地震模拟振动台选型

地震模拟振动台及模型试验研究进展_沈德建

第22卷第6期2006年12月 结 构 工 程 师S t r u c t u r a l E n g i n e e r s V o l .22,N o .6 D e c .2006 地震模拟振动台及模型试验研究进展 沈德建 1,2 吕西林 1 (1.同济大学结构工程与防灾研究所,上海200092;2.河海大学土木工程学院,南京210098) 提 要 在介绍振动台本身发展的基础上,分析了振动台试验研究内容的扩展、振动台模型试验动态相似关系研究进展、振动台试验方法的发展和振动台试验新的测量方法,提出了振动台模型试验中值得关 注的一些问题。 关键词 振动台,模型试验,动态相似关系,试验方法 R e s e a r c hA d v a n c e s o nS i m u l a t i n g E a r t h q u a k e S h a k i n g T a b l e s a n dMo d e l T e s t S H E ND e j i a n 1,2 L UX i l i n 1 (1.R e s e a r c hI n s t i t u t e o f S t r u c t u r a l E n g i n e e r i n g a n d D i s a s t e r R e d u c t i o n ,T o n g j i U n i v e r s i t y ,S h a n g h a i 200092,C h i n a ; 2.I n s t i t u t e o f C i v i l E n g i n e e r i n g ,H o h a i U n i v e r s i t y ,N a n j i n g 210098,C h i n a ) A b s t r a c t T h e d e v e l o p m e n t o f s h a k i n gt a b l e i s i n d u c e df i r s t i nt h i s p a p e r .T h e e x p a n s i o n o f t h e r e s e a r c h s c o p e o f s h a k i n g t a b l e s i s a n a l y z e d .T h e d y n a m i c s i m i l i t u d e r e l a t i o n s h i p f r o md i f f e r e n t a u t h o r s i s c o m p a r e d a n d r e m a r k e d .T h e d e v e l o p m e n t o f t e s t i n g m e t h o d o n s h a k i n g t a b l e s a n d n e w m e t h o d o n a n a l y z i n g t h e r e s u l t i s a l s o p r e s e n t e d .S o m e v a l u a b l e q u e s t i o n s o n s h a k i n g t a b l e t e s t a r e i n d u c e d a n d m a y b e p a i d g r e a t a t t e n t i o nb y r e -s e a r c h e r s .K e y w o r d s s h a k i n g t a b l e ,m o d e l t e s t ,d y n a m i c s i m i l i t u d e r e l a t i o n s h i p ,t e s t i n g m e t h o d 基金项目:国家自然科学基金重点项目(50338040) 1 概 述 结构振动台模型试验是研究结构地震破坏机理和破坏模式、评价结构整体抗震能力和衡量减震、隔震效果的重要手段和方法。然而,由于振动台本身承载能力、试验时间和经费等的限制,许多时候必须做缩尺模型试验,在坝工模型和高层、超高层建筑中更是如此。 一些新型结构形式,由于其超出了设计规范的要求,往往需要通过实验对其抗震性能做合理的评估。超高层建筑和超大跨度建筑,在理论分析还不完善的情况下,试验,特别是振动台模型试验,是分析其抗震能力的一种有效手段。 线弹性的缩尺模型相似关系已得到了较好的解决,但是许多复杂结构的相似关系、非线性动态 相似关系虽然进行了一些研究,但是还未能得到 较好的解决。一些劲性钢筋混凝土结构、钢管混凝土结构和其他一些新型结构的动态相似关系的 研究还不够深入,有些甚至才刚刚起步。 振动台试验较好地体现了模型的抗震性能,可我们更关心的是由模型的试验结果推算的原型结构的抗震性能,但在这方面尚未形成非常一致的结论,还存在一定的误差,因而精度还有待于进一步的提高。本文介绍国内外振动台模型试验的研究进展。 2 研究的最新进展 2.1 振动台本身的发展 作为美国N E E S 计划的一部分,加州大学圣地亚哥分校(U C S D )于2004年安装M T S 公司制

