分子,由于分子间力的协同作用而自动组织起来,形成有一定结构但数目可以多少不等的多分子聚集体。单分子层、膜、囊泡、胶束、液晶等都是很好的例子,在人工合成时,常采用形成LB 膜的方法,自组织成单分子层或多层膜。这里要着重指出的是,将上节的组装体与这种分子聚集体结合起来,形成操纵光子、电子或离子的功能是构造分子器件的有效途径。

4.3 超分子的自复制

超分子的自复制作用就相当于DNA 的自复制。对于后者,首先是DNA 双螺旋的两辫拆开,两根母辫即形成模板,它们的复制原理[12]是一样的。

第五章·超分子化学的应用

5.1、在高科技涂料中的应用[2]

非共价作用力相对于共价键是弱的,这使其具有动态力学特征,蕴藏着丰富的信息内容,这种结构的动态可逆特点,使其对外部环境的刺激具有独特的响应性,呈现动态功能材料的特点。目前报道的主要是以配位键和氢键形成的超分子组装体在涂料中应用的可能。

配位键超分子组装体系是接到聚合物键上的三联吡啶配位体与金属离子形成的超分子组装体。三联吡啶是已知的能与多种金属(Fe ,Zn ,Cu ,Ni ,Co ,Cd 等) 生成配位化合物的配位体,用作制备含三联吡啶的聚合物的起始化合物1 和2 ,近期文献报道此起始物已可大规模合成,以及进一步制备含三联吡啶的聚合物。此三元共聚物的特点是它可以作为常规聚合物进行加工与应用,同时还保有超分子非共价作用的潜在转换器。U.S.Schubert 称非共价反应与常规的热或UV 交联相结合,可以导致一类新的薄膜,它具有可控黏度和循环的可能性,或者是通向多层系统的新途径。此例中的非共价键(如配位键或离子反应等) ,已经可以在低温下于水、溶液、或100 %纯度体系(包括粉末) 中形成。构成一种部分交联的材料,具有可调控黏度特性,直接由非共价交联单元的数目、配置与性质来调控。这种联结仍可转换与全循环,提供了具有优异可加工性的。

利用氢键非共价相互作用将相对比较简单的分子亚单元组装成二维或三维长程有序的超分子聚集体是设计新颖功能材料的一条新途径。由于弱相互作用具有动态可逆的特点,有望对外部环境刺激具有独特的响应性,呈现动态功能材料的特点。22氨基嘧啶酮较容易获得,它可由烷基酰基乙酸乙酯与胍合成,再与烷基二异氰酸酯反应可生成2 -脲基- 4 - 嘧啶酮,其分子间由四重氢键形成线性超分子聚合物这种线性超分子聚合物的溶液粘性具有很大的温度依赖性,当温度升高时,使连接在两个不同链上的脲基嘧啶酮之间的氢键强度先是变弱直至最后断开,因此在较高温度时材料表出现单体的性质,粘性降低,容易流动与使用。

5.2、在手性药物识别中的应用[5]

众所周知,药物的手性不同,进入体内后所产生的药理、毒理和药代动力学可能产生发生很大偏差,甚至会出现相反特征。因此,选择一种合适的手性药物分离方法非常重要。传统的手性拆分方法有:手工挑选法,播种法,动力学方法,化学法,生物化学法等,但这些方法都因为分离效果较差,耗时长,自动化程度低,成本高而难以满足实际生产的需要。自

确立超分子概念,创建和发展了主/客化学理论,发现并合成了冠醚分子,超分子以其特殊的结构和高选择性,迅速应用到手性化合物的识别与分离,显示出不可替代的优越性。

超分子的这种应用主要体现在与各种色谱连用上,通过对应体和超分子作用后的色谱行为差异,来进行分离。例如,毛细管电泳色谱(CE)的应用。李晓海等用CE的方法测定了一叶萩碱的生物样品对映体含量,得出了L型优先吸收,并优先在肝脏代谢,D型优先排泄的结论,显示出比HPLC法快速、准确、分离效果好的优点。反式曲马朵Ⅰ相代谢产物(+)-去甲基曲马多为活性代谢物,(-)型无活性。研究者用磺丁基-β-CD为添加剂,测定了大鼠生物样品中对应体含量。

5.3、在油田化学中的应用[1]

在油田化学中主要利用的是超分子的疏水作用、配位作用、氢键作用和静电作用。疏水缔合水溶性聚合物通过疏水缔合作用形成暂时的三维立体网络结构。疏水缔合聚合物溶液的表观粘度由本体粘度和结构粘度两部分组成,当聚合物浓度高于某一临界缔合浓度后,大分子链通过疏水缔合作用以及静电、氢链或范德华力作用聚焦,形成以分子间缔合为主的超分子结构——动态物理交联网络,流体力学体积增大,溶液结构粘度增加使其表观粘度大幅度升高。这种结构的形成受外界条件的影响,如温度、矿化度和剪切速率等。因优良的增粘、抗温、抗盐和剪切稀释性能而用于聚合物驱油剂的研究。除用做驱油剂之外,还可用于流体输送的减阻剂、钻井液与完井液添加剂、阻垢分散剂、油田堵水剂等。

徐赋海等对超分子驱油剂WMM - 100 的性能进行了实验室研究。由于超分子WMM - 100中阳离子酞菁铜的分子环上有不定域的大共轭体系,环上未曾和氢结合的氮原子可以接受两个质子,形成正二价离子;已和氢结合的氮原子可以给出两个质子,与正价的金属铜离子形成配合物。这种分子结构的驱油剂与带负电的岩石表面有较强的超分子化学作用;而且分子之间可以通过共享一个或多个苯环聚集起来吸附在岩石表面形成超共轭体系。实验结果表明,该驱油剂在多孔介质中有较大的附加流动阻力。

5. 4、超分子化合物作为分子器件方面的研究[16]

分子器件是一种由分子元件组装的体系(即超分子结构),它被设计成为在电子、离子或光子作用下能完成特定功能的体系。8-羟基喹啉、邻菲咯啉的许多金属配合物都具有荧光,且配合物稳定。把8-羟基喹啉或邻菲咯啉引入大环,由于两者都具有独立的配位功能,可以形成稳定的超分子化合物,并进一步发展为光化学器件。

5. 5 超分子化合物在色谱和光谱上的应用

对这种体系的表面光电压谱(SPS)研究结果表明,表面光电压随膜层数的增加而增强,在紫外区增强较为明显,随着膜层数的增加,表面光电压有趋于饱和的趋势.

