无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法.

无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法.
无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法.

[A15694-0010-0001] 2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料及其制备方法&C04B35662006.01Ia01 纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料......

[摘要] 本发明涉及一种用纳米Al2O3和MgO复合氧化物陶瓷结合的尖晶石-镁质耐火浇注料及其制备方法,此浇注料是以Al(OH)3和Mg(OH)2复合溶胶悬浮液作纳米陶瓷结合剂,并直接加入到混合料中,通过原位合成反应,形成以尖晶石和氧化镁为主要成分的纳米结构基质,制成了本发明的纳米尖晶石-镁质耐火浇注料。此浇注料的配料特点是骨料使用尖晶石或在尖晶石骨料中加入适量的≤5mm的烧结镁砂,以提高浇注料总体MgO含量;基质料由纳米陶瓷结合剂系统与氧化镁和少量不同特性的Al2O3及外加剂组成,在进行二次尖晶石的合成反应后,伴随着膨胀并在约束下发生致密化,从而导致宏观和微观结构改善、性能的提高、耐用性增强,制成耐侵蚀性和耐浸润性更加优异的尖晶石-镁质浇注料,在二次精炼整体钢包中渣线部位使用,取得了良好的使用效果。

[A15694-0003-0002] 一种耐火自流浇注料及其制备方法

[摘要] 本发明具体涉及一种耐火自流浇注料的制备方法。本发明所采用的技术方案是:将35~55wt%的矾土颗粒、5~20wt%的矾土细粉、5~25wt%的刚玉细粉、5~30wt%的电熔陶粒砂、2~10wt%的纯铝酸钙水泥、2~6wt%的硅微粉、2~10wt%的α-Al2O3微粉、0.1~0.2wt%的减水剂混合,搅拌均匀制得。本发明所制备的耐火自流浇注料具有不偏析、流动性好、易施工、致密度高、强度好、成本较低的特点。广泛适用于加热炉炉衬、钢包永久层、中间包永久层等热工窑炉。

[A15694-0008-0003] 改良型矾土基中小型钢包浇注料及配制方法

本发明提供一种改良型矾土基中小型钢包浇注料及配制方法。其特征在于由电熔镁砂、烧结镁砂连续颗粒级配配制;在基质中加入棕刚玉微粉,使之高温下生成铝镁尖晶石相,并合理控制二氧化硅微粉和镁砂细粉比例,使矾土基具有良好的低温、中温和高温强度,且在使用过程使铝镁膨胀反应在≥1000℃温度范围内具有长效性,减少后期钢包衬出现的收缩裂纹和剥落。本发明提供的浇注料在40吨转炉钢包上的包龄,可从平均60炉提高到80-120炉。

[A15694-0001-0004] 无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法

[摘要] 本发明为一种无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法,属于耐火材料技术领域。所述钢包浇注料的配比为(重量%):高铝骨料34~46%,高铝细粉3~7%,镁砂16~20%,锆英砂5~7%,镍渣3~5%,氧化铬3~5%,刚玉粉4~6%,尖晶石8~12%,氰氟酸无机结合剂3~5%,铝酸钙水泥3~5%。其生产工艺如下:将破碎至上述粒度的各组份一起放在搅拌机中搅拌至混合均匀,加入铝酸钙水泥继续搅拌均匀后,再加入氰氟酸无机结合剂和适量水,在搅拌机中再强力搅拌均匀,然后浇注成型。所述钢包浇注料具有较高的强度和耐火度,其抗热震和抗钢水的浸蚀性能较好,适用于炼钢钢水包的整体浇注。

[A15694-0004-0005] 刚玉质钢包座砖浇注料

[摘要] 本发明涉及刚玉质钢包座砖浇注料,可有效解决产品致密度差和对环境造成的污染问题,其解决的技术方案是,以致密电熔刚玉为主要骨料,以刚玉粉、α-氧化铝粉、电熔尖晶石粉、氧化铬绿粉、硅微粉为基质材料,氧化铝水泥为结合剂,混匀成混合料,再另加入外加剂组成,其成分重量百分比为:致密电熔刚玉60-70%、刚玉粉5-10%、α-氧化铝粉5-10%、电熔尖晶石粉5-15%、