地震灾害模拟体验实验报告

地震灾害模拟体验实验报告 吴丽红人文学院历本101班 10020126 一、实验目的 了解地震灾害的成因、分类、危害以及地震的防灾措施等。 二、实验内容 体验模拟地震的震动状况、观看关于地震的影片,了解地震灾害的特征、危害、分布等基本知识以及防灾减灾的对策。 三、实验原理简述 当今人类面临着地震灾害的严重威胁,给各国人民造成了难以估计的生命与财产的巨大损失。目前,预防地震灾害,减轻地震灾害带来的损失已经成为各国政府的重要工作之一。与此同时,认识了解地震灾害发生以及发展的规律,对地震灾害进行科学的评估,以期有朝一日对地震灾害进行准确的预报,制定减轻地震灾害的防御对策等已成为广大科学家们重要的研究课题。 (https://www.360docs.net/doc/0314923938.html,/i?word=%B5%D8%D5%F0%B4%F8&opt-image=on&cl=2& lm=-1&ct=201326592&ie=gbk) 1、地震灾害的相关概念 大地或地壳的突然震动就是地震。震源是地球内部直接发生震动的地方,震中是震源在地面上垂直投影。震源深度是指震源到地面的垂直距离。震中距是在地面上从震中到任一点的距离。 震级是指地震的大小,是以地震仪测定的每次地震活动释放的能量多少来确定

的。中国目前使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,震级则是根据地震仪多地震波所作的记录计算出来的。地震越大,震级的数字越大,震级每差一级,通过地震被释放的能量相差约32倍。地震按震级大小四类:震级小于3级的地震称为弱震;震级等于或大于3级且小于或等于4.5级的地震称为有感地震;震级大于4.5级且小于6级的地震称为中强震;震级等于或大于6级的地震称为强震,其中震级大于或等于8级的地震又可称为巨大地震。 烈度表示地面受到地震的影响和破坏的程度,它用“度”来表示。一般而言,震级越大,烈度就越高。同一次地震,震中距不一样的地方烈度就不一样。 2、地震波的传播 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部氛围地壳、地幔和地核三个圈层。地震波按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5-7千米/秒,传播速度较快,可以通过固体、液体和气体传播,又称为P波,它使地面上下振动,破坏性较弱。横波是剪切波,在地壳中的传播速度为3.2-4千米/秒,又称为S波,只能通过固体传播,它使地面发生前后、左右抖动,破坏性较强。面波又称为L波,是由纵波与横伯伯哦字地表相遇后激发产生的混合波,波长大,只能沿地表面传播,是造成建筑物强烈破坏的主要原因。 3、地震的成因及分类 地震的成因到目前为止,仍然是一个有争议性的问题。但是地震的发生大致可以分为人为和自然两方面,其中绝大多数的地震是由自然引起的,成为天然地震,其中天然地震又可以分为构造地震、火山地震和塌陷地震。构造地震是由于地壳深处岩层错动、破裂所造成的地震策划能够为构造地震。这类地震发生的次数最多,破坏力也最大,约占全世界地震的90%以上。火山地震是由于火山作用,如岩浆活动、气体爆炸等引起的地震称为火山地震。只有在火山活动区才可能发生火山地震,这类地震只占全世界地震的7%左右。塌陷地震是由于地下溶洞或矿井顶部塌陷而引起的地震称为塌陷地震。这类地震的规模比较小,影响范围小,不会造成大的破坏。认为地震可分为人工地震和诱发地震两种。人工地震是由于某些人为的原因,如工业爆破,矿山开采,核爆炸等,也能引起地面剧烈振动,但是影响范围小,不会造成大的破坏。 4、地震的分布 世界地震带分布主要包括四个带: 环太平洋地震带:全世界地震释放总能量的80%来自这个带,大约80%的浅源地震和90%的中深源地震都集中在这个地区。 地中海-喜马拉雅山地震带:这个带以浅源地震为主,多位于大陆部分,分布范围较广。 大洋中脊带:地震活动性较弱,均为浅源地震。 东非裂谷带:地震活动较强,均为浅源地震。