5. 6 超分子催化及模拟酶的分析应用

超分子的反应性和催化性,与酶对底物的识别和催化底物参加反应极相似. 代写工作总结

以模仿天然酶对底物的分子识别和高效催化活性为目的的模拟酶(或称人工酶) 研究近十多年来是生物化学和有机化学的重要课题.

5. 7 在分析化学上的应用

在研究硼酸衍生化卟啉的分子组装行为,并用于测定糖分子构型方面取得了许多成果. 第六章·结语

目前,超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究将更加紧密地与各化学分支相结合. 可以预见,作为超分子化学起源的主客体化学将与有机合成化学、配位化学和生物化学互相促进,为生命科学、能源科学等共同做出巨大贡献;物理化学则要改变当前超分子化学的定性科学现状,从微观和宏观上把选择性分子间力、分子识别、分子自组装等过程用适当的变量进行定量描述,从而提高人们对超分子化学的认识和预测、控制能力,最终要寻求解释超分子体系内在运动规律和预言此类体系整体功能的理论工具。在与其他学科的交叉融合中.超分子化学已发展成了超分子科学.由于超分子学科具有广阔的应用前景和重要的理论意义。超分子化学的研究近十多年来在国际上非常活跃,我国也积极开展这方面的研究工作。超分子科学涉及的领域极其广泛,不仅包括了传统的化学如无机化学、有机化学、物理化学、分析化学等而且还涉及材料科学、信息科学和生命科学等学科。超分子化学的兴起与发展促进了许多相关学科的发展,也为它们提供了新的机遇。基于超分子化学中的分子识别.通过分子组装等方法构筑的有序超分子体系已展示了电子转移、能量传递、物质传输、化学转换以及光、电、磁和机械运动等多种新颖特征。超分子功能材料及智能器件、分子器件与机器、DNA芯片、导向及程控药物释放与催化抗体、高选择催化剂等等,将逐一成为现实。科学界有人预言,分子计算机和生物计算机的实现也将指日可待在信息科学方面,超分子材料正向传统材料挑战,一旦突破,将带动信息及相关领域的产业技术革命.将对世界经济产生深远的影响。可以确信,超分子科学已成为21世纪新思想、新概念和高新技术的重要源头。

第七章·文献资料

[1]胡忠前,马喜平. 超分子化学及其在油田化学中的应用.精细石油化工进

展,2006.7(9):15-19

[2]苏慈生. 超分子化学引领高科技涂料应用. 涂料工业,2004 ,34(9):36-39

[3] 李文林,李梅兰.超分子化学的现状及进展. 广东化工,2009,9(36):80-81

[4]夏琳,邱桂学.化学科学的研究新领域---超分子化学. 化学推进剂与高分子材料,2007,5(1):33-34

[5]王伽伯,肖小河,赵燕玲等.超分子化学及其在手性药物识别中的应用.中国新药杂志,2005,14(1):29

[6]张中强,涂华民,葛旭升.超分子化学的研究和进展. 河北师范大学学

报,2006,30(4):456

[6]吴世康.超分子光化学前景[J].感光化学与光化学,1994,12(4),332-341.

[7]孙得志,朱兰英,宋兴民.超分子化学、选择性分子间力和若干化学研究领域[J].聊城师院学报(自然科学版),1998,11(2),27-33.

[8]李文林,李梅兰.超分子化学的现状及进展[J].广东化工.2009,36(9),80-81.

[9]Tsuchiya H. M. Keller K. H. Bioengineering is a new era beginning[J]. CEP, 1965, 61(7), 112-119.

[10]Sherrington D C, Taskinen KA. Self2assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions[J]. Chem Soc Rev, 2001, 30, 83-93.

[11]李文林,李梅兰.超分子化学的现状及进展[J].广东化工.2009,36(9),80-81.

[12]杜丹,王升富,黄春保.吡啶2Dawson 型磷钼杂多酸超分子薄膜修饰电极分析[J].测试学报,2001,20(4):29-32.

[13]毕丽华, 黄如丹, 王恩波等. 多酸超分子化合物的合成及液晶性质[J]. 高等学校化学学报,1999,20 (9):1352-1353.

[14]苏循成,周志芬,林华宽,等.功能取代二氧四胺大环超分子配合物的溶液热力学性质研究[J].南开大学学报:自然科学版,2000,33 (4):57-61.

[15]薄志山,张希,杨梅林.基于静电吸引的自组装树状超分子复合物[J].高等学校化学学报,1997,18(2), 326-328.

[16]晏华.超分子液晶[M].北京:科学出版社,2000, 1-230.

[17]李敏,周恩乐,徐纪平.含对硝基偶氮苯侧基的丙烯酸酯类液晶聚合物的超分子结构[J].高等学校化学学报,1995,16(4):635-638.

[18]田宏健,周庆复,沈淑引.酞菁卟啉超分子的形成及光致电子转移过程[J].物理化学学报,1996,12 (1):44-48.

