备自投保护工作的原理

备自投保护工作的原理
备自投保护工作的原理

备自投保护工作的原理

一、备自投保护工作的原理

A、进线备自投及自恢复原理

进线1为本说明中的主回路来安变AH1柜,进线2为本说明中马2线AH10柜。以下按照进线1和进线2作说明。

1、进线备自投:(进线1合位,进线2分位)

备自投充电的条件如下(只有备自投充电完成后备自投才能动作)

a、进线1电源正常,且开关在合位;

b、进线2开关分位;

c、备自投检测到进线1合位信号(常开接点接入开入量3);

d、备自投检没有测到进线2合位信号(常开接点接入开入量4);

e、备自投没有被闭锁(入开入量7没有信号接入);

满足以上五个条件时,备自投充电15秒后充电完成,保护液晶屏上显示“充电1”,;当母线失压时,则延时跳开进线1开关,经延时后合上进线2开关。

2、自恢复:(进线1分位,进线2合位)

自恢复的条件是:

a、进线1开关分位;

b、进线2开关合位;

c、备自投没有检测到进线1合位信号(常开接点接入开入量3);

d、备自投检测到进线2合位信号(常开接点接入开入量4);

满足以上四个条件后,当进线1恢复有压时,“自恢复”动作,则

延时后跳开进线2开关,经延时后合上进线1开关。

本次工厂停电时的系统工作状态正好符合系统自恢复工作条件,导致本次停电事件的发生。

二、其他情况

1、停电后,公司设备管理人员对设备进行了几次手动操作实验,发现手动分进线1开关,备自投自动合进线2开关。

针对手动操作时,备自投出现合进线2开关的情况,我部门仔细询问了综保生产厂家技术支持后得知,本综保出厂参数在调试过程中有改动,定值中的“合断路器延时”1S改为了0秒,造成备自投对“手动操作”与“自投发出分闸信号”无法加以判断。在此也表述一下手动操作的判断逻辑,具体如下:

手动操作判断逻辑:-----手动分进线1开关-----进线1开关状态信号转换-----开入量由合到分-----备自投装置延时(0.5~1S)判断-----进线1开关状态信号转换时间是否在备自投发出分闸信号前-----是-----备自投不充电------程序运行终止-----不发出合进线2信号。

回路故障动作判断逻辑:----回路故障----进线柜保护综保发出分进线断路器信号-------进线开关状态信号转换-----开入量由合到分-----备自投装置延时(0.5~1S)判断-----进线开关状态信号转换时间是否在备自投发出分闸信号前-----是-----备自投不充电------程序运行终止-----不发出合另一进线命令信号。

从以上“手动操作”和“回路故障动”逻辑很清楚可以看出,备自投装置延时(0.5~1S)判断这个值很关键,如果没有这个判断时间节点,

设置延时时间为“0”,后装置根本无法判断任何开关动作是否为手动操作、故障跳闸还是备自投装置本身动作。所以出现上述现象。

三、事故防范改进措施

1、低压侧对重要负荷增设自备发电机,采用0间隙时间双电源切换装置。保证重要负荷的持续运行。

2、备自投装置取消自恢复功能,保证在任何一路正常供电的情况下,不会出现自恢复切换。

以上2点均是在有计划停电条件下才能保证供电持续运行,缺少这一必要条件任何防范改进措施都不成立。

四、备自投工作的原理

进线备自投(互为备用)

3、进线备自投:(进线1合位,进线2分位)

备自投充电的条件如下(只有备自投充电完成后备自投才能动作)

a、进线1电源正常,且开关在合位;

b、进线2开关分位;

c、备自投检测到进线1合位信号(常开接点接入开入量3);

d、备自投检没有测到进线2合位信号(常开接点接入开入量4);

e、备自投没有被闭锁(入开入量7没有信号接入);

f、进线2有压(选择检进线电压“投”;如选择检进线电压“退”

则无此条件)