地震模拟振动台九子台阵系统的安装与调试

Dynamical Systems and Control 动力系统与控制, 2016, 5(1), 11-17 Published Online January 2016 in Hans. https://www.360docs.net/doc/0314923938.html,/journal/dsc https://www.360docs.net/doc/0314923938.html,/10.12677/dsc.2016.51002 The Installation and Debugging of Nine Sub-Array System of Shaking Table Juke Wang, Chunhua Gao, Shuoyu Zhang Beijing Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing Received: Dec. 20th, 2015; accepted: Jan. 10th, 2016; published: Jan. 14th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/0314923938.html,/licenses/by/4.0/ Abstract Facing the damage caused by the frequent occurrence of earthquakes, this study pointed out that shaking table experiment is the research and development direction of structural seismic test, and briefly summarized the developmental history and status quo. In recent years, as array system of-fered important experiment methods to the anti-seismic experimental research and theoretical research of such slim-lined constructions as large-space structure, pipeline, multiple span bridge, etc., this study made a conclusion of the system composition, functional characteristics, installa-tion method and debugging procedures of nine sub-array system based on the nine sub-array sys-tem of BJUT, and further explained the characteristics and contents of array system control. It’s of some referential value for the technological development of shaking table array experiment. Keywords Shaking Table Array, Function Debugging, System Control 地震模拟振动台九子台阵系统的安装与调试 王巨科,高春华,张硕玉 北京工业大学,工程抗震与结构诊治北京市重点实验室,北京 收稿日期:2015年12月20日;录用日期:2016年1月10日;发布日期:2016年1月14日

高层建筑抗震性能模拟地震振动台试验

一、竞赛目的 通过比赛,加强华东地区工科院校土建类专业之间的相互交流,促进学生创新能力和专业技术水平的提高,营造培养卓越工程人才的良好氛围。 本次比赛突出设计理念、结构概念、结构体系创新,采用先进设备实施加载试验,希望能从理论创新引领实际工程发展的角度,加强理论与实际的有机结合,注重对设计构思与实施结果一致性的考察。 二、竞赛题目 高层建筑抗震性能模拟地震振动台试验 三、竞赛内容 1、结构方案概念设计及方案优选; 2、结构分析与制作详图设计; 3、结构模型制作; 4、结构模型模拟地震振动台试验。 四、竞赛细则 (一)材料及制作工具 1、材料 主体材料:有机玻璃板,额定厚度:1mm、2mm,弹性模量2.6?103MPa,强度40MPa,比重1.2。 辅助材料:镀锌铁丝,规格22号,直径0.71mm,材质:Q235。 胶接材料:氯仿、502胶(辅助安装质量块用,安装质量块时在实验室现场领取)。 标识材料:红、黄、蓝、黑彩色不干胶纸各一张,规格100?40。 【注1】材料由组委会提供,不允许使用任何其他材料。

【注2】材料参数仅供参考,有机玻璃板厚度、镀锌铁丝的直径可能 有较大的误差,以实测结果为准。 2、制作工具 钩刀、美工刀、电吹风、0#水砂纸、锉刀、直尺、图板、小毛笔、滴管注射器。 (二)模型设计要求 1、底座 虚线内为模型可使用范围,Φ1=8为柱脚安装孔,Φ2=5为底板安装孔 底座平面示意图 模型需可靠连接于底座上,然后固定于地震模拟振动台台面上。底座为有机玻璃板,尺寸250×250×6mm,外围25mm范围不得有任何构件。底座内部200 200范围8个直径8mm的圆孔,可用于固定构件(上部模型如不能利用这8个孔,可采用其它任一有效方式将上部模型固定于底板上);外围12个直径5mm的孔用于将底座固定于地震模拟振动台台面上。底座平面示意见上图,底座上不得另行钻孔。