氧化铬绿粉0.01-3%、硅微粉0.01-5%和氧化铝水泥0.01-5%,上述组分和为100%,混匀成混合料,再加入混合料重量0.1-1.0%的金属粉及有机纤维,加入量分别是混合料重量的0.01-0.5%,施工搅拌时加水量为总料重量的4-7%,可现场施工,快捷,灵活,环保,使用寿命长。

[A15694-0002-0006] 钢包用浇注料

[摘要] 本发明公开了一种大中型钢包用浇注料,它由电熔白刚玉(75~95%、粒度≤5mm),电熔镁砂(5~15%、粒度≤0.088mm),铬绿(1~5%、180目),SiO2(1%、180目)配比而成。本发明产品可采用机械化施工,不需要人工砌筑,降低了劳动强度,使用寿命长,成本低,具有良好抗渣性和抗剥落性。

[A15694-0007-0007] 钢包包底用微膨胀自流浇注料

[摘要] 本发明公开了一种钢包包底用微膨胀自流浇注料,它是以下述原料组份(WL%)配制而成的:尖晶石0~15%、镁砂0~l0%、纯铝酸盐水泥0~8%、SiO2硅微粉0.5~5%、a-AL2O3铝微粉6~10%、特级矾土余量、减水剂适量。本发明可提高包底强度及抗渣蚀性能,急冷急热性能良好,提高使用寿命。它具有低水泥浇注料优点。在矾土基浇注料中加入a-Al2O微分、SiO2微分,形成莫来石高温结合相,同时,加入部分预合成尖晶石细粉,又加入部分镁砂细粉与Al2O3发生反应形成尖晶石多结合相副品,抵消了高温下收缩,因此具有较高耐火度、较高荷重软化点、良好热震稳定性。工艺简单,现场施工中省去振动成型工艺,因而降低燥音、节省时间,降低劳动强度和工作量。

[A15694-0009-0008] 利用废弃钢包浇注料作为转炉造渣助熔剂的方法

[摘要] 一种利用废弃钢包浇注料作为转炉造渣助熔剂的方法,属炼钢技术领域,用于解决合理利用废弃钢包浇注料的问题。特别之处是:它以钢包拆除的铝镁尖晶石浇注料为造渣助熔剂原料,将铝镁尖晶石浇注料进行破碎筛分,破碎粒度为10~20mm,并筛去粉末,制成转炉造渣助熔剂输送至转炉料仓备用,上述化渣助熔剂在转炉炼钢时随第一批造渣料加入,加入量为总造渣料量的4%-6%。本发明以废弃钢包浇注料作为转炉造渣助熔剂,使废弃物得到合理利用,既减少了环境污染又得到了一种性能优异的助熔剂,实现该种固体废料的零排放,同时提高转炉的控制水平,本发明对进一步提高转炉生产效率、减弱炉衬侵蚀进而降低转炉生产成本有积极的意义。

[A15694-0012-0009] 钢包沿浇注料及钢包沿制备方法

[摘要] 本发明涉及一种钢包沿浇注料及利用该浇注料制备钢包沿的方法。该浇注料含粒度1~8mm钢包衬废料60~82%、0.044~1mm 高铝矾土10~20%、二氧化硅超细粉(≤0.02μm)2~10%、0.044~0.088mm氧化镁细粉5~10%、多聚磷酸钠0.01~1%。以上述浇注料制备钢包沿包括钢包衬废料拣选、破碎、混匀加水搅拌、浇注、养护烘烤等步骤。本发明回收利用废旧钢包浇注料,既能显著降低耐火材料生产成本及炼钢成本,提高经济效益,而且还具有环保节能的社会意义;以该浇注料制备成的钢包沿不仅具有良好的高温体积稳定性,而且具有足够的常、中、高温强度,耐渣蚀冲刷能力强,可以满足钢包正常运转的需要。

[A15694-0005-0010] 钢包铝镁质——致密电熔刚玉浇注料

[摘要] 本发明钢包铝镁质——致密电熔刚玉浇注料是一种自反应、自烧结,自膨胀的高性能、高技术的不定形钢包浇注耐火材料。

与传统的水玻璃和低水泥铝镁质和铝镁尖晶石质耐火浇注料比,是有均衡的抗渣侵蚀性和抗渣渗透性,以及良好的抗热震性或剥落性,并有足够高的强度和高温下微膨胀的体积稳定性。本发明其组份按重量百分比计:致密电熔刚玉75-85%,镁砂3-8%,复合添加剂8-15%,625#矾土水泥0.5-3%,各组份重量之和为100%。

