现代光纤通信技术

现代光纤通信技术
现代光纤通信技术

第一章通信网技术概述

1.1概述

1.2通信设备

构成通信网的最基本的设备是用户端设备、传输链路设备和转接交换设备。

1.3广域网分类

1.4通信协议

1.4.1 协议

通常将网络分层结构以及各层协议的集合称为网络体系结构。比较著名的网络体系结构有国际标准化组织ISO(International for Standardization)提出的开放系统体系结构OSI(Open System Interconnection);美国国防部提出的传输控制协议TCP/IP;国际电信联盟提出的公共数据网X系列协议;IBM公司提出的系统网络体系结构SNA等。

1.4.2 标准化组织

1. 国际标准化组织ISO

2. 国际电信联盟-电信标准化部ITU-T(International Telecommunication Union)

一直负责制定电信网的标准系列。

3. 因特网工程任务组IETF(Internet Engineering Task Force)

负责研究因特网的体系结构以及新一代因特网标准规范的研究和制定

第二章数字通信技术

第三章光纤通信技术

3.1 光纤通信

3.1.1光纤通信的发展

3.1.2 光纤通信的特点

1. 传输频带宽,通信容量大。由信息理论知道,载波频率越高,通信容量就越大。

2. 损耗低。目前实用的光纤均为石英系光纤,要减小损耗,主要是靠提高玻璃纤维的纯度。

3. 在运用频带内,光线对每一频率成分的损耗几乎一样。因此,系统中才去的均衡措施比传统的电信系统简单,甚至可以不必采用。

4. 光纤内传播的光能几乎不辐射,因此很难被窃听,也不会造成统一光缆中各光纤之间串扰

5. 不受电磁干扰。因为光纤是非金属的介质材料。

6. 线径细、重量轻,便于敷设。

7. 资源丰富。制作玻璃光纤的原料是适应,其来源十分丰富。

3.1.3 通信系统中主要技术指标

1.分贝dB

分贝dB 是以常用对数表示的两个电压或两个功率之比的一种计量单位。

以0p 作为基准功率,那么在某一点的功率1p 的测试点上的功率电平为 D=10lg

01p p (dB) 光纤放大器的功率增益为

功率增益G=10lg 输入光功率

输出光功率(dB) 若损耗沿光纤是均匀的,光纤的损耗常用衰减常数A 表示

衰减常数A=-

L 10lg 输入光功率输出光功率(dB/km) 光纤连接器反射损耗系数为

反射损耗系数R=-10lg 输入光功率

率反射回到输入端的光功(dB) 2. 绝对功率dBm

dB 表示相对于某一据准功率的相对功率电平数。

dBm 则表示相对于1mW 参考功率的电平数,成为绝对功率电平数。符号dBm 中的dB 表示分贝,m 表示毫瓦。 D=10lg 1

p =10lg p (dBm) 3. 信道的传输速率和频带利用率

数字通信网络的运载信息能力用数据传输速率表示,数据传输速率的单位是比特/秒(b/s ),所以数据传输速率也称比特率。

在比较不同的数字通信系统时,但看他们的信息传输速率是不够的,还要看传输这种信息所占用的信道的频带宽度。所以采用频带利用率η,即单位频带内的传输速率作为衡量数字通信系统传输速率(有效性)的指标:

频带宽度

信息传输速率频带利用率=η(b ·11--?Hz s ) 4. 带宽BW

信道带宽(Band Width )是通信系统的宝贵资源。

带宽是描述用于模拟传输的通信信道的运载能力的特性。

带宽是一个频率范围,信号在这个频率范围内传输不会产生重大的畸变,带宽用赫兹(Hz )作为单位。

制造商经常用带宽和光纤长度的乘积来标明带宽的质量

数字通信网络的运载信息能力也常用带宽来表示。比特率和带宽都是表示运载信息能力的。他们的关系在不同情况有不同的规定,最简单的办法(也是不太确切的办法)就是假设每秒的比特数b/s 与每秒周期数相同。限制比特率的最重要因素是光纤的衰减和光纤的色散。色散和光源频宽使脉冲展宽,在超声速和超长距离通信系统中色散将是限制比特率最重要因素之一。

5. 误码率BER

衡量数字通信系统可靠性的主要指标是误码率BER(Bit Error Rate).在传输过程中发生误码的码元个数与传输的总码元素之比,成为误码率。

BER 是多次统计结果的平均值,实际上是平均误码率。

误码率的大小由传输系统特性和信道质量等因素决定,显然提高信道信噪比(信号功率/噪声功率)可使误码率减少;缩短中继段距离可提高信噪比,也即可使误码率减少。

6. 抖动性能

抖动性能也是一种可靠性指标。抖动是较高传输系统中的不稳定现象,信号抖动是指数字信号的码位相对于标准位置的随即偏移,脉冲时间间隔上不再是等间隔的。

信号抖动也是由传输特性和信道质量等因素决定的,他可能是有脉冲恢复电路产生的抖动,也可能是由噪声引起的抖动,也可能由设备和光源老化引起的抖动。

误码率和信号抖动都直接反映了通信质量。

3.2 光导纤维

3.2.1 光导纤维的产生

光导纤维是具有传输频带宽、通信容量大、损耗低、不受电磁干扰等优点的一种新型传输介质。

3.2.2 光纤结构和光传输的基本原理

1. 光的特性

光具有波动性和粒子性

(1) 光的波动性

光是一种横向电磁波TEM(Transverse Electromagnetic),所谓横向是指光在真空三维空间中传播时,电场强度E 和磁场强度H 两个矢量都与光的传输方向垂直。

在光波传输时,随着时间的变化,电场和磁场的空间方位受到周围环境和光纤质量的影响也发生变化,这种现象称为极化。这种电磁波的极化现象也成为偏振现象。

光波与其他波长的电磁波一样,在真空中的传播速度为

s m c /1038?=

根据光速=波长×频率的公式,有

)(1038

m f

f c ?==λ 光的中心频率大约为:Hz f 14

106?=

光的中心波长大约为:m 6105.0-?=λ

光既然是电磁波,就会有电磁辐射,会产生反射、折射、干涉、偏振和损耗等现象。 紫外光的波长范围为6nm ~390nm ;可见光的波长范围为390nm ~760nm ;红外光的波长范围为760nm ~5103?nm ;光纤通信所使用的波长范围为800nm ~1700nm ,具体使用的波长为短波长850nm 、长波长C 波段1310nm 和长波长L 波段1550nm 。