XJ-Z50小型地震模拟振动台

XJ-Z50小型地震模拟振动台 南京工业大学土木工程学院实验教学中心研制

XJ-Z50小型地震模拟振动台 1、概述 振动实验台有液压式、机械式和电磁式等几种,振动台在结构抗震、自振频率测量、结构振动分析中是不可缺少的设备,振动台设备的成本与台面的尺寸、性能和相应的配套设备有关,一般要几十万到上百万以上的资金才能建成。那么对于众多理工科院校和新建院校承担如此高的资金有一定的难度。我们推出的“XJ-Z50小型地震模拟振动台”是为理工科院校专门设计的,该系统具备了振动台的所有实验内容,费用相应要低得多,适合作为教学使用,使学生能通过实验来学习、认识和掌握在振动上要完成的实验方法,为将来参与实际大、中振动台建设打下基础。 该系统除用于教学外,还可用于小型仪器(如:精密电子仪器、手持设备、计算机硬盘驱动器、传感器、MEMS 传感器和其它设备等)的振动考核试验。只要配备一只标准加速度计(如B&K 公司的加速度计),就可用该系统对其它传感器的灵敏度和频响曲线进行标定,传感器标定在工程试验中是必不可少的。 2、系统组成 该系统由振动台台面系统、电磁式激振器、功率放大器、振动台控制传感器、振动台控制仪(含数据采集、程控信号源)、计算机和控制软件组成。

3、实验内容 3.1 地震模拟、人工模拟地震波再现、地震反应谱测试;3.2 白噪声激励与结构振型测试; 3.3等幅值正弦扫频控制与结构振型测试; 3.5 随机波实验模拟; 3.6 加速度传感器和速度传感器灵敏度、频响曲线标定测试(选配); 4、技术指标和型号振动台控制机柜 4.1 振动台和功率放大器: 台面尺寸:516x360x20mm 台体材料:铝合金 台面自重:11kg 激振力:500N 频率范围:0-2000Hz 总重量:75kg 最大位移: 10mm 最大加速度:±5g

振动台试验终极版

一、前言 模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。模拟地震振动台试验方法是目前抗震研究中的重要手段之一。 20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。 二、常用振动台及特点 振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。振动台是传递运动的激振设备。振动台一般包括振动台台体、监控系统和辅助设备等。常见的振动台分为三类,每类特点如下: 1、机械式振动台。所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。 2、电磁式振动台。使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大 推力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。 3、电液式振动台。使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力 6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。 4、电动式振动台。是目前使用最广泛的一种振动设备。它的频率范围宽,小型振动台频率 范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。 三、组成及工作原理 地震模拟振动台的组成和工作原理 1.振动台台体结构 振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。台体自重和台身结构是与承载试件的重量及使用频率范围有关。一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。 2.液压驱动和动力系统

振动台模型试验

01 建筑结构的整体模型模拟地震振动台试验研究,从模型的设计制作、确定试验方案、进行试验前的准备工作、到最后实施试验和对试验报告数据进行处理,整个过程历时较长、环节较多。显然,预先了解和把握振动台试验的总体过程,做到有目的、有计划、有方法,才能较顺利地完成该项工作。介绍将会按照以下顺序依此进行: 1 模型制作 2 试验方案 3 试验前的准备 4 实施试验 5 试验报告 6 试验备份 02 1 模型制作 振动台试验模型的制作,在获得足够的原型结构资料后,至少需要把握这样几个关键环节: (1)依据试验目的,选用试验材料; (2)熟读图纸,确定相似关系; (3)进行模型刚性底座的设计; (4)根据模型选用材料性能,计算模型相应的构件配筋; (5)绘制模型施工图; (6)进行模型的施工。 对上述各条的设计原则以及注意事项等,分述如下。 1.1 选用模型材料 模型试验首先应明确试验目的,然后根据原型结构特点选择模型的类型以及使用材料。比如,试验是为了验证新型结构设计方法和参数的正确性时,研究范围只局限在结构的弹性阶段,则可采用弹性模型。弹性模型的制作材料不必与原型结构材料完全相似,只需在满足结构刚度分布和质量分布相似的基础上,保证模型材料在试验过程中具有完全的弹性性质,有时用有机玻璃制作的高层或超高层模型就属于这一类。另一方面,如果试验的目的是探讨原型结构在不同水准地震作用下结构的抗震性能时,通常要采用强度模型。强度模型的准确与否取决于模型与原型材料在整个弹塑性性能方面的相似程度,微粒混凝土整体结构模型通常属于这一类。以上分析也显现了模型相似设计的重要性。 在强度模型中,对钢筋混凝土部分的模拟多由微粒混凝土、镀锌铁丝和镀锌丝网制成,其物理特性主要由微粒混凝土来决定,有时也采用细石混凝土直接模拟原型混凝土材料,水泥砂浆模型主要是用来模拟钢筋混凝土板壳等薄壁结构,石膏砂浆制作的模型,它的主要优点是固化快,但力学性能受湿度影响较大;模拟钢结构的材料可采用铜材、白铁皮,有时也直接利用钢材。总之,模型材料的选用要综合就近取材及经费等因素,同时要注意强度、弹性模量的换算等。 1.2 模型相似设计 把握大型模型振动台试验,最关键的是正确的确定模型结构与原型结构之间的相似关系。目前常用的相似关系确定方法有方程分析法和量纲分析法两种,它们之间的区别是显而易见的:当待求问题的函数方程式为已知时,各相似常数之间满足的相似条件可由方程式分析得出;量纲分析法的原理是著名的相似定理:相似物理现象的π数相等;个物理参数、个基本量纲可确定()个nkkn[$#8722]π数。当待考察问题的规律尚未完全掌握、没有明确的函数关系式时,多用到这种方法。高层建筑结构模拟地震振动台试验研究中包含诸多的物理量,各物理量之间无法写出明确的函数关系,故多采用量纲分析法。 量纲分析法从理论上来说,先要确定相似条件(π数),然后由可控相似常数,推导其余的相似常数,完成相似设计。在实际设计中,由于π数的取法有着一定的任意性,而且当参与物理过程的物理量较多时,可组成的数也很多,将线性方程组全部计算出来比较麻烦;另一方面,若要全部满足与这些π数相应的相