[A15694-0006-0011] 低密度低导热钢包浇注料

[A15694-0011-0012] 抗冲击钢包底浇注料

[A15694-0013-0013] 钢包用浇注料预制下铸口砖及其生产方法

[A15694-0014-0014] 一种用于钢包的浇注料

https://www.360docs.net/doc/0416492086.html,/khdt/khdt/201012/20024.html

无机结合高强度铝镁质刚玉- 尖晶石钢包浇注料及

其制法

本发明为一种无机结合高强度铝镁质刚玉-尖晶

石钢包浇注料及其制法,属于耐火材料技术领域。

所述钢包浇注料的配比为(重量%):高铝骨料3

4~46%,高铝细粉3~7%,镁砂16~2

0%,锆英砂5~7%,镍渣3~5%,氧化铬3~

5%,刚玉粉4~6%,尖晶石8~12%,氰氟

酸无机结合剂3~5%,铝酸钙水泥3~5%。其

生产工艺如下:将破碎至上述粒度的各组份一起放

在搅拌机中搅拌至混合均匀,加入铝酸钙水泥继续

搅拌均匀后,再加入氰氟酸无机结合剂和适量水,

在搅拌机中再强力搅拌均匀,然后浇注成型。所述

钢包浇注料具有较高的强度和耐火度,其抗热震和

抗钢水的浸蚀性能较好,适用于炼钢钢水包的整体

浇注。

无机结合高强度铝镁质刚玉- 尖晶石钢包浇注料及其制法

一种无机结合高强度铝镁质刚玉-尖晶石钢包浇注料,其特征在于所述钢包浇注料由高铝骨料、高铝细粉、镁砂、锆英砂、镍渣、氧化铬、刚玉粉和尖晶石,作为结合剂的氰氟酸无机结合剂,以及作为促凝剂的铝酸钙水泥组成,其配比为(重量%):高铝骨料34~46%,高铝细粉3~7%,镁砂16~20%,锆英砂5~7%,镍渣3~5%,氧化铬3~5%,刚玉粉4~6%,尖晶石8~12%,氰氟酸无机结合剂3~5%,铝酸钙水泥3~5%。

褚长庆、郝恩先、梁永平、李继宗、刘曼朗、刘勇

专利号: 99100090

申请日: 1999年1月12日

公开/公告日: 1999年10月20日

授权公告日: 2004年7月28日

申请人/专利权人: 褚长庆、郝恩先、梁永平、李继宗、刘曼朗、刘勇

国家/省市: 济南(88)

申请人地址: 山东省济南市解放路30号济南东方工业炉新技术开发总公司邮编: 250013

发明/设计人: 褚长庆、郝恩先、梁永平

代理人: 白家驹

专利代理机构: 冶金专利事务所(11019)

专利代理机构地址: 北京市灯市口74号(100730) 专利类型: 发明

公开号: 1232003

公告日:

授权日: 20

公告号: 1159255

优先权:

审批历史:

附图数: 0

页数: 3

权利要求项数: 0

浇注料的分类及其特性

耐火材料的分类及其特性

耐火浇注料 特性: 一种由耐火物料加入一定量结合剂制成的粒状和粉状材料。具有较高流动性,适用于以浇注方式成型的不定形耐火材料。同其他不定形耐火材料相比,结合剂和水分含量较高,故流动性较好,但耐磨性较差,适用于各种窑炉,具有耐碱性的水硬性浇注料。 适用方法: 物料及结合剂加水搅拌均匀使用,需要支模,填灌后用振动棒振打消除气泡。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。适用于产生摩擦量小的高温区域,如锅炉底部风室、一次风道、返料立管(料腿)、尾部烟道炉墙、冷渣机、各炉门的填充等。