(2) 光的粒子性

2. 光纤的结构

3. 光纤的导光原理

3.2.3 多模光纤和单模光纤

1. 光纤的传输模式

“模”来源于电磁场的概念这里所说的“模”,实际上是光场的模式。当光纤的纤芯较粗时,则可允许光波以多个特定的角度射入光纤端面,并在光纤中传播,此时称光纤中有多个模式。这种能传输多个模式的光纤称为多模光纤MMF(Multi-Mode Fiber);当光纤的芯径很小时,光纤只允许与光纤轴一致的光线通过,即只允许通过一个基膜,这种只允许传输一个基膜的光纤称为单模光纤SMF(Single-Mode Fiber)。

从光纤理论的分析,可以得到以下几个有关的结论:

(1) 并不是任何形式的光波都能在光纤中传输,每种光纤都只允许某些特定形

式的光波通过,而其他形式的光波在光纤中无法存在。每一种允许在光纤

中传输的特定形式的光波称为光纤的一种模式。

(2) 在同一光纤中传输的不同模式的光,其传播方向、传输速度和传输路径不

同,光的衰减也不同。观察与光纤垂直的横截面就会看到不同模式的光波

在横截面上的场强分布也不同,高次模的衰减大于低次模。

(3) 进入光纤的光,在光纤的纤芯和包层界面上的入射角小于临界角的光就有

一部分进入包层被很快衰减掉。入射角大于临界角时,在交界面内发生全

反射,传输损耗小,能远距离传输,称为导模

(4) 能满足全反射条件的光线也只有某些特定的角度射入光纤端面的部分才能

在光纤中传输因此,不同模式的光的传输方向不是连续改变的,当通过同

样一段光纤时,以不同角度在光纤中传输的光所走的路径也不同,沿光纤

轴前进的光走的路径最短,而与轴线佼佼大的光所走的路经长

2. 单模光纤的主模和传输条件

3. 多模光纤

多模光纤的芯径和外径分别为50m μ和125m μ。

4. 单模光纤

单模光纤的外径也是125m μ,但他的芯径一般为4m μ~10m μ。

单模光纤采用阶跃材质和高度集中的光源,使得发出的光纤限制在非常接近水平很小范围。光纤纤芯本身制造时采用比多模光纤小得多的直径,和极低的密度(折射系数)。密度的降低时的全反射角接近o

90,从而使得传播的光线基本是水平的。在这种情况下,不同光线的传播几乎是相同的,从而可以忽略传播延迟。所有光线几乎同时抵达目的地并且可以无扭曲的重组为完整的信号。 3.2.4光纤的传输特性

1. 光纤的损耗特性

衰减是光纤的一个重要的传输参数。他表明了光纤对光能的传输损耗,光纤每单位长度的损耗,直接关系到光纤通信系统传输距离的长短,对光纤质量的评定和对光纤通信系统的中继距离的确定都起着十分重要的作用。

形成光纤损耗的原因很多,既有来自光纤本身的损耗,也有光纤与光源的耦合损耗以及光纤之间的连接损耗。

光纤本身损耗的原因主要有吸收损耗和散射损耗两类。

(1) 吸收损耗是光波通过光纤的材料时,有一部分光能变成热能,从而造成光功

率的损失。

造成吸收损耗的原因很多,主要有本征吸收和杂质吸收。

本征吸收是指光纤基本材料固有的吸收。本征吸收是不可避免的,所以本征吸收基本上确定了任何特定材料的吸收下限。

(2) 散射损耗是由于光纤的材料、形状、折射率分布等的缺陷或不均匀,使光纤

中传导的光发生散射而产生的损耗。

衰减系数α,则定义为单位长度光纤引起的光功率衰减。当长度为L 时,即

)

0()(lg 10)(P L P L -=λα(dB/km ) 式中 P(0)—在L=0处注入光纤的功率;

P(L)—传输到轴向距离L 处的光功率。

α(λ)—在波长为λ处的shuaijianxishu 与波长的函数关系,其数值与选择的光纤长度无关。

2. 光纤的色散特性

在光纤中,不同速率的信号传过同样的距离需要不同的时间,从而产生时延差,时延差越大,色散越严重,因此可用时延差表示色散的程度。由于光纤中色散的存在,将直接导致光信号在光纤传输过程中的畸变,会使输入脉冲在传输过程中展宽,产生无码干扰,增加误码率,从而限制了通信容量和传输距离。

从光纤色散产生的机理来看,它包括模式色散、材料色散和波导色散3种。

(1) 模式色散是指在多模光纤中,不同模式在同一频率下传输,由于在光纤中行

进轨迹不同,当传输同样的光纤长度时,需要不同的时间,即模式之间存在

时延差,这种色散成为模式色散。他取决与光纤的折射率分布。

(2) 材料色散是由于光纤材料本身的折射率随波长而变化,使信号各频率成分的

群速不同所引起的色散。

(3) 波导色散是由于光纤的几何结构、形状等方面的不完善,使广播的一部分在

纤芯中传输,另一部分在包层中传输。由于纤芯和包层的折射率不同,会造

成脉冲展宽的现象,称为波导色散。

(4) 色度色散CD(Chromatic Dispersion)指所有引起由于波长的脉冲扩展相关的

现象,包括材料色散和波导色散。

3. 偏振色散PMD(Polarization Mode Dispersion)

偏振是单模光纤特有的问题。

典型光线是无偏振的,也可以成为圆形偏振。也就是说,它的电场E 和磁场H 在所有垂直与传播方向上具有同样的强度,因而是圆形的。当光通过媒质传播时,它进入靠近原子和离子的场,会产生场的相互作用,对各个方向上光的电场强度和磁场强度发生影响,最终会形成椭圆或线性的场分布。

实际上,单模光纤传输的基膜(01LP 模)存在两个相互正交的偏振态x LP 或y

LP 。在完善的光纤中,该两模式具有相同的传输特性,偏振态是完全简并的,它们不会对光纤中信号传输造成任何不良影响。但实际光纤总有某种程度的不完善,如光纤的芯子具有一定的椭圆度或者由于弯曲、侧压和光纤的残余应力等,这两种偏振态具有不同的传输特性,偏振模式色散PMD(Polarization Mode Dispersion)将引起各种严重影响,如两模式的群速不同,因而引起偏振色散,外界条件的变化有可能引起光纤输出偏振态的不稳定。

4. 光纤的非线性效应

通常,在广场较弱的情况下,可以认为光纤的各种特征参数随光场的强弱做线性变化。这时,光纤对光场来讲,是一种线性媒质。但是,若光场很强,则光纤的特征参数将随光场呈非线性变化。