地震体验平台设计方案(新)(汇编)

地震体验台设计方案

四川民盛机电工程有限责任公司 目录 一、系统概述 ....................................................................................... - 2 - 1.1设计目的及宗旨................................................................................................ - 2 - 1.2设计依据及原则................................................................................................ - 2 - 1.3系统的优点及特点............................................................................................ - 2 - 1.4系统的主要技术参数........................................................................................ - 3 - 二、系统概述 .......................................................................................................... - 3 - 2.1系统组成............................................................................................................ - 3 - 2.2机械系统............................................................................................................ - 3 - 2.3液压系统............................................................................................................ - 4 - 2.4控制系统............................................................................................................ - 5 - 2.5多媒体系统........................................................................................................ - 5 - 2.6特效系统............................................................................................................ - 6 - 三、详细方案 .......................................................................................................... - 9 - 3.1流程讲解............................................................................................................ - 9 - 3.2三维效果图........................................................................................................ - 9 - 3.3实景参考图........................................................................................................ - 9 - 3.4设备安装.......................................................................................................... - 10 - 3.5系统供电及控制室要求.................................................................................. - 11 - 3.6工程进度表...................................................................................................... - 11 - 四、系统维护与保养 ............................................................................................ - 11 - 4.1操作人员培训.................................................................................................. - 11 -

模拟地震时建筑物振动模拟工作台设计

毕业设计 模拟地震时建筑物振动模拟工作台设 计

模拟地震时建筑物振动模拟工作台设计 摘要:本设计提出一套简易的模拟地震时建筑物振动模拟工作台的设计,其设计原理是通过机械传动系统传动动力来带动模拟建筑物振动从而能够让人们直观的观察建筑物在地震时的振动状态。这套设计主要有变速系统,动力系统,机械传动系统,建筑物振动系统三个部分组成. 该模拟系统主要是通过变速系统来控制电机的转速来模拟地震不同的振动幅度,再通过机械传动系统来传动动力到建筑物振动系统使得建筑物振动,在建筑物振动系统中,主要是由一个抗震建筑物和一个不抗震建筑物组成,通过对比能够更好地更加直观的在人们面前展现建筑物在地震时的状态。 该系统虽然没有电液伺服地震模拟振动台那么精确,能够验证很多东西,但是它可以作为让人们观赏,让人们对地震时建筑物振动的初步了解的很好的平台,而且它的成本比较低,经济实用。本设计在符合设计要求的基础上就部分关键部件进行了相关功能和结构的设计。 关键词:经济实用,地震