致谢

首先,非常感谢倪新龙老师给我们生动地讲了《超分子化学》,在做论文的这段时间里,他渊博的知识让我钦佩,他在学术上的专注精神以及他个人在各个方面所展现出来的人格魅力同样深深的影响着我。在这段时间,他向我传授了大量的专业知识,培育了我从事化学研究的素质和能力。同时他严谨的治学态度、求实谦逊的工作精神、高尚的人格魅力将会是我终生学习的精神榜样。

还要感谢化学系的所有老师,他们不仅是我学习上的良师同时也是我人生的导师,他们向我传授了大量的专业知识的同时还教给了我许多做人的道理,是他们的真知灼见给予了我很大的启迪。再次我还要感谢贵州大学的一切,感谢母校贵州大学,给我提供一个良好的学习环境,感谢这里每一个给我帮助和带给我感动的同学朋友,让我最美好的四年青春岁月在这美丽的校园里过得丰富多彩。

在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请再次接受我诚挚的谢意!

谨将此文献给所有关心和帮助我的人!

材化101班朱清元

2013年12月10日

化学的发展历程

化学的发展历程 化学的发展尽力了无比艰辛而漫长的探索历程,从原始人的砖木取火,到现代的基因工程,化学还经历了从简单到复杂,从宏观到微观,从无机到有机,从生物界到人类社会的巨大转变。其间,化学为人类提供了先进的生产工具,使社会生产力大大提高,为人类的文明开创了一个又一个新纪元。与此同时,化学的发展也为社会科学的发展提供了思想依据奠定了物质基础,为其他自然科学的研究,提供了研究手段。 原始社会初期,人类只会使用简单加工过的石块、树枝等进行狩猎、采集活动,生产力水平极为低下。原始社会后期,金属工具的出现,是人类生产力水平提高的重要标志。从此人类用金属工具进行生产劳动,获取了更丰富的劳动成果,饥饿对人类的威胁大大减小。奴隶社会,青铜冶铸,制陶有了很大发展。商朝的奴隶工匠把铜、锡和铅放在一起冶炼青铜,炉高温达1000摄氏度左右,同时铸造出了许多容器、车马配件、兵器等。商朝后期制造的司母戊大方鼎是迄今世界上发现的最大的青铜器。春秋后期,我国已经发明了生铁冶炼技术。铁质工具在农业,手工业生产上广泛使用,标志着社会生产力又一次提高。在我国封建社会,四大发明相继传入欧洲、美洲对人类的文明造成深远影响。随后,化学制剂逐渐生产,简单的金属工具像机器,以及机械自动化发展,推动着西方资本主义社会的第三次工业革命,使人类进入了近代文明。 首先,原始人发现了火,他们把它称为圣火,是神灵赏赐之物,能给人类带来温暖,能赶走野兽,能烧制香美的熟食。为了保持火种,原始人发明了砖木取火的方法。到十七世纪,英国科学家波义耳给元素下了较明确的定义,化学家们才开始燃烧反应和氧化还原反应的研究。经历了燃素说后,法国科学家拉瓦锡证明燃烧不是放出燃素,而恰恰相反,且增加了质量,根本不存在虚构的燃素。 其次,人类开始认识周围的物质世界,但由于宇宙万物形形色色,多种多样,千变万化。人们更陷入了唯物主义与唯心主义的争论之中。唯物派的智者们通过宏观世界的太阳、月亮、大地、山川河流等以及它们的运动状态进行了仔细观察和论证后,认为世界是物质的,物质是运动的,这些物质及其运动都是永恒的,既不能创生,也不能消灭,存在于人的意识之外,不随人的而转移的客观实在的东西。唯心主义则认为物质依赖于人的意识而存在,随人的意志而转移,即:万

超分子化学综述

超分子化学期末论文(设计)题目:超分子化学简介及应用 学院:化学与化工学院 专业:材料化学 班级:材化101 班 学号: 1 0 0 8 1 1 0 0 2 4 学生姓名:朱清元 指导教师:倪新龙 2013年12月10日

贵州大学本科毕业论文(设计) 诚信责任书 本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所完成。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。 特此声明。 论文(设计)作者签名: 日期:

目录 摘要: (1) 关键字: (1) Abstract: (1) Keywords: (1) 第一章.前言 (1) 第二章.超分子化学的理论基础 (2) 第三章.超分子化合物的分类 (2) 3.1杂多酸类超分子化合物 (2) 3.2 多胺类超分子化合物 (3) 3.3 卟啉类超分子化合物 (3) 3.4 树状超分子化合物 (3) 3.5 液晶类超分子化合物 (3) 3.6 酞菁类超分子化合物 (4) 第四章.超分子化合物的特性 (4) 4.1 超分子的自组装 (4) 4.2 超分子的自组织 (5) 4.3 超分子的自复制 (5) 第五章.超分子化学的应用 (6) 5.1、在高科技涂料中的应用 (6) 5.2、在手性药物识别中的应用 (6) 5.3、在油田化学中的应用[1] (7) 5. 4、超分子化合物作为分子器件方面的研究 (7) 5. 5 超分子化合物在色谱和光谱上的应用 (7) 5. 6 超分子催化及模拟酶的分析应用 (8) 5. 7 在分析化学上的应用 (8) 第六章.结语 (8) 第七章.文献资料 (9)

化学发展史(英文)

化学发展史 Ever since human beings, the chemical will be formed a deep bond with humans. Fire by rubbing sticks, cook food with fire, firing pottery, smelting bronze and iron, are chemical technology. It is these applications, greatly promoted the development of social productive forces at that time become a symbol of human progress. Today, the chemical as a basis for discipline, in the science and technology and all aspects of social life, are playing an increasing role. From ancient times, along with the progress of human society, chemical, historical development experience of what times? Period of ancient chemical processes. At this time the human pottery, metallurgy, brewing, dyeing and other processes, mainly in the practical experience under the direct inspiration came after the number of years to explore, chemical knowledge has not been formed. This is a chemistry infancy. Period of alchemy and pharmaceutical chemistry. From 1500 BC to AD 1650, alchemy warlock and alchemist who, in the Palace, in the churches, in their own home, in the deep forests of the smoky, in order to obtain immortality of the panacea, in order to obtain glory wealth of gold, started the first chemistry experiment. Records, summing up alchemy books, in China, Arabia, Egypt, Greece has a lot. Have accumulated a lot of material during this period between the chemical change, chemical preparations for the further development of a rich material. This is the chemical in the history of the strains of our