当光纤处于非线性工作状态时,光纤的非线性效应不仅引起信号的畸变,更重要的是它将导致新频率的产生和不同频率之间的相互作用,新频率的产生将损失信号光的功率。光纤中的几种非线性效应均可能在信号见构成串扰,具体来讲,就是一个信道的光强和相位将受到其他相邻信道的影响,从而形成串扰由于是光纤非线性效应引起的,故这种串扰便称之为非线性串扰。

由于多波长多通道的传输采用光纤放大器,光纤内部有效传输功率剧增,容易产生非线性效应,有四波混频、自相位调制、交叉相位调制等。

(1)四波混频FWM(Four Wave Mixing):4个不同频率光波组成时,将造成临近通道间的串音。FWM是波分复用WDM系统中最主要的限制系统性能的非线性现

象只要使用WDM系统就一定要消除FWM的影响。

(2)自相位调制SPM(Self Phase Modulation):当光较强时,光纤折射率将随光场幅度而变化,这种变化将通过光纤的传输常数转化为光场传输相位随光场

幅度的变化。因此随着光场在光纤中的传输,对光场的幅度调制将同时自发

产生对光场的相位调制。这种现象称为光场的自相位调制。自相位调制SPM

是由非线性引起的,它不仅随光强而变化,而且随时间变化,这种瞬间变化

相移将引起光脉冲的频谱展宽,导致在光脉冲的中心频率两侧出现不同频率

的瞬时光频率,由SPM引起的瞬时光频率的时间依存关系,使脉冲的不同部

位具有不同频率的现象成为脉冲频率啁啾(Chirp),它亦随传输距离增大而

增大,因此随着光脉冲沿光纤传输将不断产生新的频率分量,频谱将不断展

宽。

(3)交叉相位调制XPM(Cross Phase Modulation):两个或多个不同频率的光波在非线性介质中同时传输时,每一频率光波的幅度调制都将引起光纤折射率

的相应变化,其他频率的光波将受到这种变化从而对这些光波产生非线性相

位调制。

超高速系统的主要性能限制是色散、偏振和非线性。

3.2.5单模光纤的带宽资源

1.非色散位移单模光纤G.652

这种光纤的零色散波长在1310nm,在波长为1550nm处衰减最小,但有较大的正色散(大约+18ps/(nm·km))。这种光纤工作波长既可选用在1310nm,又可选用在1510nm。这种光纤常称为“标准”或“常规”光纤。

绝大多数信号传输系统都采用非零色散位移光纤,这些系统包括:在1310nm和1510nm 工作窗口的高速数字和有线电视CATV(Cable Telvision)模拟系统。然而,在1550nm波长的大色散成为高速系统中光纤中继距离延长的“瓶颈”。

利用G.652光纤进行速率大于2.5Gb/s的信号长途传输时,必须引入色散补偿光纤进行色散补偿,并需引入更多的禅铒光纤放大器来补偿由引入色散补偿产生的损耗。

2. 色散位移光纤DSF(Dispersion Shift Fiber)G.653

色散位移光纤是通过改变光纤的结构参数、折射率分布性状,力求加大波导色散,从而将最小零色散点从1310nm位移到1510nm,实现1510nm处最低衰减和零色散波长一致,并且在掺铒光纤放大器工作波长区域内。这种光纤非常适合于长距离单信道高速光放大系统,如:可在这种光纤上直接开通20Gb/s系统,不需要采取任何色散补偿措施。

但是当一根光纤上同时传输多波长信号并使用光放大器时,色散位移光纤DSF 就会在零色散波长区出现严重的非线性效应,这样就限制了波分复用技术的应用。

3.1550nm 最低衰减光纤G.654

1510nm 最低衰减光纤是非零色散位移光纤G.654,其在1510nm 工作窗口具有极小的衰减0.18dB/km 。获得低衰减光纤的方法是:

(1) 选用纯石英玻璃作为纤芯和掺氟的凹陷包层。

(2) 以长截止波长来减小光纤对弯曲附加损耗的敏感。

因为这种光纤制造特别困难,最低衰减光纤十分昂贵,且很少使用。它们主要应用在传输距离很长,且不能插入有源器件的无中继海底光纤通信系统。

4.非零色散位移光纤NZDF(Non-Zero Dispersion Fiber)G.655

通常,将这种光纤称为“非零色散位移” 光纤G.655.在波段1530nm ~1565nm 的范围,非零色散位移光纤具有最小和最大色散。特定的最小色散保证该色散足以抑制FWM 非线性。特定的最大色散要保证该色散足够的小,以允许单信道速率为2.5Gb/s 的信号传输距离大于100km 和以10Gb/s 速率传输信号的传输距离大于300km 而无需进行色散补偿。

非零色散位移光纤有望大量用于新建的高速率、大容量的密集波分复用的陆地和海底长距离的光纤通信网络。

5. 低色散斜率光纤G.655(真波RS 光纤)

目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即新型的低色散斜率光纤G.655和无水吸收峰光纤。

所谓色散斜率指光纤色散随波长改变的速率,又称高阶色散。在长途WDM 传输系统中,由于色散的积累,各通路的色散都随传输距离的延长而增大。然而,由于色散斜率的作用,各通路的色散差别积累量是不同的,其中位于两侧的边缘通路间的色散差别积累差最大。

初期的G.655光纤主要是为C 波段设计的,因而色散斜率稍大一点问题不太大。然而,随着宽带光纤放大器技术的发展,DWDM 系统的应用范围已经扩展到L 波段,全部可用频带可以从1530nm ~1565nm 扩展到1530nm ~1625nm 。如果色散斜率仍维持原来的数值(大约0.07ps/(km nm ?2)~0.10ps/(km nm ?2)),长距离传输时短波长和长波长之间的色散差异将因距离增长而增加,或者说需要代价较高的色散补偿措施才行,而低波段的色散有嫌太小,多波长传输时不足以压制四波混合和交叉相位调制的影响。通过降低色散斜率,可以改进短波长的性能而不必增加长波长的色散,使整个第3和第4窗口的色散变化减至最小,同时可以降低C 波段和L 波段色散补偿的成本和复杂性。

真波RS 光纤与传统非位移光纤相比,每个频道10Gb/s 的费用更低;能升级到每个频道40Gb/s ;与其它NZDF 光纤相比,在1530nm ~1565nm 波长范围有更好的性能,以及更大的容量;在1530nm ~1565nm 波长范围(C 波段)以及1530nm ~1620nm 波长范围(L 波段),波长能得到更好的利用;对于DWDM 传输系统,使1310nm 波段的波长得到充分利用;相对于大有效面积NZDF 光纤,它具有低弯曲损耗,更加容易使用。