When simulating seismic building vibration simulation table design abstract:This paper proposes a set of simple and easy the design of the building when the earthquake vibration simulation workbench, its design principle is driven by mechanical transmission system dynamics simulation vibration so that they can make people visual observation of the building in a state of vibration during the earthquake. This design mainly has variable speed system, power system, mechanical drive system, building vibration system of three parts. Mainly through the simulation system of variable speed system to control the motor speed to simulate earthquake vibration amplitude, again through the mechanical transmission system to drive power to the vibration system makes the building vibration, in the building vibration system, mainly by a seismic building and not a earthquake-resistant buildings, by comparing to better more intuitive show in front of the building during an earthquake. While the system is not so precise electro-hydraulic servo vibration table, to verify a lot of things, but it can be used as a let people admire, let people preliminary understanding of the building when the earthquake vibration of a good platform, and its cost is lower, economical and practical. This design in accordance with the requirements of the design on the basis of some key components for the design of the related function and structure. Key words:economic and practical,earthquake

地震勘探参数选择

地震勘探注意参数 1.最大偏移距;如果偏移距太大,记录最重要的反射波便不能达到额定的叠加次数;如果偏移距太小,则在一次和多次反射之间在时差内的差值便小于它可能分辨的值,因此减弱了多次波的衰减功能。所以一般而言,最大偏移距要尽可能大,以利于速度分析;同时为避免宽角反射波畸变,它又必需足够小。对一个排列来说,合适的最大偏移距应使最重要的反射波正好在最远记录道的削减带(mute zone)之后到达。它使得记录道加长30~40%。削减消除了NMO校正造成的畸变,经验法则是选取远道偏移距等目标反射面的深度。 2.近道偏移距(炮点离最近一个检波器的距离,用X1表示);在最浅的反射波上至少要保持一次覆盖。近道偏移距越小,则浅部反射波的叠加次数越高。一般的原则是近道偏移距应尽可能地小,以保证对速度和计时的控制,并有利于静校正和基准校正。 3.道间距(相邻两道检波器的间距,用△X表示。);对偏移技术来说,道间距的选择应该能提供足够的空间取样。这一规则通常在数据采集时都必须遵循。显然,道间距大,排列长度大,工作效率高。不宜太大,相位追踪对比困难,远处能量衰减大。 △X取决于最大最小炮检距,地震仪道数,空间采样率,空间分辨率。选取原则是:△X选择要有利于有效波的对比;△X要考虑对反射界面进充分采样,在倾角较大或有断时,应小一些;1M左右即可;△X选取不宜过大,会造成空间采样率不足,产生假频;一般横向二分之一波长,纵向四分之一。对于深层:反射波波速大,△X大,对于浅层:反射波波速小,△X小。而波

速,折射波>反射波,△X,折射波>反射波。因此,很多情况下,反射波法的道间距应小于折射波法的道间距。 4.记录长度,采样间隔;记录长度必须能记录到最深目的层产生的反射波,并有一定余量;采样间隔越小,对地震波形记录精度越高,相应的记录长度越小,反之也对;在满足记录长度要求时,采样间隔选取应在反射波的每一个视周期内大约10个样点。 5.最大最小炮检距的选择在于使目的层反射波尽量不被噪声所掩盖;最大炮检距(离开炮点最远的检波点与炮点的距离,用Xmax表示)大一点对速度分析但太大会带来广角反射畸变,经验上取与目的层深度相近,为其0.7-1.5倍之间(与探测深度有密切关系。折射:目的层深度的5~7倍);最小炮检距也称偏移距,应尽量小一些,便于分析各种波速度与时间的关系,但是震源附近,最小炮检距应避开强干扰。

使用ANSYS软件模拟地震荷载的方法

使用ANSY S 莫拟地震荷载的方法 选用东营胜利油田CB11B 平台的ANSYS 模型对模态分析和动力分析中的 操作方法进行介绍。渤海 CB11B 平台是一座4腿导管架平台,包括上部甲板模 块、导管架和桩基三部分。甲板面标高为+9.00m ,水深为10.5m 。桩腿的单向斜 度10: 1,入泥1.5m 模拟地震荷载首先需要有地震的加速度数据, 这里采用迁安波,迁安波为渤 海的地震波,见文件eqq1.txt 。其时程图见图1。注:该文件只有一列,即加速 度值。 图1?加速度时程图 第一步要把地震加速度数据输入 ANSYS 软件 下拉菜单中 Parameters-Array Parameters-Define/Edit-Add,在 Par 中输入所定 义数组名称(eqq );输入数组选择Array ;在I 、H 、K No.中输入数组的行数、 列数、维数,所输入的行数应该与 eqq1文件中的加速度数据个数相等,列数与 维数在这里均为 1 下拉菜单中 Parameters-Array Parameters-ReadFrom File, 选择 Array ,点击 pm 度速加 1 2 3 时间/s 4 5 8 a 6 a 4 2 a a o ■2 4 G - -