g、母线失压

满足以上7个条件时,备自投充电15秒后充电完成,保护液晶屏

上显示“充电1”,当母线失压时,则延时跳开进线1开关,经延时后合上进线2开关。

备自投工作原理

微机备自投装置的基本原理及应用 本文介绍了微机线路备自投保护装置特性和应用中的供电方式,阐述其应用于母联备自投工作和线路备自投的工作原理及备自投保护装置运行条件及动作条件。 备自投保护供电方式技术条件 1.引言 随着我国人民生产生活的现代化程度日益提高,人们对电力的需求和依赖程度也在倍增,对电能质量的要求也更加严格,供配电在各个领域也不断向自动化、无人值守、远程控制、不间断供电的目标迈进。有些电力用户尤其对不间断供电的要求显得更加突出。我国的电力供应主要还是依靠国家电网供电,电力缺口也在不断增大,尤其在用电高峰期缺电现象严重,为此很多大型企业便自建电厂或配备发电机,因此各种电源的相互切换,保证电源的不间断供电和供电的高可靠性成了现代配电工程中保护和控制回路的重要部分。在GB50062 《电力装置的继电保护和自动装置设计规范》中的第十一章也明确规定了备用电源和备用设备的自动投入的具体要求。 微机线路备自投保护装置使系统自动装置与继电保护装置相结合,是一种对用户提供不间断供电的经济而又有效的技术措施,它在现代供电系统中得到了广泛的应用。在此只对微机线路备自投保护装置在电力系统中两种备自投方式和基本原理进行探讨。

微机线路备自投保护装置(以下简称备自投)核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。装置采用交流不间断采样方式采集到信号后实时进行傅立叶法计算,能精确判断电源状态,并实施延时切换电源。备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,其有可靠的软硬件看门狗功能和事件记录功能。 产品在不同的电压等级如110kV、10kV、0.4kV系统的供配电回路中使用时需要设定不同的电气参数,在订货时必须注明。在选择备自投功能时则一定不可以投入低电压保护,以免冲突引起拒动或误动。 变配电站备自投有两种基本的供电方式。第一种如图1所示母联分段供电方式,母联开关断开,两个工作电源分别供电,两个电源互为备用,此方式称为母联备自投方式。第二种如图2所示双进线向单母线供电方式,即由一个工作电源供电,另一个电源为备用,此方式称为线路备自投方式。

备自投保护工作的原理

备自投保护工作的原理 一、备自投保护工作的原理 A、进线备自投及自恢复原理 进线1为本说明中的主回路来安变AH1柜,进线2为本说明中马2线AH10柜。以下按照进线1和进线2作说明。 1、进线备自投:(进线1合位,进线2分位) 备自投充电的条件如下(只有备自投充电完成后备自投才能动作) a、进线1电源正常,且开关在合位; b、进线2开关分位; c、备自投检测到进线1合位信号(常开接点接入开入量3); d、备自投检没有测到进线2合位信号(常开接点接入开入量4); e、备自投没有被闭锁(入开入量7没有信号接入); 满足以上五个条件时,备自投充电15秒后充电完成,保护液晶屏上显示“充电1”,;当母线失压时,则延时跳开进线1开关,经延时后合上进线2开关。 2、自恢复:(进线1分位,进线2合位) 自恢复的条件是: a、进线1开关分位; b、进线2开关合位; c、备自投没有检测到进线1合位信号(常开接点接入开入量3); d、备自投检测到进线2合位信号(常开接点接入开入量4); 满足以上四个条件后,当进线1恢复有压时,“自恢复”动作,则

延时后跳开进线2开关,经延时后合上进线1开关。 本次工厂停电时的系统工作状态正好符合系统自恢复工作条件,导致本次停电事件的发生。 二、其他情况 1、停电后,公司设备管理人员对设备进行了几次手动操作实验,发现手动分进线1开关,备自投自动合进线2开关。 针对手动操作时,备自投出现合进线2开关的情况,我部门仔细询问了综保生产厂家技术支持后得知,本综保出厂参数在调试过程中有改动,定值中的“合断路器延时”1S改为了0秒,造成备自投对“手动操作”与“自投发出分闸信号”无法加以判断。在此也表述一下手动操作的判断逻辑,具体如下: 手动操作判断逻辑:-----手动分进线1开关-----进线1开关状态信号转换-----开入量由合到分-----备自投装置延时(0.5~1S)判断-----进线1开关状态信号转换时间是否在备自投发出分闸信号前-----是-----备自投不充电------程序运行终止-----不发出合进线2信号。 回路故障动作判断逻辑:----回路故障----进线柜保护综保发出分进线断路器信号-------进线开关状态信号转换-----开入量由合到分-----备自投装置延时(0.5~1S)判断-----进线开关状态信号转换时间是否在备自投发出分闸信号前-----是-----备自投不充电------程序运行终止-----不发出合另一进线命令信号。 从以上“手动操作”和“回路故障动”逻辑很清楚可以看出,备自投装置延时(0.5~1S)判断这个值很关键,如果没有这个判断时间节点,

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

母线差动保护的工作原理和保护范围

母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些

必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出 “在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

电力备自投装置原理

《备自投装置》 备自投装置由主变备自投、母联备自投和进线备自投组成。 ①若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。 ②若正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。 ③若正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。 一、#2主变备自投 #1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。