生活中的超分子化学

《超分子化学的应用及前景》 学号:1630140051学院:初等教育学院 姓名:付金环

到20世纪末21世纪初,30%~40%的化学家将要运用包括分子识别在内的超分子化学的某些知识去解决所面临的问题。--------题记上世纪八十年代末诺贝尔化学奖获得者J.M.Lehn创造性的提出了超分子化学的概念,它的提出使化学从分子层次拓展到超分子层次,这种分子间相互作用形成的超分子组装体,是人类认识上的飞跃,更是化学领域的一大成就。从此以后,人们的认知水平提升了,认识到了分子已不再是保持物性的最小单位,化学界的功能的最小单位新秀超分子逐步登上历史舞台,分子作为最小单位的时代已随滚滚东流一同逝去,不复回环。功能产生于超分子组装体之中,此种认识带来的飞跃是人类历史上的一大步。据悉,如今已有百分之四十的化学家要用超分子化学的知识来解决自己所面临的化学问题。超分子化学已经成为当今时代新思想新概念和高技术的主要源头。“问渠那得清如许,为有源头活水来”,没错,当代社会的飞速发展离不开科技,科技是第一生产力,从国家事业到百姓生活,都与化学世界息息相关。接下来,让我们一起来了解一下超分子化学在生活中的应用及其前景。 首先来说说医药方面,人食五谷谁能不得病,所以医药类是最与人们息息相关的。超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药品是关系到广大人民群众生命安危与健康的特殊商品,考虑到储存、服用与携带的方便及制造成本等诸多因素,大部分药物都设计成固体剂型,而在药物的各种固体形态中,晶型药物由于稳定性、重现性及操作性等方面的优势而被优先选用.晶型药物包括了药物的多晶型、水合物、溶剂化物和盐类。药物活性分子通常因含有各种官能团而具有不同的生物活性.最新研究发现,这些官能团能够利用氢键或者其它非共价键作用而与其它有机分子通过分子间的识别作用生成超分子化合物,即药物共晶,从而有效改善药物本身的结晶性能、物化性质及药效,成为药物固体制剂的一个新选择被引入的有机分子,也称为共晶试剂,可以是辅料、维生素、矿物质、氨基酸及食品添加剂等。因此,对于一个给定的药物,可能生成数以百计的药物共晶,为剂型设计提供了更多的选择.此外,新的药物共晶可获得知识产权保护,延长原有药物的市场周期,具有广阔的应用前景。 不仅是医药方面,在其他方面超分子化学也是翘楚,由于能够模仿自然界已存在物质的许多特殊功能,形成器件,因此它的潜在应用价值已倍受人们青睐。超薄膜、纳米材料、高分子有机金属材料、非线性光学材料及高分子导电材料等已成为国内许多研究机构热点。此外,超分子化学在生物传感器、润滑材料、防腐蚀材料、膜材料、黏合剂及表面活性剂等方面也有很广泛的应用前景,目前,除了冠醚外,环糊精、环芳烃、索烃、旋环烃、级联大分子等作为新的超分子实体,也引起广泛关注。 于当下国际上超分子科学的研究开展得如火如荼之际,如发达国家和地区,如欧盟、美国和日本等都投入了大量的人力和物力进行超分子科学方面的研究与开发。在国家自然科学基金委、科技部、教育部、中国科学院等相关部门的大力支持下,我国的科学工作者较早地开展了超分-T-科学研究,并做出了一大批有特色的工作。在当下以经济和科技实际为基础的综合国力之间的较量的大环境下,我国必须重视科技,重视超分子化学的开发与运用,中国这只东方雄狮才能更好地屹立于世界之林。 接下来谈一谈超分子化学在油田开发中的应用。在油田化学中主要利用的是超分子的疏水作用、配位作用、氢键作用和静电作用。疏水缔合水溶性聚合物通过疏水缔合作用形成暂时的三维立体网络结构。疏水缔合聚合物溶液的表观粘度由本体粘度和结构粘度两部分组成,当聚合物浓度高于某一临界缔合浓度后,大分子链通过疏水缔合作用以及静电、氢链或范德华力作用聚焦,形成以分子间缔合为主的超分子结构——动态物理交联网络,流体力学体积增大,溶液结构粘度增加使其表观粘度大幅度升高。这种结构的形成受外界条件的影响,如温度、矿化度和剪切速率等。因优良的增粘、抗温、抗盐和剪切稀释性能而用于聚合物驱油剂的研究。除用做驱油剂之外,还可用于流体输送的减阻剂、钻井液与完井液添加剂、阻垢分