耐磨可塑料 特性: 耐磨可塑料是一种高铝、刚玉质颗粒状制品。与传统耐火可塑料相比,其具有施工简易,效率好,成型好,强度高等优良性能,该材料是由胶粘剂、耐火骨料和促硬剂组成,,加一定比例的PA胶后形成一种可塑耐火泥,便于各种复杂部位施工。属于气硬性材料,具有低温硬化性能,保证循环流化床锅炉耐磨性的需要。 耐磨性能较差。 施工工艺: 使用时采用强制搅拌机搅拌,在搅拌时将小袋中的促硬剂均匀加入,干搅1分钟后,再加入4-5%的胶粘剂搅拌3分钟,待料呈一定的塑性时,即可卸出使用。 采用橡皮锤捣打施工或机器捣打施工,可施工时间保证在30分钟以后,初凝时间约1个小时。 施工时,把可塑料铺设一定的厚度,一般不超过60mm厚,用橡皮锤或木锤捣实,捣打炉墙等部位一般不需支模,捣打后的衬体比设计尺寸厚的多,应及时除去多余部分。即或支模,如炉顶等部位施工拆模后,若有多余部分也要除去。修整下来的多余料如未变干可放在非工作面继续使用。修整工作面最好与捣打工序并行开展。如果施工间断时,要用塑料布等物将捣打面盖严,防止迅速干燥。耐磨可塑料搅拌后可施工时间大约为30分钟(随环境温度有所变动),一旦时间过长硬化后,就应扔掉,不可继续使用。 适用区域: 应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。

镁铝尖晶石

尖晶石型化合物属于等轴晶系,其结构中氧作最紧密堆积,阳离子填充四面体、八面体间隙,每个晶胞中8/64的四面体间隙和16/32的八面体间隙被填充。 镁铝尖晶石是具有相同晶体结构的氧化物中的一种,这种晶体结构称为尖晶石结构。尖晶石组有二十多种氧化物,但只有很少数是常见的。尖晶石组的结构式是AB2O4, 这里A代表二价金属离子,例如镁、铁、镍、锰和/或锌,B代表三价金属离子,例如铝、铁、铬或锰。除非特别指明,本文的尖晶石表示MgAl2O4, 矿物尖晶石是二元系统MgO –Al2O3 的唯一化合物。尖晶石族矿物的明显特征是,它是一种组分可被替代的固溶体,尖晶石组分中一种或两种都可以被这组矿物中的其他组分大量的代替,而且是在晶体结构不改变或晶格没有任何变形的情况下。镁离子和铝离子都可被较小尺寸的其他离子代替,保持电化学平衡。因此尖晶石族矿物有很多种固溶体。另外,随温度的增加,MgAl2O4 相区域增加,尤其是朝着氧化铝含量较高的方向增加。通过这个结构中金属离子和氧离子的空位保持电化学平衡。以后将讨论这一特征,它在尖晶石抗钢渣的侵蚀上起很重要的作用。2.2 物理性能镁铝尖晶石的熔点是2135℃,是熔点较高的耐火材料。表1是MgO、Al2O3和尖晶石相的体积密度、热膨胀系数和热导率的对比。这些相在热膨胀系数上的差别体现出尖晶石优异的抗热震性。MgO和Al2O3生成尖晶石时,密度下降,体积增加,这使我们想到了技术应用上,例如生产浇注料,在浇注料里,MgO和Al2O3原位反应生

作为耐火材料原料的尖晶石的天然资源还没有发现,因此尖晶石必须通过合成来制备。尖晶石生产的两个主要途径是烧结和电熔。大多数耐火材料使用的尖晶石是由高纯合成氧化铝和化学级氧化镁来合成的。烧结尖晶石在竖窑中合成,电熔尖晶石在电弧炉中合成。因为从动力学上说形成固态尖晶石是非常困难的,所以要求原材料很细、反应活性大。烧结合成尖晶石的优点是它是一个连续的陶瓷过程,喂料速度可控,窑内温度分布均匀,可以生产出晶粒尺寸为30-80μm 和气孔率较低(<3%)的非常匀质的产品。另一方面,电熔生产尖晶石是一个典型的批量生产过程。大的晶锭需要很长的冷却时间,导致倒出的晶锭在冷却过程中微观结构不均匀。外部的尖晶石冷却速度比内部的快,晶体尺寸比内部的小。杂质因熔点最低集中在晶锭中心。因此,匀质的电熔尖晶石材料只有通过已加工材料的仔细挑选才能获得。使用高纯原材料的另一个优点,是所得材料的杂质含量很低(MgO+Al2O3 >99%), 尤其是氧化硅含量,这样尖晶石的高温性能很好。矾土基尖晶石已经根据它的几种合成原料进行了评估。Moore et al[2]在实验室合成的矾土和水铝石基尖晶石与合成的氧化铝基尖晶石相比,表现出高的蠕变速率。这是由于矾土中杂质(SiO2, TiO2, Fe2O3, 碱金属)在骨料中形成较多的玻璃相。矾土基尖晶石没有合成氧化铝基尖晶石的性能好,所以它只能用在抗侵蚀性和高温强度要求不高的环境下。 4 产品类型工业尖晶石产品以化学计量比Al2O3/MgO=28.2/71.8作为分界点分为两类,见图1。富镁尖晶石MR66含有过量MgO, 而富铝尖晶石AR78和AR90含有