1、充电条件:a. 66千伏Ⅰ母、Ⅱ母均三相有压; b. 2DL、5DL在合位,4DL在分位; c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。以上条件均满足,经备自投充电时间后充电完成。 2、放电条件:a.#2主变检修状态投入; b.4DL在合位; c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电; d.手跳2DL或5DL; e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压; f.其它外部闭锁信号(主变过流保护动作、母差保护动作); g.2DL、4DL位置异常; h.I母或II母TV异常,经10s延时放电; i.#1主变拒跳; j.#2主变自投动作; k.主变互投硬压板退出; l.主变互投软压板退出。 上述任一条件满足立即放电。 3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变低压侧无流,延时跳开#1变高、低压侧开关1DL和2DL,联切低压侧小电源线路。确认2DL跳开后,经延时合上#2变高压侧开关3DL,再经延时合#2变低压侧开4DL。

电力系统备自投的原理说明

电力系统备自投的原理说明 九十年代初期,厂用电系统的综合保护逐步受到重视,在一些工程中使用了进口的电动机综合保护装置。后来国内一些厂家仿进口装置开发了模拟式电动机综合保护装置,但普遍存在着零漂影响大,误动作多等缺点,到目前为止微机型厂用电系统综合保护装置已普遍取代了过去传统的继电器和模拟式装置。 随着计算机技术的不断发展,控制现场对控制装置的自动化水平要求越来越高。现场DCS的普遍应用,使得将保护、控制、测量及通讯功能集于一体成为可能,且为现场所急需。为了适应现场的需要,我们在MPW-1、2系列厂用电系统微机综合保护装置的基础上进行了极大的改进与发展,开发出集保护、控制、测量及通讯功能于一体的第三代微机型厂用电系统综合保护及控制装置。 MPW-4系列厂用电系统综合保护及控制装置应用先进的保护原理,软、硬件采用模块化体系结构和高抗干扰设计,操作简单、实用,运行可靠。产品包括电动机综合保护及控制装置、电动机差动保护、低压变压器综合保护及控制装置、线路综合保护及控制装置、分支综合保护及控制装置、备用电源自投装置及SC-9000保护通讯控制器(电气工程师站),适用于电力、石油、化工、冶金、煤炭等领域的保护、控制及综合自动化系统。 MPW-4系列装置具有如下特点:

1.采用高性能的高速DSP(TMS320DSP243)单片数字信号处理控制器作为主控单元。 2.采用高速14位AD,极大提高测量精度。保护通道误差小于0.5%,时间误差小于20ms。量测通道误差小于0.2%。 3.用大容量串行EEPROM存放保护定值、运行参数、统计值、事件记录及故障记录,保证数据安全可靠。 4.采用全交流采样,软件数字滤波,彻底消除了硬件电路零漂的影响。 5.全中文液晶显示,操作界面直观简便。 6.装置具有完善的自检功能;三级Watchdog及电源监视功能,保证装置可靠运行。 7.所有定值和参数均可在面板上直接操作或通过网络在电气工程师站操作。 8.具有故障录波及电动机启动过程自动录波功能,可记录出口动作时刻的运行参数及电机启动过程的电流最大值,实现故障波形及启动过程波形的再现。 9.独有电动机自启动过程的自动识别功能,可有效防止电动机自启动过程的保护误动。 10.电动机保护(综合保护及差动保护)的定值,采用启动过程的定值与正常运行时的定值独立设置的方式,既可以保证启动时不误动,

备自投原理

主所33KV自投原理 批准: 审核: 初核: 编制: 广州地铁四号线供变电 2012年02月

主要内容 1、什么是备用电源自动投入装置? 2、备自投装置应满足哪些基本要求? 3、分段自投原理。 4、备用电源自动投入条件。 5、运行中应注意的几个问题。 一.什么是备用电源自动投入装置? 备用电源自动投入装置是当工作电源因故障断开以后,能自动而迅速地将备用电源投入到工作或将用户切换到备用电源上去,从而使用户不至于被停电的一种自动装置,简称备自投装置。 二、备自投装置应满足哪些基本要求? 1、工作电源断开后,备用电源才能投入; 2、备自投装置投入备用电源断路器必须经过延时,延时时限应大于最长的外部故障切除时间. 3、在手动跳开工作电源时,备自投不应动作。 4、应具备闭锁备自投装置的逻辑功能,以防止备用电源投到故障的元件上,造成事故扩大的严重后果。 5、备用电源无压时,BZT不应动作; 6、BZT在电压互感器(PT)二次熔断器熔断时不应误动,故应设置PT短线告警; 7、BZT只能动作一次,防止系统受到多次冲击而扩大事故; 三、备自投原理 备自投的主要形式有: 桥备投、分段备投、母联备投、线路备投、变压器备投。