6.大有效面积光纤

超高速系统的主要性能限制是色散和非线性。通常,线性色散可以用色散补偿的方法来消除,而非线性的影响却不能用简单的线性补偿的方法来消除。光纤的有效面积是决定光纤非线性的主要因素,尽管降低输入功率或减小系统传输距离和光区段长度也可以减轻光纤非线性的影响,但同时也降低了系统要求和性能价格比,可见光纤的有效面积是长距离密集波分复用系统性能的最终限制。为了适应超大容量长距离密集波分复用系统的应用,大有效面积光纤LEAF (Large Effect Area Fiber )已经问世。

在理论上,光纤的线性色散总是可以补偿的,而非线性却很难补偿。大有效面积光纤从

浅谈光纤通信技术的发展及其应用

浅谈光纤通信技术的发展及其应用 发表时间:2016-11-02T16:56:20.480Z 来源:《基层建设》2016年14期作者:张运器 [导读] 摘要:随着社会的发展和时代的进步,我国的综合国力逐渐增强,人们对通信的技术和质量也有了更高的要求。 广州市奇成通信技术服务有限公司 摘要:随着社会的发展和时代的进步,我国的综合国力逐渐增强,人们对通信的技术和质量也有了更高的要求。光纤通信作为新兴技术被广泛的应用在各国各行业的科技领域中,尤其是在电信网络中起着不可忽视的作用,在我国的通信行业中,光纤通信技术占据着主要的作用。光纤通信技术不仅能在通信主干路中得到应用,还能在电力通信的控制系统中得到应用,对工业进行控制和检测,为通信行业带来了很大的积极作用,为通信行业的发展和进步奠定了基础。 关键词:光纤通信技术;发展趋势;通信行业;应用 虽然光纤通信技术被广泛的应用在各国的通信行业中,但是光纤通信技术的使用历史并不是很长,早在二十世纪就有科学家对光纤通信进行了探索,但由于极高的造价导致研究不得不中断。光纤通信技术使通信行业得到了前所未有的发展,现阶段光纤通信的技术取得了得到了很大的提高,不断得到补充的新技术使我国通信行业的能力得到了极大的提高,使全国的大部分地区都实现了光纤通信技术的应用。只有良好的利用光纤通信,不断的提高光纤通信的技术才能使我国的通信行业得到长足的发展。 一、光纤通信的特点 光纤通信能够获得广泛的应用和发展主要是因为其具有多方面的特点,从而得到了更多人们和行业的重视。第一,光纤通信拥有很宽的传输频带,使通信的容量大大增加。和铜线、电缆等传输方式相比,光纤通信的带宽很大,现阶段我国还使用了密集波分复用的技术,此技术也使光纤的传输容量得到了极大提高。第二,拥有较长的中继距离,光纤通信的损耗很小,这个特点在传统的微波传输中难以得到体现。在较长的传输线路中,能够有效的将中继站数量控制在最小,使传输的成本得以降低。第三,拥有较好的保密性能并伴有强大的抗干扰能力。在进行光纤传输时,光波导结构会使光信号得到很好的限制,即使在特殊的地区渗漏的光波量也极小,使信号得到更好的保护。第四,光纤通信具有极高的传输质量。在外界环境等因素改变时,光纤通信不会受其影响,拥有很强的适应能力,使传输的信号以高质量被传输到需要的地方。第五,有效的节约了成本。制作光纤的原材料是石英玻璃,基础材料则为二氧化硅,这种原材料的价格较低,我国拥有丰富的原材料,使用这种材料能有效的节约金属的使用量,有效的节约了成本。第六,使用较灵活。光纤拥有很轻的重量,而且规格比较小,在进行光纤维护和施工时,传输和铺设都及其方便,并且能够在水底和架空时进行铺设。 二、光纤通信技术的发展 (一)由光入网的发展趋势 在我国光纤通信技术的发展过程中,由光入网一直是一个难题的,但在今后的光纤通信技术发展正,由光入网是其必须实现的发展趋势。通过技术的发展,由光入网趋势将在我国光纤通信技术中得以实现,将会成为网络中不可缺少的一项环节,由光入网将使通信行业实现网络化和智能化。另外,我国还有很多使用铜线进行通信的现象,铜线和光纤相比还存在很大的技术反差。在这种现在存在的同时,接入网络就显得尤为重要,是我国通信行业得到真正发展的一个非常重要的节点。通过实现光纤的接入网能使存在的问题得以解决。除了这种情况以外,还要适当的使各地的节点和与网络结构的适应度得到减少,这样能在一定程度上扩大覆盖率,从而使故障率和维修产生的费用都得到相应的减少。 (二)光纤通信技术的新一代光纤 由于社会的不断进步和发展,各行业都得到了不同程度的提高,业务量等数据都在不断的增长。电信网络也跟随着这一形式向下一个光纤通信技术的方向不断努力,这一新技术要遵循着可持续发展的目标。要想真正实现新一代的光纤技术就要拥有超大容量的光缆,光缆的组成为逛到纤维。大容量的光缆和传统的光缆相比具有很多的优点,不仅能够适应网络业务的超长距离,还要拥有良好的稳定性。根据这种要求,我国通信行业的技术人员已经研发出了新型的光纤,光纤具有不同的型号,例如,G.655光纤和全波光纤等。这样的光纤能够适合干线网和城域网的不同需要,根据不同需要制定不同的光纤,更有效的促进了其传输质量和速度,使光纤通信技术得到了真正的提高和发展。 (三)实现波分复用系统 在我国的通信行业中,传统的手段是利用电分复用系统对信号进行传输,随着时代的进步,这种传统的方法已经不能适应人们的需求,逐渐的对电分复用系统进行取代,波分复用系统将会得到人们的广泛应用。虽然波分复用系统得到了应用,但还是存在很多的问题。在进行200纳米光纤进行宽带传输时,利用率会极其低,使用了波分复用系统能有效的解决此类问题的发生,它能将很多个不同的波长使用同一时间进行同时传输,这样就使传输的容量得到提高。实现波分复用系统的优点具体表现在以下几个方面:第一,波分复用能有效的对信号功率和徐律进行脱钩处理,使通信不再受到传统关节点的影响。第二,波分复用系统能和光纤进行配合使用,从而使光纤的传输效率得到很大的提高,增加了资源的利用率。第三,运用波分复用系统能够节省大量的光纤,同时也使通信所产生的成本得到了减少。 三、光纤通信技术的应用 (一)光纤通信技术在电力通信行业中的应用 电力通信主要是要实现电网的商业化、现代化和自动化,电力通信是安全系统和自动化系统进行稳定工作的基础和前提,电力通信能够实现电力市场的现代化管理和运营商业化,为电力市场提供了很多的技术保障和支持。光纤通信技术在电力通信领域有着很大的应用,起初只是提供了传统的管道、架空和地埋等技术方法,对普通的电缆进行铺设这样能使电信部门的光纤通信网络逐渐实现系统化。随着光纤技术的不断进步和发展,光纤通信能够实现信号的大容量传输且损耗非常小,根据这种特点被电力通信部门应用,并受到了业界的一直好评。 (二)光纤通信技术在智能交通领域的应用 交通管理在我国越来越受到重视,智能交通的目的就是将交通管理和运营等方面的工作进行信息化管理,其核心的内容则是信息采集、信息的传输和信息的处理,通过对信息的综合运用能使交通系统实现准确且高效的运输管理体制。在智能交通中应用光纤通信技术主要是实现收费联网和监控等各录像数据和信息的传递,使交通系统更加稳定的运行,为公路等交通的安全和通常奠定了基础,进一步促进