化学发展史简介

化学发展史简介 概述化学发展史的五个时期 自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起看越来越大的作用。化学史大致分为: 远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。 炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金木士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富责的黄金,开始了最早的化学实验。记载、总结炼丹术的书藉,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书耕,第一次有了“化学”这个名词。英语的chemistry 起源于alchemy,即炼金术。chemist至今还保留昔两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。 定量化学时期,即近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。 科学相互渗透时期,即现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到了逐步的解决。 古代和近代化学史大事记 §我国有了青铜器;春秋晚期能炼铁;战国晚期能炼钢;唐代有了火药。 §十八世纪七十年代,瑞典化学家舍勒和英国化学家普利斯里分别发现并制得了氧气;法国学家锡最早用天平和为研究化学的工具,并推翻了燃素学说;英国化学家卡文迪许。雷利等陆续从空气中发现了惰性气体。 §1748年俄国化学家罗蒙诺索夫建立了质量守恒定律。 §1808年英国科学家道尔顿提出了近代原子学说。 §1811年意大利科学家阿佛加德罗提出了分子的概念。 §1828年;德国化学家维勒第一次证明有机物可用普通的无机物制得。 §1869年俄国化学家门捷列夫发现了元素周期律。 §1888年法国化学家勒沙特列提出了化学平衡移动原理 §1890年德国化学家凯库蔓提出了苯分子的结构式。 §十九世纪荷兰物理学家范德华首先研究了分子间作用力。 §十九世纪英国物理学家丁达尔和植物学家布朗分别提出了胶体的“丁达尔现象”与

超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

超分子化学

超分子化学 一、超分子化学的概述 1973年,D.J.Cram报道了一系列具有光学活性的冠醚,可以识别伯胺盐形成的配合物;分子识别的出现为这一新的化学领域注入了强大的生命力,之后它进一步延伸到分子间相互识别和作用,并广泛扩展到其它领域,从此诞生了超分子化学。超分子化学的概念和术语是在1978年引入的,作为对前人工作的总结和发展。1987年,Nobel化学奖授予了C.J.Pederson、D.J.Cram和J.-M.Lehn,标志着超分子化学的发展进入了一个新的时代,超分子化学的重要意义也因此被人们更多的理解。[1] 超分子化学是关于若干化学物种通过分子间相互作用,包括氢键、主客体作用、疏水疏水作用、静电作用、堆积等作用结合在一起构筑的、具有高度复杂性和一定组织性的整体化学 超分子化学的定义可由下图所示 图一:从分子化学到超分子化学:分子、超分子、分子和超分子器件 由上图所示分子化学是基于原子间的共价键,而超分子化学则基于分子间的非共价键相互作用,即两个或两个以上的物质依靠分子间键缔合,所以超分子化学也可以被定义为分子之外的化学。

图二:分子与超分子 由弱相互作用加和形成强相互作用,由各向同性通过定向组合(选择性)形成各向异性,这是分子化学和超分子化学的分界线。 超分子化学不是靠传统的共价键力,而是靠非共价键的分子间作用力,如范德华力,即由分子内的永久偶极、瞬间偶极和诱导偶极在分子间产生的静电力、诱导力和色散力的相互作用,此外还包括氢键力、离子键力、阳离子一二和叮一二堆集力以及疏水亲脂作用力等。一般情况下,它是几种力的协同、加和,并且还具有一定的方向性和选择性,其总的结合力强度不亚于化学键。正是这些分子间弱相互作用的协调作用(协同性、方向性和选择性决定着分子与位点的识别。[2] 超分子化学并非高不可攀,有许多超分子结构都处于我们的日常生活中,如 的结构类似于圆弓西方把轮烯比为东方的算盘,索烃是舞池中的一对舞伴,C 60 建筑物,环糊精和当今的激光唱片一样有同样的功能--储存和释放信息,DNA双螺旋则与早餐的麻花形状相似。

我国光化学研究的进展及展望

我国光化学研究的进展及展望* 杨国强 (中国科学院化学研究所光化学重点实验室北京100190) 摘要本文对我国开展光化学研究的历程和目前光化学研究的现状进行了简单的介绍,并对今后几年光化学的发展进行了展望。 关键词光化学超分子光能转换纳米材料光催化 Photochemistry Research in China Yang Guoqiang (CAS Key Laboratory of photochemistry,Institute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract The history and the progresses of photochemistry research in China has been briefly reviewed in this article.Further research aspects of photochemistry in the future are also prospected. Keywords Photochemistry,Supramolecule,Light conversion,Nano materials,Photocatalysis 光化学是研究处于电子激发态的原子和分子的结构及其物理和化学性质的科学。在现代分子光化学研究中对分子的电子激发态所建立的新概念、新理论和新方法,大大开拓展了人们对物质世界认识的深度和广度,对了解自然界的光合作用和生命过程、太阳能的利用、环境保护以及寻找新材料和开创新的反应途径提供了重要的基础。同时,光化学的研究又与许多重要的高新技术的发展有着密切的联系,例如,高效光电转换材料、太阳能电池、高密度大容量光信息记录、显示和存储材料、非线性光学材料、光刻及其高精度超微细加工技术等都与光化学的基础研究密切相关。21世纪光电子工业将成为国民经济中重要的支柱产业之一,因此现代分子和材料的光化学研究是一个既有着重要的理论意义又有着重大应用前景的学科。 国际上光化学的研究已经进入了一个新的发展阶段。随着实验技术的发展,各种新的研究手段和方法被引入到光化学研究中来。在研究的时间尺度上,研究手段由稳态向瞬态发展。各种时间分辨技术的出现和普及,包括时间分辨的吸收光谱和发射光谱(泵浦-探针技术、闪光光解、时间分辨发光衰减检测)、时间分辨NMR、EPR、IR和拉曼光谱等各种技术和实验方法的应用,使人们更深入地了解和认识光化学和光物理的机制成为可能。在研究的空间尺度上,研究工作由分子层次向分子以上层次发展,分子光化学与超分子光化学、纳米结构材料的光化学紧密地相联,形成了丰富多彩的研究体系,使得研究的范围得到了极大的扩展。同时,无机材料的光化学研究为光化学的发展开辟了新的研究领域。在此基础上,具有明确的应用前景的基础研究正在得到加强。光化学多年来在理论研究上获得的成果正加速向高技术转化,一些新的具有重要应用背景的概念和研究内容被不断地提出,并很快得到应用。与此同时,随着科学技术的发展,各种新的实验技术和方法正不断地应用于光化学研究工作中,使光化学的研究领域和范围得到扩展,为深入了解各种光物理过程和光化学反应的本质提供了新的方法和研究角度。 1我国的光化学研究发展和现状 1977年,原中国科学院感光化学研究所从事有机合成、高分子化学和感光材料剖析的科研人员,在文献调研和广泛考察的基础上,选定了当时国内基本上仍是空白领域的光化学作为研究方向,开始了我 *本文系作者应编辑部之邀,为“国际化学年在中国”专栏而作 2011-03-22收稿,2011-04-14接受