单母线分段 1、备自投的主要形式有: (1)若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用进线(变压器)备自投;若正常运行时,两段母线分列运行,每台主变各带一段母线,两段母线互为暗备用,采用分段备自投。 (2)若正常运行时,一条进线带两段母线并列运行,另一条进线作为明备用。采用进线备自投;若正常运行时,每条进线各带一段母线,两条进线互为暗备用,采用分段备自投。 2、模拟量输入 外部电流及电压输入经隔离互感器隔离变换后,由低通滤波器输入模数变换器。

什么是差动保护

差动保护 [1]电流差动保护是中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是和电流的之间的角加上180度,就是反相功率,而不是逆相序。 差动保护是根据“电路中流入电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧跳开,使故障设备断开电源。 差动保护原理 差动保护 差动保护是利用电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动不动作。当时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于,差动继电器动作。 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、差动保护等等。 变压器差动保护是防止变压器内部故障的主保护。其接线方式,按原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。 如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大于,保护动作断路器跳闸。 技术参数 1.环境条件 正常温度: -10℃~55℃ 极限温度: -30℃~70℃ 存储温度: -40℃~85℃ 相对湿度:≤95%,不凝露 大气压力: 80~110kPa 2.工作电源 电压范围: 85~265V(AC或DC) 正常功耗:<10W 最大功耗:<20W 电源跌落:200ms 上电冲击:4A 隔离耐压:3kV

NSR641R备自投保护测控装置(v1.59)

NSR640R备自投保护测控装置 1 (NSR646R交流插件的电压直接引自380V系统,其程序不独立发布,在NSR641R中,通过定值整定系统参数中的PT二次额定值的整定来选择,整定为380V则选择了NSR646R软件功能)

2 一次系统示意图 如上图方式的系统主接线,装置引入两段母线电压(Uab1、Ubc1、Uca1、Uab2、Ubc2、Uca2),用于备自投逻辑的母线有压、无压判别。引入两段进线电压(Ux1、Ux2)用于备投逻辑的备用进线有压、无压的判别,可引入进线的任意相或线电压,装置自适应判断;用控制字选择备投逻辑是否要判进线电压。每路进线各引入一相电流(Ix1、Ix2),用于备投动作时无流判据的判别。 装置引入1DL 、2DL 开关位置的合位(HWJ )及合后接点,3DL 开关位置的跳位(TWJ )及合后接点,用于系统运行方式判别,备自投充电逻辑及备自投的动作。 3 软件逻辑框图 3.1 进线2备自投逻辑框图 1母有压 2母有压1DL合位3DL跳位UX2有压 1UCB 1UAB 、2 UCB 2UAB 、

1母无压 2母无压 UX2有压CD=1开放BZT 1x I I <1母有压2母无压UX2有压CD=13DL跳位3DL合后开放BZT I 3.2 进线1备自投逻辑框图 1母有压 2母有压2DL合位3DL跳位UX1有压

1母无压 2母无压 UX1有压CD=1开放BZT 2x I I <1母无压2母有压UX1有压CD=13DL跳位3DL合后开放BZT 3.3 分段备自投逻辑框图 1)备自投方式3

开放BZT 1x I I

继电保护--备自投的几种方式

1、基本备投方式: 变压器备自投方式 桥备自投方式 分段备自投方式 进线备自投方式 2、备用电源自动投入的基本原理 备用电源自动投入(以下简称备自投)装置一次接线方式较多,但备自投原理比较简单。下面介绍几种变电站中典型的备自投方式原理。对更复杂的备自投方式,都可以看成是这些典型方式的组合。 投入备自投充电过程时:装置上电后,15秒内均满足所有正常运行条件,则备自投充电完毕,备自投功能投入,可以进行启动和动作过程判断;当满足任一退出条件时,备自投立即放电,备自投功能退出。 退出备自投充电过程时:装置上电后,满足启动条件后备自投进行动作过程判断。在正常运行条件或退出条件下,备自投可靠不动作。 2.1、分段备自投 分段备自投接线示意图 a)正常运行条件 1)分段断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置 2)母线均有电压 3)备自投投入开关处于投入位置 b)启动条件 1)II段备用I段:I段母线无压,1DL进线1无流,II段母线有压 2)I段备用II段:II段母线无压,2DL进线2无流,I段母线有压 c)动作过程 1)对启动条件1: 若1DL处于合位置,则经延时跳开1DL,确认跳开后合上3DL 若1DL处于分位置,则经延时合上3DL 2)对启动条件2: 若2DL处于合位置,则经延时跳开2DL,确认跳开后合上3DL 若2DL处于分位置,则经延时合上3DL d)退出条件