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

光纤通信课后习题参考答案邓大鹏

光纤通信课后习题答案 第一章习题参考答案 1、第一根光纤是什么时候出现的?其损耗是多少? 答:第一根光纤大约是1950年出现的。传输损耗高达1000dB/km 左右。 2、试述光纤通信系统的组成及各部分的关系。 答:光纤通信系统主要由光发送机、光纤光缆、中继器和光接收机组成。 系统中光发送机将电信号转换为光信号,并将生成的光信号注入光纤光缆,调制过的光信号经过光纤长途传输后送入光接收机,光接收机将光纤送来的光信号还原成原始的电信号,完成信号的传送。 中继器就是用于长途传输时延长光信号的传输距离。 3、光纤通信有哪些优缺点? 答:光纤通信具有容量大,损耗低、中继距离长,抗电磁干扰能力强,保密性能好,体积小、重量轻,节省有色金属和原材料等优点;但它也有抗拉强度低,连接困难,怕水等缺点。 第二章 光纤和光缆 1.光纤是由哪几部分组成的?各部分有何作用? 答:光纤是由折射率较高的纤芯、折射率较低的包层和外面的涂覆层组成的。纤芯和包层是为满足导光的要求;涂覆层的作用是保护光纤不受水汽的侵蚀和机械擦伤,同时增加光纤的柔韧性。 2.光纤是如何分类的?阶跃型光纤和渐变型光纤的折射率分布是如何表示的? 答:(1)按照截面上折射率分布的不同可以将光纤分为阶跃型光纤和渐变型光纤;按光纤中传输的模式数量,可以将光纤分为多模光纤和单模光纤;按光纤的工作波长可以将光纤分为短波长光纤、长波长光纤和超长波长光纤;按照ITU-T 关于光纤类型的建议,可以将光纤分为G.651光纤(渐变型多模光纤)、G .652光纤(常规单模光纤)、G .653光纤(色散位移光纤)、G.654光纤(截止波长光纤)和G.655(非零色散位移光纤)光纤;按套塑(二次涂覆层)可以将光纤分为松套光纤和紧套光纤。 (2)阶跃型光纤的折射率分布 () 2 1 ?? ?≥<=a r n a r n r n 渐变型光纤的折射率分布 () 2121? ????≥

浅谈光纤通信技术发展的以及前景

浅谈光纤通信技术发展的以及前景 作者:闫景超 引言:光纤通信技术的应用是一次世界性的改革,它把人类带上了信息的高速公路。光纤通信在信息传递方面起着主导作用,在将来的科学进步中,光纤通信会起着举足重轻的作用。 关键词:光纤通信应用前景 1.光纤通信概念 光纤通信是以光波为信息载体,通过光纤来传递的一种通信设施。因为它具有容量大,传输距离远,传输速度快,经济等特点,所以在当今被广泛应用。 2.光纤通信的特点 (1)光纤通信容量大;传输距离长;一根细细的光纤可以承载很多个光信息,而它的传输时以光速传播,并且损耗非常小。(2)由于光纤较细,质量轻,所以便于铺设和运输(3)光纤通信具有抗电磁干扰能力,传输信息不易丢失和失真。(4)信号串扰小、保密性能好;(5)光纤通信用材少,而且不污染环境(7)光缆适应性强,寿命比较长。 3.光纤通信的发展 光纤通信的发展史虽然只有二三十年,但由于它无比的优越性,使它成为了现代化通信网络中最为重要的传输媒介。 总体来说,光纤通信的发展大致分为4个阶段。 第一阶段(1966——1976年)是冲基础研究到商业应用的开发时期。这个时期中,出现了短波长(850nm)低速率(34或45Mb/s)多模光纤通信系统,无中继传输距离约为10km。 第二阶段(1976——1986年)是以提高传输速率和增加传输距离为研究目标的大力推广应用的大发展时期。在这个时期,光纤从多模发展到单模,工作波长从短波长(850nm)发展到长波长(1310nm和1550nm),实现了工作波长为1310nm,传输速率为140—565Mb/s的单模光纤通信系统,无中继传输距离为50到100km。 第三阶段(1986——1996年)是以超大容量超长距离为目标,全面深入开展新技术研究的事情。在这个时期,出现了1550nm色散位移单模光纤通信系统。采用外调制技术,传输速率可达2.5—10Gb/s,无中继传输距离可达100—150km,实验室可以达到更高水平。 第四阶段(1996年至今)是采用光放大器,波分复用光纤通信系统的超长距离的光弧子通信系统的时期。具体来讲国外的发展状况: 20世纪60年代中期,所研制的最好的光纤损耗在400dB以上 1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20dB/km以下 日本于1969年研制出第一根通信用光纤损耗为100dB/km 1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20dB/km和4dB/km的低损耗石英光纤1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。 到1979年,掺锗石英光纤在1.55μm处的损耗已经降到0.2dB/km,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限 国内光纤通信的发展: 1963年开始光通信的研究 1977年,第一根短波长(0.85mm)阶跃型石英光纤问世,损耗 为300dB/km 1978年,阶跃光纤的衰减降至5dB/km。研制出短波长多模梯 度光纤,即G.651光纤 1979年,研制出多模长波长光纤,衰减为1dB/km。建成5.7