无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法.

[A15694-0010-0001] 2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料及其制备方法&C04B35662006.01Ia01 纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料...... [摘要] 本发明涉及一种用纳米Al2O3和MgO复合氧化物陶瓷结合的尖晶石-镁质耐火浇注料及其制备方法,此浇注料是以Al(OH)3和Mg(OH)2复合溶胶悬浮液作纳米陶瓷结合剂,并直接加入到混合料中,通过原位合成反应,形成以尖晶石和氧化镁为主要成分的纳米结构基质,制成了本发明的纳米尖晶石-镁质耐火浇注料。此浇注料的配料特点是骨料使用尖晶石或在尖晶石骨料中加入适量的≤5mm的烧结镁砂,以提高浇注料总体MgO含量;基质料由纳米陶瓷结合剂系统与氧化镁和少量不同特性的Al2O3及外加剂组成,在进行二次尖晶石的合成反应后,伴随着膨胀并在约束下发生致密化,从而导致宏观和微观结构改善、性能的提高、耐用性增强,制成耐侵蚀性和耐浸润性更加优异的尖晶石-镁质浇注料,在二次精炼整体钢包中渣线部位使用,取得了良好的使用效果。 [A15694-0003-0002] 一种耐火自流浇注料及其制备方法 [摘要] 本发明具体涉及一种耐火自流浇注料的制备方法。本发明所采用的技术方案是:将35~55wt%的矾土颗粒、5~20wt%的矾土细粉、5~25wt%的刚玉细粉、5~30wt%的电熔陶粒砂、2~10wt%的纯铝酸钙水泥、2~6wt%的硅微粉、2~10wt%的α-Al2O3微粉、0.1~0.2wt%的减水剂混合,搅拌均匀制得。本发明所制备的耐火自流浇注料具有不偏析、流动性好、易施工、致密度高、强度好、成本较低的特点。广泛适用于加热炉炉衬、钢包永久层、中间包永久层等热工窑炉。 [A15694-0008-0003] 改良型矾土基中小型钢包浇注料及配制方法 本发明提供一种改良型矾土基中小型钢包浇注料及配制方法。其特征在于由电熔镁砂、烧结镁砂连续颗粒级配配制;在基质中加入棕刚玉微粉,使之高温下生成铝镁尖晶石相,并合理控制二氧化硅微粉和镁砂细粉比例,使矾土基具有良好的低温、中温和高温强度,且在使用过程使铝镁膨胀反应在≥1000℃温度范围内具有长效性,减少后期钢包衬出现的收缩裂纹和剥落。本发明提供的浇注料在40吨转炉钢包上的包龄,可从平均60炉提高到80-120炉。 [A15694-0001-0004] 无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法 [摘要] 本发明为一种无机结合高强度铝镁质刚玉-尖晶石钢包浇注料及其制法,属于耐火材料技术领域。所述钢包浇注料的配比为(重量%):高铝骨料34~46%,高铝细粉3~7%,镁砂16~20%,锆英砂5~7%,镍渣3~5%,氧化铬3~5%,刚玉粉4~6%,尖晶石8~12%,氰氟酸无机结合剂3~5%,铝酸钙水泥3~5%。其生产工艺如下:将破碎至上述粒度的各组份一起放在搅拌机中搅拌至混合均匀,加入铝酸钙水泥继续搅拌均匀后,再加入氰氟酸无机结合剂和适量水,在搅拌机中再强力搅拌均匀,然后浇注成型。所述钢包浇注料具有较高的强度和耐火度,其抗热震和抗钢水的浸蚀性能较好,适用于炼钢钢水包的整体浇注。 [A15694-0004-0005] 刚玉质钢包座砖浇注料 [摘要] 本发明涉及刚玉质钢包座砖浇注料,可有效解决产品致密度差和对环境造成的污染问题,其解决的技术方案是,以致密电熔刚玉为主要骨料,以刚玉粉、α-氧化铝粉、电熔尖晶石粉、氧化铬绿粉、硅微粉为基质材料,氧化铝水泥为结合剂,混匀成混合料,再另加入外加剂组成,其成分重量百分比为:致密电熔刚玉60-70%、刚玉粉5-10%、α-氧化铝粉5-10%、电熔尖晶石粉5-15%、