OK ;ParR中输入数组名称(eqq);在File, ext, dir Read from file中浏览到地震加速度文件eqq1.txt所在的位置;Ncol Number of columns中输入1;最后一行中输入数据格式后点击OK(G10.4代表加速度数据总共十位,小数点后有四位.例如如:+1.2532,即G7.4)。 下拉菜单中Parameters-Array Parameters-Defi ne/Edit-Ad d,选择数组文件名eqq后点击Edit,可以看到地震的加速度数据文件eqq1.txt已经被输入到数组eqq 中了。点击Close 关闭。 第二步要把地震加速度数据输入结构。 注意首先要把water table清空。要以命令流的方式把地震加速度数据输入结构: FINISH /PREP7 NT=500 % 总计算步数 DT=0.01 % 时间步长,NT*D■即卩为总的计算时间 /SOLU ANTYPE,TRANS %以命令流的方式选择瞬态动力学分析 TRNOPT,FULL *DO,I,1,NT,1 % 循环开始 TIME,I*DT KBC,0 NSUB,1 ALPHAD,0.1 % 输入阻尼系数alpha BETAD,0.0028 % 输入阻尼系数betad ACEL,EQQ(l),0,0 %输入X、Y、Z向的地震加速度数据,这里只在X方向加了加速度。注意这里要输入的数据名EQ要与前面所定义数组名相同。 ALLS SOLVE *ENDDO % 循环终止 第三步,观察结果。 以节点位移为例进行说明, TimeHist postproc——Define Variables——Add——Nodal DOF result ------- 选择节点或者输入节点号 --- 选择方向 --- 在List Variables中可以列出该节点不同时间的位移值 -- Graph Variables可以画出该节

使用ANSYS软件模拟地震荷载的方法

使用ANSYS模拟地震荷载的方法 选用东营胜利油田CB11B平台的ANSYS模型对模态分析和动力分析中的操作方法进行介绍。渤海CB11B平台是一座4腿导管架平台,包括上部甲板模块、导管架和桩基三部分。甲板面标高为+9.00m,水深为10.5m。桩腿的单向斜度10:1,入泥1.5m。 模拟地震荷载首先需要有地震的加速度数据,这里采用迁安波,迁安波为渤海的地震波,见文件eqq1.txt。其时程图见图1。注:该文件只有一列,即加速度值。 图1.加速度时程图 第一步要把地震加速度数据输入ANSYS软件。 下拉菜单中Parameters-Array Parameters-Define/Edit-Add, 在Par中输入所定义数组名称(eqq);输入数组选择Array;在I、H、K No.中输入数组的行数、列数、维数,所输入的行数应该与eqq1文件中的加速度数据个数相等,列数与

维数在这里均为1。 下拉菜单中Parameters-Array Parameters-Read From File, 选择Array,点击OK;ParR中输入数组名称(eqq);在File, ext, dir Read from file中浏览到地震加速度文件eqq1.txt所在的位置;Ncol Number of columns中输入1;最后一行中输入数据格式后点击OK(G10.4代表加速度数据总共十位,小数点后有四位.例如如:+1.2532,即G7.4)。 下拉菜单中Parameters-Array Parameters-Define/Edit-Add,选择数组文件名eqq后点击Edit,可以看到地震的加速度数据文件eqq1.txt已经被输入到数组eqq 中了。点击Close关闭。 第二步要把地震加速度数据输入结构。 注意首先要把water table清空。要以命令流的方式把地震加速度数据输入结构: FINISH /PREP7 NT=500 %总计算步数 DT=0.01 %时间步长,NT*DT即为总的计算时间 /SOLU ANTYPE,TRANS %以命令流的方式选择瞬态动力学分析 TRNOPT,FULL *DO,I,1,NT,1 %循环开始 TIME,I*DT KBC,0 NSUB,1 ALPHAD,0.1 %输入阻尼系数alpha BETAD,0.0028 %输入阻尼系数betad ACEL,EQQ(I),0,0 %输入X、Y、Z向的地震加速度数据,这里只在X方向加了加速度。注意这里要输入的数据名EQQ要与前面所定义数组名相同。 ALLS SOLVE *ENDDO %循环终止 第三步,观察结果。 以节点位移为例进行说明, TimeHist postproc——Define Variables——Add——Nodal DOF result——选择节点或者输入节点号——选择方向——在List