现代光纤通信技术

第一章通信网技术概述 1.1概述 1.2通信设备 构成通信网的最基本的设备是用户端设备、传输链路设备和转接交换设备。 1.3广域网分类 1.4通信协议 1.4.1 协议 通常将网络分层结构以及各层协议的集合称为网络体系结构。比较著名的网络体系结构有国际标准化组织ISO(International for Standardization)提出的开放系统体系结构OSI(Open System Interconnection);美国国防部提出的传输控制协议TCP/IP;国际电信联盟提出的公共数据网X系列协议;IBM公司提出的系统网络体系结构SNA等。 1.4.2 标准化组织 1. 国际标准化组织ISO 2. 国际电信联盟-电信标准化部ITU-T(International Telecommunication Union) 一直负责制定电信网的标准系列。 3. 因特网工程任务组IETF(Internet Engineering Task Force) 负责研究因特网的体系结构以及新一代因特网标准规范的研究和制定 第二章数字通信技术 第三章光纤通信技术 3.1 光纤通信 3.1.1光纤通信的发展 3.1.2 光纤通信的特点 1. 传输频带宽,通信容量大。由信息理论知道,载波频率越高,通信容量就越大。 2. 损耗低。目前实用的光纤均为石英系光纤,要减小损耗,主要是靠提高玻璃纤维的纯度。 3. 在运用频带内,光线对每一频率成分的损耗几乎一样。因此,系统中才去的均衡措施比传统的电信系统简单,甚至可以不必采用。 4. 光纤内传播的光能几乎不辐射,因此很难被窃听,也不会造成统一光缆中各光纤之间串扰 5. 不受电磁干扰。因为光纤是非金属的介质材料。 6. 线径细、重量轻,便于敷设。 7. 资源丰富。制作玻璃光纤的原料是适应,其来源十分丰富。 3.1.3 通信系统中主要技术指标 1.分贝dB 分贝dB 是以常用对数表示的两个电压或两个功率之比的一种计量单位。

浅谈光纤通信技术的发展现状

浅谈光纤通信技术的发展现状 发表时间:2017-05-05T14:59:34.220Z 来源:《基层建设》2017年3期作者:刘创李雄彬[导读] 本文分析光纤通信技术特性,分析光纤通信技术的应用,从而提出光纤通信技术的发展方向。 广东海格怡创科技有限公司 510000 摘要:随着科学技术的不断发展,通信技术的重大变革,由于互联网时代的到来,电商企业逐渐增多,国民经济的发展受到光线通信技术的影响。光纤通信传输信息过程中具有速度快,距离长、信息容量大、损耗低、超强抗电磁干扰能力和高保密性等优点,被广泛应用到通信、军队、医学等各个领域。本文分析光纤通信技术特性,分析光纤通信技术的应用,从而提出光纤通信技术的发展方向。 关键词:光纤通信;传输;信号光纤通信技术是现代通信行业先进技术的代表,成为了通信行业业务最广泛的技术形式。光纤技术在社会推广以来,不仅给人们的日常生活创造带来了许多方便,对企业的正常通信运用也给予了很大的帮助。随着我国科技研究水平的提升,对于光纤技术的改革发展有了更深刻的认识,需要我们从客观的角度去认识这一技术革新趋势。 一、光纤通信技术的特点 1、频带极宽,通信容量大 光纤通信技术当中作为传输介质的光纤比导波管或者同轴电缆损耗要低很多;光纤传输带宽比电缆或者铜线大很多;光纤通信容量比微波通信容量大几十倍。由于设备端的限制,单波长光纤通信系统带宽大的优势往往得不到充分的发挥,解决这个问题需要通过技术手段来增加传输的容量,用密集波复用技术来解决。其他传输介质不能达成的传输距离远、容量大的特点,恰恰就是光纤通信技术最大的特点和优势所在。 2、损耗低,能够有效地减少施工成本 各行各业的经济运行过程,都需要考虑到降低成本,达到效益的最大化,通信行业也一样。目前,相比较其他传输介质商品石英光纤的损耗是最低的,在理论上想要将传输损耗降到更低,未来可以采用非石英极低损耗传输介质。系统施工成本可以通过光纤通信系统得到减少,已达成更高的经济效益。由于制作光纤的主要材料是玻璃材料,玻璃材料是电气绝缘体,因此不用担心接地回路。 3、抗电磁干扰能力强 石英绝缘性好,并且具有很强的抗腐蚀性,同时抗电磁干扰能力也很强,基本上不受认为假设电缆的干扰,也不受其他外部环境影响。石英材料的这一特点在军事上用途很广泛,在强电领域的通讯应用作用也特别大。 4、无串音干扰,保密性好 电磁波在电波传输过程中保密性差,容易泄露;光波在光纤中的传播则保密性强得多,而且不易发生串扰现象。光纤同时具有柔软、径细、易铺设、重量轻、成本低、原材料资源丰富、寿命长、温度稳定性好等诸多优点,世界上各个国家喜欢使用光纤来发展通信产业,其主要原因也在于此。 5、光纤芯细、占据空间小,防窃听 光波在光纤中传输,信息不会因为光信号泄露二被人窃听。另外,光纤芯很细,多芯组成光缆的直径也很小,传输系统使用光缆作为传输通道所占空间小,地下管道拥挤的问题得到了有效解决。 二、光纤通信技术的应用 1、光纤通信技术在电力通信领域的应用。 我国光纤通信产业发展极其迅速,我国许多地区的电力系统都在建设专用的电力通信网络,实现电力专用通信网从主干线到接入网向光纤的过渡以及光纤通信网的电力传输,将光纤通信技术引入到电力系统中,是一项重要举措。光纤通信为电力系统的运行提供了可靠保障,光纤通信网的不断扩大和完善,将为人们的生活带来更多的便利。 2、光纤通信技术在广电行业的应用 光纤通信技术在广播电视网中发挥重要作用,如今已经形成了以光纤网络为基础的网建。现有的有线电视网络经过改造之后能够实现多媒体的传输,在广电领域中,光纤是信号传输的载体,对信号进行可靠的传输,通过光纤可以导出优质的音频和视频。光纤传输系统具有传输频带极宽,通信容量很大,衰减低,串扰小,抗干扰能力强的特点,不会影响信号质量;不会像卫星传送那样接收时信号延时较大,而且容易受干扰。这也是广电领域普遍愿意采用光纤通信的原因之一。此外,用户开可以通过广播电视网来访问互联网,提高了网络利用率。 3、光纤通信技术在军事领域中的应用 如今的军事武器要依靠信息技术的支持,与卫星通信或微波通信相比,光纤通信容量大,抗干扰、保密性好,而且可以实现一条光缆数据多路传输,数据传输量大,适用于军事通信、抵抗敌方破坏、军事战术以及空中通讯等。军事装备上可以利用光纤通讯技术进行信息的传递,如今世界各国都在加强光纤通信技术在军事装备中的应用。 4、光纤通信在电信干线传输网中的应用 光纤通信技术在通信行业中的引入为通信事业的发展和进步做出了重要贡献,光纤通信系统以其特有的优势,已经成为通信方式的首选通讯系统。光纤通信网络能够满足各种形式的通信要求,目前在我国电信干线中传输网络建设中已经得到了广泛应用,促进了我国经济的发展,提高了人们的生活水平,未来的电信干线传输网必将覆盖全国。 三、光纤通信技术的趋势 在社会技术变革调整环境下,我国的光纤通信技术也会出现更快的发展,这些对于新时期的通信行业都是一大促进。光纤通信技术在未来时期的发展中,主要存在以下趋势: 1、大容量 随着电力光纤材料的更新优化,很多先进的光纤技术和设备都得到了更新。而新一代的光纤材料引进也促进了交叉容量的扩大,当前的容量最大可超过80G,这就满足了高数据的信息传输需求。光纤通信技术中容量增大,可显著提高系统运行的效率。 2、智能化