1)3DL处于合位置 2)备自投一次动作完毕 3)有备自投闭锁输入信号 4)备自投投入开关处于退出位置 2.2 桥备自投 桥备自接线投示意图 a)正常运行条件 1)桥断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置 2)进线1、进线2均有电压 3)备自投投入开关处于投入位置 b)启动条件 1)进线2有电压,进线1无电压且无电流 2)进线1有电压,进线2无电压且无电 c)动作过程 1)对启动条件1 若1DL处于合位置,则经过延时跳开1DL,确认跳开后,合上3DL 若1DL处于分位置,则经延时后合上3DL 2)对启动条件2 若2DL处于合位置,则经过延时跳开2DL,确认跳开后,合上3DL 若2DL处于分位置,则经延时后合上3DL d)退出条件 1)3DL处于合位置 2)备自投一次动作完毕 3)有备自投闭锁输入信号 4)备自投投入开关处于退出位置 2.3 变压器备自投 变压器备自投接线示意图(一台变压器为主变压器,另一台变压器为辅变压器)a)正常运行条件 1)主变压器各侧断路器处于合位置,辅变压器各侧断路器处于分位置

差动保护原理

前提是变压器为常见的星星三角接线,点数11. 所谓差流平衡,就是当正常运行或主变区外故障时的状态,装置感受到的变压器两侧电流方向相反,大小相等。这里暂且称装置感受到用来计算差流的量为装置量。 先计算1202的平衡系数。方法如下: 高压侧:PH高=变压器绕组星形接线1/√3 中压侧:PM中=变压器绕组星形接线Mct*Mdy/(Hct*Hdy*√3) 低压侧:PL低=变压器绕组角形接线Lct*Ldy/(Hct*Hdy) 装置量=输入值*平衡系数 例:CT变比H:1200/5 M:1200/5 L:2000/5 PT变比H:230/100 M:115/100 L:37.5/100 变压器星星角接线,CT二次星星星接线 可计算得Ph高,Ph中和Ph低值 当做高低压侧差流平衡时,加量方法如下:任取一个装置制动量X A(装置量), 则测试仪加入X/PH高 0度(加在高压侧A相) X/ PH低 180度(加在低压侧A相) (补偿电流) X/PH低 0度(加在低压侧C相) 楼主给的是3A,取X为3代入,就可以得到测试仪加入的量了。这样加一定是装置无差流的。 至于为什么要加补偿电流,是因为从前的主变保护如果两侧为星型和三角型,则CT二次侧星型接为三角,三角接为星型,以补偿相位达到差流的平衡。但是现在的微机保护装置,统一二次侧全接为星型,因此需要软件中进行相位补偿。1202相位校正采取方法是星变三角,即将高压侧二次电流进行以下公式变换,也就是楼主所提供的公式。 IAH=(Iah-Ibh)/根3 IBH=(Ibh-Ich)/根3 ICH=(Ich-Iah)/根3 其实就是将来自高压侧的电流互相相减再除以根3 根据上式,如果做高低压侧差流平衡,本来在高压侧A相和低压侧A相通入相同幅值,相位相反的装置量,就应该差流平衡的。但是因为高压侧进行了以上的相位变换,所以当高压侧A相通入电流时,高压侧C相也产生了反相的同幅值电流,所以C相产生了差流。这样没有办法差流平衡。所以要进行补偿,同时在高压侧C相或者低压侧C相也加入一个同相同幅值的装置量来抵消。这就是C相补偿电流的来源。注意上面所

备自投工作原理之令狐文艳创作

微机备自投装置的基本原理及应用 令狐文艳 本文介绍了微机线路备自投保护装置特性和应用中的供电方式,阐述其应用于母联备自投工作和线路备自投的工作原理及备自投保护装置运行条件及动作条件。 备自投保护供电方式技术条件 1.引言 随着我国人民生产生活的现代化程度日益提高,人们对电力的需求和依赖程度也在倍增,对电能质量的要求也更加严格,供配电在各个领域也不断向自动化、无人值守、远程控制、不间断供电的目标迈进。有些电力用户尤其对不间断供电的要求显得更加突出。我国的电力供应主要还是依靠国家电网供电,电力缺口也在不断增大,尤其在用电高峰期缺电现象严重,为此很多大型企业便自建电厂或配备发电机,因此各种电源的相互切换,保证电源的不间断供电和供电的高可靠性成了现代配电工程中保护和控制回路的重要部分。在GB50062 《电力装置的继电保护和自动装置设计规范》中的第十一章也明确规定了备用电源和备用设备的自动投入的具体要求。