模拟震动台试验的了解

地震模拟振动台试验的了解 姓名:图尔荪江学号:1083310402 摘要阐述了正确认识振动台模型试验的重要性,并指出了试验中的一些有待提高的做法,同时论述了振动台模型试验的发展动态。 关键词振动台试验;试验方法;发展动态; 自20世纪60年代开始建立地震模拟振动台系统开始,全球的模拟振动台系统已经超过100台,国内各高校以及科研单位也陆续建立了近20台振动台系统?。振动台系统已从简单的单向运动向复杂的三向六个自由度发展,试验的内容也由砌体结构模型试验、框架结构模型试验、筒体结构模型试验向桥梁结构模型试验、具有隔震和减震装置的结构模型试验、结构与地基共同工作的模型试验等新的领域发展。对目前振动台模型试验中认识上和做法上有待提高的一些问题以及振动自摸型试验发展动态谈一些看法。 1. 正确全面认识振动台模型试验 由于振动台模型试验耗资大,要求高,于是就有采用静力试验或拟动力试验来研究结构性能的做法。其实振动中的物体除了受到干扰力的作用外,还受到与加速度相关的惯性力,与速度相关的阻尼力以及与位移相关的恢复力的作用。静力试验虽然经济并对加载设备没有太大的要求,但仅限于静力试验。拟动力试验,其突出的优点是与计算机相联,恢复力模型来自实际的构件,但是试验本身还是不能反映速度相关型材料的性能,因此拟动力试验实际上还是静力试验。虽然最近几年有研究发展的快速(实时)拟动力试验(FFr),考虑了速度的影响,但是对设备的要求非常高,并且试验的边界条件很难精确的模拟【"。因此,首先要认识到振动台模型试验才是真正的模拟了地震的动力试验。 另外,有把结构构件在拟静力、拟动力试验中的量测内容来要求振动台模型试验的做法,当不能满足时,就认为振动台试验没有用。应该说不同的试验方法都有各自的特点和适用范围,振动台模型试验主要从宏观方面研究结构地震破坏机理、破坏模式和薄弱部位,评价结构整体抗震能力并衡量减震和隔震的效果14 J。振动台模型试验是目前所有试验方法中最为直接的试验方法,在试验中能详细地了解结构在大震作用下的抗震性能,对构件的破坏机理有直观的了解。另外,振动台模型试验往往是评估新型结构、超限结构以及具有隔震、减震装置结构等抗震性能的重要手段。对于大跨桥梁、大跨建筑物及管道线还需要用振动台台阵来研究基于多点地震波输入下的抗震性能。 振动台试验是目前并可能在将来的一段时间内解决结构在地震作用下的非线性反应和倒塌机理比较有效的手段¨J。 2. 试验中有待解决的一些问题 虽然振动台模型试验有不少的优点,但是在实际的试验中还有不少问题有待提高,已经有不少的文献对此进行讨论与研究,主要是集中在模型相似、加载速率、地震波形精确复现等几个方面。 2.1欠质量失真 目前,世界上振动台最大的竖向负重是美国的ucSD振动台系统,为2 000 t,大部分振动台的负重在100 t以下。对于高层建筑来说,当模型采用与原型相同的材料时,按照相似要求,模型的质量通常都超出了振动台的负载能力,如果将模型做得很小,即模型比例太小,那失真就会很严重。因此,目前绝大部分高层建筑或大型建筑的振动台模型都是欠质量的。

相关文档
最新文档