光纤通信课后第2章习题答案

光纤通信课后第2章习题答案

第2章 复习思考题 参考答案 2-1 用光线光学方法简述多模光纤导光原理 答:现以渐变多模光纤为例,说明多模光纤传光的原理。我们可把这种光纤看做由折射率恒定不变的许多同轴圆柱薄层n a 、n b 和n c 等组成,如图 2.1.2(a )所示,而且 >>>c b a n n n 。使光线1的入射角θA 正好等于折射率为n a 的a 层和折射率为n b 的b 层的交界面A 点发生全反射时临界角()a b c arcsin )ab (n n =θ,然后到达光纤轴线上的O'点。而光线2的入射角θB 却小于在a 层和b 层交界面B 点处的临界角θc (ab),因此不能发生全反射,而光线2以折射角θB ' 折射进入b 层。如果n b 适当且小于n a ,光线2就可以到达b 和c 界面的B'点,它正好在A 点的上方(OO'线的中点)。假如选择n c 适当且比n b 小,使光线2在B '发生全反射,即θB ' >θC (bc) = arcsin(n c /n b )。于是通过适当地选择n a 、n b 和n c ,就可以确保光线1和2通过O'。那么,它们是否同时到达O'呢?由于n a >n b ,所以光线2在b 层要比光线1在a 层传输得快,尽管它传输得路经比较长,也能够赶上光线1,所以几乎同时到达O'点。这种渐变多模光纤的传光原理,相当于在这种波导中有许多按一定的规律排列着的自聚焦透镜,把光线局限在波导中传输,如图2.1.1(b )所示。

图2.1.2 渐变(GI)多模光纤减小模间色散的原理 2-2 作为信息传输波导,实用光纤有哪两种基本类型 答:作为信息传输波导,实用光纤有两种基本类型,即多模光纤和单模光纤。当光纤的芯径很小时,光纤只允许与光纤轴线一致的光线通过,即只允许通过一个基模。只能传播一个模式的光纤称为单模光纤。用导波理论解释单模光纤传输的条件是,当归一化波导参数(也叫归一化芯径) V时,只有一种模式,即基模01LP(即零次模,.2 405 N= 0)通过光纤芯传输,这种只允许基模01LP传输的光纤称为单模光纤。 2-3 什么叫多模光纤?什么叫单模光纤 答:传播数百到上千个模式的光纤称为多模(MultiMode,MM)光纤。 2-4 光纤传输电磁波的条件有哪两个 答:光纤传输电磁波的条件除满足光线在纤芯和包层界面上的全反射条件外,还需满足传输过程中的相干加强条件。

浅谈现代光纤通信传输技术的应用

龙源期刊网 https://www.360docs.net/doc/0315093336.html, 浅谈现代光纤通信传输技术的应用 作者:杨华宇 来源:《数字技术与应用》2019年第06期 摘要:本文探讨了现代光纤通信传输技术的特点,分析了光纤通信技术的应用现状,研究了现代光纤通信传输技术的应用。 关键词:光纤通信传输技术;实际应用;信号传输 中图分类号:TN929.11 文献标识码:A 文章编号:1007-9416(2019)06-0043-02 1 现代光纤通信传输技术的特点 1.1 通信传输容量较大 光纤通信技术是以光波为媒介的通信传输方式,光波的电磁波比正常的无线电波的频率高,但是波长低于无线电波的波长。从中可以看出,光纤传输技术的传输频带十分的宽,这样的带宽提高了通信过程中传送数据的能力,在一定的单位时间内,传输信息数据的人员借助光纤通信技术能够传输大容量的数据。它不仅仅具有通信传输数据容量大的特点,而且其通信传输速度非常快。 1.2 节省传输成本 目前,光纤通信传输使用的材料是石英,石英比其他的通信传输介质相比,是目前损耗最低的材料,开展跨度较大的距离中继传输时,能够较少石英材料的消耗,节省整体通信系统的建设投资。其次,在光纤的建设过程中,光纤的线芯径十分的细,大约为零点一毫米,直径也很小,如此能够节省大量的金属材料,建设设计光纤时所占用的传输空间较小。另外,光纤自身的重量非常轻,比正常的电缆要轻上好几倍,质地柔软,原材料的建设成本较低。使用光纤通信传输技术能够大大地节省了建设成本,具有经济性。 1.3 抗干扰力强,保密性较强 由于光纤是绝缘性材料,所以在通信信息传输过程中不会受到外界的干扰,而致使通信数据受损,光纤通信传输技术的数据保护性强,具有很强的抗干扰力。另外,光纤通信传输的信息数据在传输过程处于光缆之中,光缆的芯径十分地细,即便通信信息传输遇到转弯处,泄露的通信信息光波也非常地微弱,难以被人截取信号,信息几乎不可能从光纤中泄漏出去。即便是泄露了信号光波,也会被光纤表面的不透明的包皮包裹着,而致使外面的人接收不到光波信号。而且,光纤在进行传输信号的过程中,不论是存在多少的光纤,也可实现无串音干扰,这保证了光纤通信传输技术使用时通信信息的高度保密性。