微机线路备自投保护装置使系统自动装置与继电保护装置相结合,是一种对用户提供不间断供电的经济而又有效的技术措施,它在现代供电系统中得到了广泛的应用。在此只对微机线路备自投保护装置在电力系统中两种备自投方式和基本原理进行探讨。 微机线路备自投保护装置(以下简称备自投)核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。装置采用交流不间断采样方式采集到信号后实时进行傅立叶法计算,能精确判断电源状态,并实施延时切换电源。备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,其有可靠的软硬件看门狗功能和事件记录功能。 产品在不同的电压等级如110kV、10kV、0.4kV系统的供配电回路中使用时需要设定不同的电气参数,在订货时必须注明。在选择备自投功能时则一定不可以投入低电压保护,以免冲突引起拒动或误动。 变配电站备自投有两种基本的供电方式。第一种如图1所示母联分段供电方式,母联开关断开,两个工作电源分别供电,两个电源互为备用,此方式称为母联备自投方

备自投简述

备自投装置简述 一、概述 备用电源自动投入装置(以下简称BZT装置)的作用是:当正常供电电源因供电线路故障或电源本身发生事故而停电时,它可将负荷自动、迅速切换至备用电源,使供电不至中断,从而确保企业生产连续正常运转,把停电造成的经济损失降到最低程度。 备用电源的配置方式很多,形式复杂,一般有明备用和暗备用两种基本方式。系统正常运行时,备用电源不工作,称为明备用;系统正常运行时,备用电源也投入运行的,称为暗备用,暗备用实际上是两个工作电源的互为备用。主要有低压母线分段断路器备自投、内桥断路器备自投和线路备自投三种方案。 在企业高、低压供电系统中,只有重要的低压变电所和6kV及以上的高压变电所,才装设了BZT装置。但因供电系统主接线方式大多数为单母线分段接线或桥接线方式,故一般采用母联断路器互为自动投入的BZT装置。在过去,不论是新建变电所,还是改造老变电所,设计的BZT装置均由传统的继电器来实现,这种BZT装置因设计不完善或继电器本身存在的问题,而发生的拒动或误动故障率较高,所以有些企业用户供电系统虽已装设了BZT装置,但考虑到发生事故时不扩大停电事故,将其退出,这样BZT装置的作用就没有发挥出来。近年来,随着微机BZT装置的不断完善与快速发展,在一些老高压变电所的改扩建及新建高压变电所的设计中,逐步广泛采用分段断路器微机备用电源自动投入装置(以下简称微机BZT装置)。 目前,许多企业用户在高压供电系统中为何要采用微机BZT装置呢?是由于该装置与传统的BZT装置相比较,具有以下许多特点和优点,因而在工业企业的高压供电系统中获得了广泛的应用。 (1)装置使用直观简便。 可以在线查看装置全部输入交流量和开关量,以及全部整定值,预设值、瞬时采样数据和大部分事故分析记录。装置液晶显示屏状态行还实时显示装置编号、当前工作状态,当前通讯状态、备自投“充电”、“放电”状态以及当前可响应的键。 (2)装置测试方便,工作量小。 交流量测量精度调整由软件方式完成,其调试和开入/开出试验均由装置通过显示界面和键盘操作完成。