中国化学发展史

浅谈中国化学发展史 武瞳 兰州城市学院甘肃兰州 730070 摘要:化学的发展,对人类社会的进步至关重要。化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学。化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。 关键词:萌芽炼丹燃素定量化学化学史化学家侯德榜张青莲侯氏制碱法 化学史大致分为以下几个时期: (一)化学的萌芽时期:从远古到公元前1500年,人类学会在熊熊的烈火中由黏土制出陶器、由矿石烧出金属,学会从谷物酿造出酒、给丝麻等织物染上颜色,等等。这些都是在实践经验的直接启发下经过长期摸索而来的最早的化学工艺,但还没有形成化学知识,只是化学的萌芽时期。 (二)炼丹和医药化学时期:约从公元前1500年到公元1650年,化学被炼丹术、炼金术所控制。为求得长生不老的仙丹或象征富贵的黄金,炼丹家和炼金术士们开始了最早的化学实验,虽然他们都以失败告终,但在炼制长生不老药的过程中,在探索“点石成金”的方法中实现了物质间用人工方法进行的相互转变,积累了许多物质发生化学变化的条件和现象,为化学的发展积累了丰富的实践经验。在欧洲文艺复兴时期,出版了一些有关化学的书耕,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist 至今还保留昔两个相关的含义:化学家和药剂师。但随着炼丹术、炼金术的衰落,人们更多地看到它荒唐的一面,化学方法转而在医药和冶金方面得到正当发挥,中、外药物学和冶金学的发展为化学成为一门科学准备了丰富的素材。 (三)燃素化学时期:从1650年到1775年,是近代化学的孕育时期。随着冶金工业和实验室经验的积累,人们总结感性知识,进行化学变化的理论研究,使化学成为自然科学的一个分支。这一阶段开始的标志是英国化学家波义耳为化学元素指明科学的概念。继之,化学又借燃素说从炼金术中解放出来。燃素说认为可燃物能够燃烧是因为它含有燃素,燃烧过程是可燃物中燃素放出的过程,尽管这个理论是错误的,但它把大量的化学事实统一在一个概念之下,解释了许多化学现象。在燃素说流行的一百多年间,化学家为解释各种现象,做了大量的实验,发现多种气体的存在,积累了更多关于物质转化的新知识。特别是燃素说,认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近代化学思维的基础。这

超分子化学讲稿

第一章从分子化学到超分子化学(2学时) 第一节超分子化学的发展历程 超分子化学(Supramolecular Chemistry)根源于配位化学,有人称之为广义配位化学(generalized coordination chemistry),是三十多年来迅猛发展起来的一门交叉学科,它与材料科学、信息科学、生命科学等学科紧密相关,是当代化学领域的前沿课题之一。这个领域起源于碱金属阳离子被天然和人工合成的大环和多环配体,即冠醚和穴醚的选择性结合。1967年C. J. Pederson报道了冠醚配位性能的发现,揭开了超分子化学发展的序幕;随后,J.-M. Lehn报道了穴醚的合成和配位性能,这种由双环或三环构成的立体结构比平面冠醚具有更好的对金属离子配位能力;1973年,D. J. Cram报道了一系列具有光学活性的冠醚,可以识别伯胺盐形成的配合物;分子识别的出现为这一新的化学领域注入了强大的生命力,之后它进一步延伸到分子间相互识别和作用,并广泛扩展到其它领域,从此诞生了超分子化学。超分子化学的概念和术语是在1978年引入的,作为对前人工作的总结和发展。1987年,Nobel化学奖授予了C. J. Pederson、D. J. Cram和J.-M. Lehn,标志着超分子化学的发展进入了一个新的时代,超分子化学的重要意义也因此被人们更多的理解。 B C 自组装 自组织从分子化学到超分子化学:分子、超分子、分子和超分子器件

第二节超分子化学的定义和分类方法 分子化学是基于原子间的共价键,而超分子化学则基于分子间的非共价键相互作用,即两个或两个以上的物质依靠分子间键缔合。图1.1中简介了从分子化学到超分子化学的基本特征。1987年,当年的诺贝尔化学奖获得者之一,法国的J. M. Lehn教授在获奖演说中曾为超分子化学作出了如下解释:超分子化学是研究两种以上的化学物种,通过分子间相互作用缔结而成的、具有特定结构和功能的超分子体系的科学。简而言之,超分子化学是研究多个分子通过非共价键作用而形成的功能体系的科学。 超分子化学研究包括分子识别(molecular recognition)、分子自主装(self assembly)、分子自组织(self organization)和超分子器件(supermolecular device)等。 分子识别是超分子化学的一个核心研究内容之一。所谓分子识别即是指主体(受体)对客体(底物)选择结合并产生某种特定功能的过程。有人把这一过程形容为锁和钥匙的关系。在生物体系中存在着广泛的分子识别。酶和底物之间、基因密码的转录和翻译、细胞膜的选择性吸收等等都涉及到分子识别。分子识别中的主体主要有冠醚、穴醚、环糊精、杯芳烃、卟啉等大环主体化合物。对以非共价键弱相互作用力键合起来的复杂有序且具有特定功能的分子集合体,即超分子化学的研究,可以说是共价键分子化学的一次升华,一次质的超越,被称为是“超出分子范围的化学”。分子识别不是依赖于传统的共价键力,而是靠非共价键力,即分子间的作用力,如范德华力(Van der Waals)(包括离子-偶极,偶极-偶极和偶极-诱导偶极相互作用)、疏水作用和氢键等。 通过多个超分子的亚单元自组织或自主装能够得到稳定的、具有特异空间结构和功能的大分子聚集体,可以潜在地作为分子器件或超分子器件。 第三节超分子化学发展现状 欧洲、日本领先,中国等随后跟踪。 美国未有此提法。