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

光纤通信技术特点和发展

光纤通信技术的特点和发展趋势 摘要:光纤通信是指利用光与光纤传递信息的一种方式,光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,既有经济优势又有技术优势,光纤通信由于超高速、低误码、高可靠,价格低廉,已成为信息的最重要传输手段和信息社会的重要基础设施。本文探讨光纤通信技术的优点和缺点以及光纤通信的发展和现状。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

关键词:光纤通信技术特点现状发展趋势 1、光纤通信技术 2、 光纤通信是利用光导纤维传输光信号,以实现信息传递的一种通信方式,属于有线通信的一种,光经过调变后便能携带信息,利用光波作载体,以光纤作为传输媒介,将信息从一处传至另一处,是光信息科学与技术的研究与应用领域。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层成为包层,包层的作用是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路,光波在光纤中传输,不会发生信息传播中的信息泄露现象,光纤很细,占用的体积小,这解决了实施的空间问题。光纤通信系统的组成,现代的光纤通信系统多半包括一个发射器,将电信号转换成光信号,再通过光纤将光信号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光信号转换回电信号。在光纤通信系统中传递的多半是数位信号,来源包括计算机、电话系统,或是有线电

光纤通信课后答案

第一章基本理论 1、阶跃型折射率光纤的单模传输原理是什么答:当归一化频率V小于二阶模LP11归一化截止频率,即0<V<时,此时管线中只有一种传输模式,即单模传输。 2、管线的损耗和色散对光纤通信系统有哪些影响答:在光纤通信系统中,光纤损耗是限制无中继通信距离的重要因素之一,在很大程度上决定着传输系统的中继距离;光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。 3、光纤中有哪几种色散解释其含义。答:(1)模式色散:在多模光纤中存在许多传输模式,不同模式沿光纤轴向的传输速度也不同,到达接收端所用的时间不同,而产生了模式色散。(2)材料色散:由于光纤材料的折射率是波长的非线性函数,从而使光的传输速度随波长的变化而变化,由此引起的色散称为材料色散。(3)波导色散:统一模式的相位常数随波长而变化,即群速度随波长而变化,由此引起的色散称为波导色散。 5、光纤非线性效应对光纤通信系统有什么影响答:光纤中的非线性效应对于光纤通信系统有正反两方面的作用,一方面可引起传输信号的附加损耗,波分复用系统中信道之间的串话以及信号载波的移动等,另一方面又可以被利用来开发如放大器、调制器等新型器件。 6、单模光纤有哪几类答:单模光纤分为四类:非色散位移单模光纤、色散位移单模光纤、截止波长位移单模光纤、非零色散位移单模光纤。 12、光缆由哪几部分组成答:加强件、缆芯、外护层。 *、光纤优点:巨大带宽(200THz)、传输损耗小、体积小重量轻、抗电磁干扰、节约金属。*、光纤损耗:光纤对光波产生的衰减作用。 引起光纤损耗的因素:本征损耗、制造损耗、附加损耗。 *、光纤色散:由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,不同频率成分和不同模式成分的传输速度不同,导致信号的畸变。 引起光纤色散的因素:光信号不是单色光、光纤对于光信号的色散作用。 色散种类:模式色散(同波长不同模式)、材料色散(折射率)、波导色散(同模式,相位常数)。 *、单模光纤:指在给定的工作波长上只传输单一基模的光纤。

光纤通信技术发展历程、特点及现状

本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 2008级 姓 名 王震 论文题目 光纤通信技术发展历程、特点及现状 指导教师 张新伟 职称 讲师 成 绩 2012年1月10日 学号:

目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70

光纤通信系统的原理与分析

光纤通信论文 光纤通信论文 光纤通信系统工程设计 摘要 根据课堂所学内容的原理,这次我们设计的任务是34MB/S光纤通信系统工程,具体设计是从实训楼D339到数学A楼弱电间之间开通一套34MB光纤系统。 要求设计当中要选择合适的路线,并计算总长度以及光纤的长度、光纤的使用芯数,而且要选择合适的光纤、光缆和光端机。并写出具体的实施及方案、工程造价、光通路保护、光端机安装后的系统调测,并说明如何对工程施工质量进行控制。 目录 前言 (1) 第1章概论 (2) 1.1 光纤通信发展的历史 (2) 1.2光纤通信发展的现状 (2) 1.3光纤通信的发展趁势 (3) 第2章光通信系统 (5) 2.1 光纤的介绍 (5) 2.1.1光纤概念 (5) 2.1.2光纤传输原理分析 (5) 2.1.3光纤的传输特性 (5)

2.1.4光纤的型号介绍 (7) 2.2光缆的介绍 (8) 2.2.1光缆历史 (8) 2.2.2光缆的种类 (8) 2.2.3光缆网是信息高速路的基石 (9) 2.3光端机的介绍 (9) 2.3.1模拟光端机 (10) 2.3.2数字光端机 (10) 2.4光纤通信的介绍 (11) 2.5光纤通信技术与产业发展中几个值得思考的问题 (11) 2.5.1积极创新开发具有自主知识产权的新技术 (12) 2.5.2开发具有先进技术水平、与使用环境、施工技术相配套的新产品 (12) 第3章材料选择 (13) 3.1距离测量 (13) 3.2光纤、光缆选择 (13) 3.3光端机选择 (14) 第4章具体的实施及方案 (17) 4.1光缆线路的施工程序 (17) 4.2光缆的直埋敷设 (18) 4.3 用光纤将发送与接收连接 (18) 第5章光通路保护 (19) 第6章光端机安装后的系统调测 (21) 6.1光发送机参数测试 (21)

浅论光纤通信技术的特点和发展趋势

浅论光纤通信技术的特点和发展趋势 发表时间:2010-07-23T15:57:01.873Z 来源:《中小企业管理与科技》2010年3月上旬刊供稿作者:何召舜 [导读] 频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。 何召舜(中铁七局电务公司) 摘要:光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。本文探讨了光纤通信技术的主要特征及发展趋势,和它以光纤链路为基础的现场测试。关键词:光纤通信技术特点发展趋势光纤链路现场测试 1 光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。 2 光纤通信技术的特点 2.1 频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。 2.2 损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。 2.3 抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。 2.4 无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。 3 不断发展的光纤通信技术 3.1 SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。 3.2 不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。 3.3 光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。 3.4 向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。 3.5 互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。 综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。 4 光纤链路的现场测试 4.1 现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。 4.2 现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。 4.3 光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。 4.4 现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信

相关文档
最新文档