耐火材料重点

第一章: 1耐火材料的定义;耐火度不小于1580℃的无机非金属 材料分类:按化学成份、矿物组成分类1)氧化硅质2)硅酸铝质3)氧化镁质4)刚玉质5)白云石质MgCa(CO3)2 6)尖晶石质Fe2MgO4 7)橄榄石质Mg2SiO4 8)碳质9)含锆质10)特殊耐火材料 按化学性质分类;1)酸性耐火材料2)中性耐火材料3)碱性耐火材料 3、按制造方法分类块状耐火材料;不定形耐火材料;烧制耐火材料;熔铸耐火材料。 4、按耐火度分类普通耐火材料(1580~1770℃);高级耐火材料(1770~2000℃);特级耐火材料(大于2000℃)。 按密度分:轻质(气孔率45%-85%)、重质 生产过程中的基本知识,如一般生产工艺流程:原料加工→配料→混练→(成型)→干燥→烧成(熔制)→(成型)→检验→成品, 配料(颗粒级配又称(粒度)级配,由不同粒度组成的物料中各级粒度所占的数量,用百分数表示。)混料使两种以上不均匀物料的成分和颗粒均匀化,促进颗粒接触和塑化的操作过程称为混练。等内容; 耐火材料行业存在的问题1)钢铁行业竞争激烈,面临更大的成本压力2洁净钢的生产对耐火材料提出更高要求,除了要求长寿还要对钢水无污染3)研发有待加强,4)应注意可持续发展战略。 存在的差距: 1、通常用耐火材料综合消耗指标来衡量一个国家的钢铁工业与耐火材料的发展水平,我国吨钢消耗水还较高。(见下表) 2、耐火材料生产装备落后,新技术推广慢 3、原料不精,高纯原料的生产有困难。, 发展趋势:当今耐火材料的发展,一极是不定形化,而另一极则是定形耐火材料的高级化,概括起来就是朝着高纯化、精密化、致密化和大型化。着重开发氧化物和非氧化物复合的耐火材料。等。 问题:1合计可用作耐火原料总数为4000余种,其中常用于工业生产的耐火原料只有100种。why? 除了考虑熔点外,还要看它在自然界中存在的数量及分布情况,即作为耐火原料还应该具有来源广,成本低廉。在地球岩石层中,硅酸盐+铝酸盐数量最大占86.5%。金属Pt的熔点为1772℃,可以用作耐火原料,但是太昂贵了 2留意“烧成”与“烧结”的区别! 烧成是陶瓷、耐火材料制品烧成过程中最重要的物理、化学过程。所谓“烧结”,就是指坯体经过高温作用逐渐排出气孔而致密的过程。 第二章: 耐火材料的宏观结构、微观结构方面的知识, 如显微结构的类型;基质连续结构,主晶相连续结构;基质连续结构:液相数量较多或主晶相润湿性良好,主晶相被玻璃相包围起来,形成基质连续,主晶相不连续结构,如粘土砖。主晶相连续结构:液相数量较少或主晶相润湿不良,形成主晶相连续,基质不连续结构,如硅砖。 力学性能中抗折强度:材料单位面积所承受的极限弯曲应力,高温抗折强度:材料在高温下单位截面所能承受的极限弯曲应力、蠕变:材料在恒定的高温、恒定