2011超分子化学试题

订 线 说明:“阅卷总分”由阅卷人填写;“复核总分”由复核人填写,复核总分不得改动。 一、选择题(每小题只有一个选项是正确的,每小题2分,共10分) 1、1967年 报道了冠醚配位性能的发现,揭开了超分子化学发展的序幕。 A 、D. J. Cram B 、C. J. Pederson C 、J.-M. Lehn 2、 是一类对位烷基苯酚与甲醛缩合的寡聚大环化合物。 A 冠醚 B 环糊精 C 杯芳烃 3、非极性分子之间的吸引源自于分子中电子运动产生的瞬时偶极 之间的作用,London 将这种作用力称为 。 A 色散力 B 氢键 C 静电作用 D 诱导作用 4、 是 化合物。 A 冠醚 B 穴醚 C 开链冠醚 5、将顺式偶氮苯衍生物与聚乙烯醇酯化,然后在水面上形成单分子层。在恒定铺展压下,以365 nm 的光照射,顺式变为反式,膜面积膨胀3 倍,而用436 nm 的光照射,反式返回顺式,面积又复原。这种作用叫 。 A 分子识别 B 催化作用 C 传递作用 D 分子或超分子器件 二、填空(每空2分,共20分) 1 )和( )。 2、( )也称作环聚葡萄糖.是由若干D -吡喃葡萄糖单元环状排列而成的一组低聚糖的总称。 3、根据模板分子同聚合物单体官能团之间作用形式不同.分子印迹技术主要分为( )和( )两类。 4、( )形成于不同的分子之间,它的形成有利于分子聚集和结合形成一定的超分子结构,分子内氢键则由同一个分子的不同部位之间相互作用而形成。 5、主体空穴的大小与可能的客体之间的关系是选择性分子识别的首要标准。主体与客体之间的关系逻辑上可分为三类。其一:空穴尺寸与客体大小( );此时.客体能嵌入主体空穴二者近乎完全吻合.能获得相当好的识别效果。其二:主体空穴( )客体;其吻合程度不如主一客体大小相当的情况.但客体仍可有效地在主体分子平面之外与之相配位.如果空穴稍大一些.主体可同时在分子平面的上下方键合两个客体。其三:主体空穴( )客体;主体分子可键合一个以上的体积较小的客体,也可只键合一个体积较大的客体。 6( )是形成分子聚集体的有效手段。 三、判断题(每题2分,共20分) 1 2、在超分子层次,分子组装的重要性就如同分子化学中的合成。 3、分子识别是通过一个给定的受体分子结合和选择底物过程中的能量和信息来定义的,此过程中也可能包括一特殊的功能。 4、受体化学,即人工受体分子化学,代表的是一种广义的配位化学,不仅过渡金属,而且:阳离子、阴历子或中性有机物种,无机物或生物种类。 5、超分子化学是研究比高分子分子量更大的分子,是超出高分子化学的化学。 6、通过多个超分子的亚单元自组织或自主装能够得到稳定的、具有特异空间结构和功能的大分子聚集体,可以潜在地作为分子器件或超分子器件。 7、无机结构分子自组织和自组装包括由有机配体和金属离子自发形成的结构确定的金属-超分子结构。金属离子一方面像结合剂一样把陪体结合在一起;另一方面,又作为中心把配体定位在特定的方位上。 8、分子自组装的实现是依赖于分子间键。分子间键是分子间弱相互作用,它包括氢键、范德华力、亲脂-疏水作用等,物理本质是永久多极矩、瞬时多极矩、诱导多极矩三者之间的相互作用。超分子体系中的相互作用多呈现加和与协同性,并具有一定

超分子化学综述

超分子化学综述 摘要:超分子化学是化学领域一个崭新的学科分支,本文综述了分子识别和自组装的有关内容以及和超分子化学的分类,并指出了超分子化学对科学理论研究的重要意义和广阔的应用前景。 关键字:超分子化学分子识别自组装 “超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了。超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学。在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能[1]。超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力。如范氏力(含氢键)、亲水或憎水作用等[2]。 1967年,Charles Pedersen偶然发现了冠醚这种新型的大分子化合物,十几年后,一个崭新的化学领域——超分子化学终于诞生了。进入90年代后,Surpramolecular Chemistry 杂志的创立说明超分子化学作为化学学科的一个独立的分支,像高分子化学一样,已经得到世界各国化学家的普遍认同。在国内,一些高校和科研机构已做了相当多的工作,说明超分子化学正在迅猛发展[3]。本文对超分子化学作了简单的综述。 1.超分子稳定形成的因素[4] 超分子稳定形成的因素,可从能量降低因素、熵增加因素及锁和钥匙原理来分析,通过这些分析,可加深对超分子和超分子化学的理解和认识,这比将超分子中分子间的结合力简单归结为非共价键更为具体、明确。 2.分子识别和自组装 在超分子化学研究中,两个最重要的科学问题是分子识别和分子自组装、分子间多种弱相互作用的加合效应和协同作用。分子识别是由于不同分子间的一种特殊的、专一的相互作用,它既满足相互结合的分子间的空间要求,也满足分子间各种次级键力的匹配,体现出锁和钥匙原理。在超分子中,一种接受体分子的特殊部位具有某些基团,正适合与另一种底物分子的基团相结合。当接受体分子和底物分子相遇时,相互选择对方,一起形成次级键;或者接受体分子按底物分子的大小尺寸,通过次级键构筑起适合底物分子居留的孔穴的结构。所以分子识别的本质就是使接受体和底物分子间有着形成次级键的最佳条件,互相选择对方结合在一起,使体系趋于稳定。 自组装是自然界生物系统的一类基本属性,如DNA和RNA 的双螺旋结构、多肽和蛋白质的二级及高级结构、生物膜的形成与稳定、酶的高级结构与功能发挥等,都是多种不同弱相互作用加合协同的结果。超分子自组装是指在平衡条件下相同或不同分子间通过非共价键弱相互作用自发构成具有特种性能的长程有序的超分子聚集体的过程[5]。超分子自组装是指一种或多种分子依靠分子间的相互作用自发地结合起来,形成分立的或伸展的超分子。由分子组成的晶体,也可看作识分子通过分子间作用力组装成的一种超分子。分子识别和超分子自组装的结构化学内涵体现在电子因素和几何因素两个方面,前者使分子间的各种作用力得到充分发挥,后者适应于分子的几何形状和大小,能互相匹配,使在自组装时不发生大的阻碍。分子识别和超分子自组装是超分子化学的核心内容。 3.超分子化合物的分类[6] 3.1杂多酸类超分子化合物