10KV高压开关柜母联备自投的工作原理

10KV高压开关柜母联备自投的工作原理 母联备自投用于两路电源的自动快速互投。一般用在双电源系统中,两台进线电源柜供电时母联不投入,在一路电源进线停电时分断,并可自动投入母联开关,实现让一路电源带系统的所有设备。 备自投动作过程为,两路进线开关柜中,当检测到本侧电源失压,备自投保护启动跳本侧开关,确认本侧开关跳开后,同时检测两侧电源进线侧电压,有一侧电压大于70V(相当于7kV),则合母联开关。备自投保护必须在充电完成后才能动作,而充电完成的条件就包括母联开关处于工作位置、处于分闸位置、两侧至少一侧电源大于70V、进线开关有电且进线开关处于合位。 采用综合继保装置后,这些功能可以自动实现。如果不用自投则需要明确的操作规程,比如检某进线开关电源电压,确认无压后分该进线开关,检另一进线电源电压,确认母联开关位置,正常后合母联开关。(有些系统还需要考虑二次回路中的电压信号切换)。 为什么10kV备自投动作,要切母线上的电容器,再合母联开关 为什么10kV备自投动作,要切母线上的电容器,再合母联开关? 切电容器是防止过电压吧。 电力系统中的“备自投装置”是什么?什么原理?有什么作用? 随着我国人民生产生活的现代化程度日益提高,人们对电力的需求和依赖程度也在倍增,对电能质量的要求也更加严格,供配电在各个领域也不断向自动化、无人值守、远程控制、不间断供电的目标迈进。有些电力用户尤其对不间断供电的要求显得更加突出。我国的电力供应主要还是依靠国家电网供电,电力缺口也在不断增大,尤其在用电高峰期缺电现象严重,为此很多大型企业便自建电厂或配备发电机,因此各种电源的相互切换,保证电源的不间断供电和供电的高可靠性成了现代配电工程中保护和控制回路的重要部分。在GB50062 《电力装置的继电保护和自动装置设计规范》中的第十一章也明确规定了备用电源和备用设备的自动投入的具体要求。 微机线路备自投保护装置使系统自动装置与继电保护装置相结合,是一种对用户提供不间断供电的经济而又有效的技术措施,它在现代供电系统中得到了广泛的应用。在此只对微机线路备自投保护装置在电力系统中两种备自投方式和基本原理进行探讨。 微机线路备自投保护装置(以下简称备自投)核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。装置采用交流不间断

变压器差动保护的基本原理

变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。 变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 1)励磁涌流 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

- 3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。

4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

备自投的基本原则

备自投的基本原则 为保证供电的可靠性,电力系统经常采用两个或两个以上的电源进行供电,并考虑相互之间采用适当的备用方式。当工作电源失去电压时,备用电源由自动装置立即投入,从而保证供电的连续性,这种自动装置称为备用电源自动投入装置,简称BZT。 备用电源自动投入装置遵循的基本原则如下: 1.当工作母线上的电压低于检无压定值,并且持续时间大于时间定值时,备自投装置方可起动。备自投的时间定值应与相关的保护及重合闸的时间定值相配合。 2.备用电源的电压应工作于正常范围,或备用设备应处于正常的准备状态,备自投装置方可动作,否则应予闭锁。 3.必须在断开工作电源的断路器之后,备自投装置方可动作。 4.人工切除工作电源时,备自投装置不应动作。装置引入进线断路器的手跳信号作为闭锁量,一旦采到手跳信号,立即使备自投放电,实现闭锁。 5.避免备用电源合于永久性故障 在考虑运行方式和保护配置时,应避免备自投装置使备用电源合于永久性故障的情况发生。 一般通过引入闭锁量或检开关位置使备自投放电。例

如,就主变低压侧分段开关备自投而言,变压器差动保护动作跳主变各侧时,一般表明主变本体发生故障,此时无需闭锁低压侧分段开关备自投;而变压器后备保护动作时,可能是低压侧母线或其出线上发生了故障,此时一般应闭锁低压侧分段开关备自投。 6.备自投装置只允许动作一次 以往常规的备用电源自动投入装置通过装置内部电容器的充放电过程来保证只动作一次。 为了便于理解,微机装置仍然引用充放电这一概念,只不过微机备自投装置由软件通过逻辑判断实现备自投充放电。 当备自投充电条件满足时,经10秒充电时间后,进入充电完毕状态。当放电条件满足、有闭锁信号或退出备自投时立即放电。 装置原理 1.有压、无压和无流的判据 LCS600系列备自投装置需要判断母线或线路有压或无压,线路是否无流。 母线有压指接入的三个相电压均大于等于检无压定值,即用逻辑“与”来判母线无压,可以避免工作电源PT一相或两相断线时备自投的误动。 线路有压指接入的进线A相电压大于等于检有压定值。

变压器差动保护工作原理和不平衡电流产生原因

平衡电流产生原因 1前言 变压器差动保护是按照循环电流原理构成的。双绕组变压器,在其两侧装设电流互感器。当两侧电流互感器的同极性在同一方向,则将两侧电流互感器不同极性的二次端子相连接(如果同极性端子均置于靠近母线一侧,二次侧为同极相连),差动继电器的工作线圈并联在电流互感器的二次端子上。在正常运行或外部故障时,两侧的二次电流大小相等,方向相反,在继电器中电流等于零,因此差动保护不动作。然而,由于变压器实际运行中引起的种种不平衡电流,使得差动继电器的动作电流增大,从而降低了保护的灵敏度。 不平衡电流的产生有稳态和暂态二方面。稳态不平衡电流产生的原因:(1)变压器高低压侧绕组接线方式不同;(2)变压器各侧电流互感器的型号和变比不相同;(3)带负荷调分接头引起变压器变比的改变。暂态不平衡电流主要是由于变压器空载投入电源或外部故障切除,电压恢复时产生的励磁涌流。 3影响和防范措施 下面就以上几种变压器差动保护的不平衡电流产生原因和防范措施进行阐述。 3.1变压器高低压侧绕组接线方式不同的影响和防范措施: 3.1.1变压器接线组别对差动保护的影响