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

超分子答案

第十二章无机化学研究前沿 【习题答案】 12.1 超分子化学的定义是什么?超分子化合物的成键有哪些特点? 解:超分子化学的定义为“超越分子概念的化学”,即两个以上分子通过分子间力高层次组装的化学,是研究多个分子通过非共价键作用而形成的功能体系的科学,是分子识别和分子组装的化学。 超分子化合物的成键特点:多个分子通过非共价键作用形成超分子体系。 12.2 简述超分子化学的发展史及与其他学科发展的关系。 解:超分子的概念起源于20世纪60年代中期,用天然抗菌素和人工合成的大环聚醚类化合物对碱金属离子的分子识别的研究可以看作是超分子化学的里程碑。20世纪70年代,建立了超分子化学的基本概念和规则。近年来,超分子化学的理论和应用研究越来越受到科学家重视。 超分子化学是一门处于化学学科和物理学、生命学相互交叉的前沿学科。它的发展不仅与大环化学的发展密切相关,而且与分子自组装、分子器件和新颖有机材料的研究息息相关。从某种意义上讲,超分子化学淡化了有机化学、无机化学、生物化学和材料科学相互之间的界限,着重强调了具有特定结构和功能的超分子体系,将4大基础化学(有机、无极、分析和物化)有机地结合成一个整体。 12.3 何谓C60、富勒烯?其结构和成键有哪些特点? 解:C60是由60个C原子围成的一个球体,由12个五边形和20个六边形围成1个32面体,该结构既像Buckminster Fuller设计的球面建筑,又酷似英式足球,故命名为Buckminster Fullerene,即富勒烯,又俗称巴基球或足球烯。后来将富勒烯作为C50、C60、C70、C240乃至C540等全碳分子团簇的总称。 C60球体相当于1个I h结构的20面体均衡地截去12个顶点所得的32面体结构,每个五边形均与6个六边形共边,而六边形则将12个五边形彼此隔开。C60属于I h点群,60个C原子位于32面体的顶点上,所有碳原子等价。每个碳原子以近似于sp2.28的方式杂化,并分别与周围3个碳原子形成3个σ键,剩余的轨道和电子共同组成离域π键。可简单地看作每个碳原子与周围3个碳原子形成2个单键和1个双键。 12.4 简述C60、富勒烯的发现与发展历史,有何应用前景? 解:1985年,英国科学家H. W. Kroto和美国科学家R. E. Smalley等人用激光作石墨的气

化学发展史大全

1、化学发展简史 (1)分析空气成分的第一位科学家——拉瓦锡; (2)近代原子学说的创立者——道尔顿(英国); (3)提出分子概念——何伏加德罗(意大利); (4)候氏制碱法——候德榜(1926年所制的―红三角‖牌纯碱获美国费城万(5)国博览会金奖);(6)金属钾的发现者——戴维(英国); (7)C l2的发现者——舍(8)勒(瑞典); (9)在元素相对原子量的测定上作出了卓越贡献的我国化学家——张青莲; (10)元素周期律的发现, (11)元素周期表的创立者——门捷列夫(俄国); (12)1828年首次用无机物氰酸铵合成了有机物尿素的化学家——维勒(德国); (13)苯是在1825年由英国科学家——法拉第首先发现, (14)德国化学家——凯库勒定为单双健相间的六边形结构; (15)镭的发现人——居里夫人。 (16)人类使用和制造第一种材料是——陶2、俗名3 无机部分: 纯碱、苏打、天然碱、口碱:Na2CO3 小苏打:NaHCO3 大苏打:Na2S2O3 石膏(生石膏):CaSO4.2H2O 熟石膏:2CaSO4?.H2O 莹石:CaF2 重晶石:BaSO4(无毒) 碳铵:NH4HCO3 石灰石、大理石:CaCO3 生石灰:CaO 食盐:NaCl 熟石灰、消石灰:Ca(OH)2 芒硝:Na2SO4?7H2O (缓泻剂) 烧碱、火碱、苛性钠:NaOH 绿矾:FaSO4?7H2O 干冰:CO2 明矾:KAl (SO4)2?12H2O 漂白粉:Ca (ClO)2 、CaCl2(混和物) 泻盐:MgSO4?7H2O 胆矾、蓝矾:Cu SO4?5H2O 双氧水:H2O2 皓矾:ZnSO4?7H2O 硅石、石英:SiO2 刚玉:Al2O3

相关文档
最新文档