对于Y,y0接线的变压器,由于一、二次绕组对应相的电压同相位,故一、二次两侧对应相的相位几乎完全相同。而常用的Y,d11接线的变压器,由于三角形侧的线电压,在相位上相差30°,故其相应相的电流相位关系也相差30°,即三角形侧电流比星形侧的同一相电流,在相位上超前30°,因此即使变压器两侧电流互感器二次电流的数值相等,在差动保护回路中也会出现不平衡电流。 3.1.2变压器接线组别影响的防范措施 为了消除由于变压器Y,d11接线而引起的不平衡电流的影响,可采用相位补偿法,即将变压器星形侧的电流互感器二次侧接成三角形,而将变压器三角形侧的电流互感器二次侧接成星形,从而把电流互感器二次电流的相位校正过来。相位补偿后,为了使每相两差动臂的电流数值近似相等,在选择电流互感器的变比nTA时,应考虑电流互感器的接线系数KC后,即差动臂的电流为KCI1/nTA。其中,I1为一次电流,电流互感器按星形接线时则KC=1,按三角形接线时KC=√3,如电流互感器的二次电流为5A时,则两侧电流互感器的变比按以下两式选择。 变压器星形侧的电流互感器变比为: nTA(Y)=√3In(Y)/5 变压器三角形侧的电流互感器变比为: nTA(△)=In(△)/5 In(△)变压器绕组接成三角形侧的额定电流。

备自投保护原理

第五章保护原理 5.1 备自投功能说明 5.1.1线路备自投的接线方式 线路备自投的一次接线方式如图5-1所示。 图5-1 线路备自投一次接线示意图 ●线路备自投的工作原理 自投动作采用母线失压、无流判据。正常工作仅有一条进线处于工作状态,两进线互为备用或主备(主备模式下,默认Ⅰ进线为主进线)。 ●系统运行方式的识别 ●Ⅰ进线正常工作运行方式:Ⅰ进线带母线独立运行,Ⅱ进线备用 A.两进线电压均正常 B.I进线断路器在合闸位置,Ⅱ进线在分闸位置 ●Ⅱ进线正常工作运行方式:Ⅱ进线带母线独立运行,Ⅰ进线备用 A.两进线电压均正常 B.Ⅱ进线断路器在合闸位置,Ⅰ进线在分闸位置 ●备用电源自动投入 互备模式:装置在Ⅰ进线正常工作运行状态或Ⅱ进线正常工作运行状态下,工作进线失电欠流、失压,而且备用进线电压正常,经跳闸延时对失电进线发跳闸命令,失电的工作进线断路器跳开后,经合闸延时对备用进线断路器发合闸命令。原备用进线变为了工作进线。 主备模式:装置在Ⅰ进线正常工作运行状态,工作进线失电欠流、失压,而且备用Ⅱ进线电压正常,经跳闸延时对失电Ⅰ进线发跳闸命令,失电的工作进线断路器跳开后,经合闸延时对备用Ⅱ进线断路器发合闸命令,然后Ⅱ进线带母线运行。当Ⅰ进线电压恢复后,备自投将经跳闸延时跳Ⅱ进线,Ⅱ进线断路器跳开后,经合闸延时对Ⅰ进线断路器发合闸命令,然后恢复Ⅰ进线带母线运行。 5.1.2 备自投闭锁 备自投功能可通过控制字选择经由外部接点闭锁、进线过流闭锁、PT断线闭锁。一旦闭锁条件满足,备自投功能将处于退出运行状态。 刚动作完一次后,备自投自行退出或进入备用运行方式,只有再次满足正常运行条件15秒后再进入的正常运行状态。 5.2保护功能说明 5.2.1 三段式定时限过流保护

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为 11TA I n - 22 TA I n =1I ' - 2I '≈0 ,故KD 不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为: 11TA I n + 22TA I n =1I ' + 2I '=2k TA I n 当 2 k TA I n 大于KD 的整定值时,即 1I ' - (3)max max /unb st unp i k TA I K K f I n =≠0 ,KD 动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时, 2 k TA I n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取0.5; Kunp ——非周期性分量影响系数,取为1~1.5; fi ——TA 的最大数值误差,取0.1。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流Iunb.max ,即Iop=KrelIunb.max (Krel 为可靠系数,取1.3)。Iunb.max 越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