1.10铝-镁质浇注料

以氧化铝和氧化镁为主要成分的可浇注耐火材料,包括有化学结合(水玻璃结合)的、水化结合(纯铝酸钙水泥结合)的和凝聚结合(氧化硅微粉+氧化镁细粉结合)的铝-镁质浇注料。按所采用的原料品质不同可分为:普通铝-镁质浇注料;普通高铝-尖晶石质浇注料;氧化铝-氧化镁质浇注料;氧化铝-尖晶石质浇注料。 (1)普通铝-镁质浇注料是由特级或一级高铝矾土骨料与粉料(Al2O3≧85%)、烧结镁砂粉(MgO≧92%)组成的。早期(20世纪80年代)的普通铝-镁质浇注料是用水玻璃溶液作结合剂,用于作钢包内衬具有较好的抗熔渣的渗透性,适于作模铸钢包内衬;但由于这类浇注料中含有水玻璃带入的Na2O,其高温荷重软化温度较低、抗熔渣侵蚀性也差,不适于作连铸钢包和炉外精炼钢包内衬使用,因此现在改用氧化硅微粉和氧化镁细粉作结合剂,依靠凝聚作用而产生结合。 1)凝聚结合的作用机理是:SiO2微粉与MgO细粉在水中先形成溶胶。在水溶液中,SiO2胶粒是带负电的,MgO粒子在水化过程中会缓慢释放出Mg2+离子。当Mg2+离子被带负电的胶体SiO2粒子吸附并使SiO2胶体粒子表面达到等电点时,SiO2粒子即发生凝聚作用,从而产生结合作用。这类凝聚结合的浇注料避免了上述用水玻璃结合浇注料带入Na2O的不利影响,从而提高了浇注料的高温使用性能,现已普遍取代水玻璃结合铝-镁质浇注料用作中、小连铸钢包内衬。 2)凝聚结合的普通铝-镁质浇注料配料组成为:骨料为20~10mm,50%;10~5mm,10%;小于5mm,40%的高铝热料颗粒,粉料是由特级高铝熟料粉(小于0.074mm)、烧结镁砂粉(小于0.074mm)和氧化硅微粉(烟尘硅小于1μm)组成的。骨料与粉料之比一般为(65~70):(35~30)。但粉料(基质)的配合比中要严格控制镁砂粉和氧化硅微粉的加入量。其加入量是根据使用性能要求通过试验来确定。 3)凝聚结合铝-镁质浇注料的一般理化性能如下:化学成分:w(Al2O3)68%~76%,w(MgO)6%~8%,烘干(110℃,24h)后体积密度2.80~2.95g/cm3,耐压强度30~50MPa,抗折强度5~10MPa,1500℃,3h烧后体积密度2.70~2.90g/cm3,耐压强度40~80MPa,抗折强度8~12MPa,线变化率±0.5%。此类浇注料用于作连铸钢包整体内衬。使用寿命随使用条件不同而波动,一般在80~120炉次。 (2)普通高铝-尖晶石质浇注料,是用特级(或一级)高铝矾土骨料与粉料、矾土基烧结尖晶石骨料与粉料来配制的,浇注料的结合方式有两种:水化(水泥)结合的浇注料和凝聚结合的浇注料。 1)水化结合的浇注料基质是由烧结尖晶石粉、特级高铝熟料粉(或刚玉粉)、纯铝酸钙水泥和为了的分散剂组成的。其中纯铝酸钙水泥加入量要严格控制,一般为5%~8%,加入量过多会大大降低浇注料的高温使用性能。 2)凝聚结合的浇注料基质是由烧结尖晶石粉、特级高铝熟料粉(或刚玉粉)、烧结镁砂粉、SiO2微粉和微量分散剂组成的。其中烧结镁砂粉的加入量一般为6%~8%、SiO2微粉加入量为2%~3%。 普通高铝-尖晶石质浇注料集料的粒度组成可按Andreassen粒度分布方程来调配。其粒度分布系数q值控制在0.26~0.35之间。尖晶石加入量在10%~15%之间,其中部分以3~1mm颗粒加入,部分以小于0.074mm粉料加入。一般聚凝结合高铝-尖晶石质浇注料理化性能见表17-11.

低水泥铝镁质浇注料的研制与应用

褥襄嚣凌 低水泥铝镁质浇注料的研制与应用 口叶叔方唐龙燕黄先德 上海宝相耐火材料有限膺薅上海20190l 摘要以刚玉、a—Ak仉微将和镁砂为主要原辫,研完了嚣牟}攮戌时低拳泥拓镁袋浇注幸}流砖社、可施工时问、瓣烤抗瀑裂能力、热处理后的践变化率及强度、抗潦性和热震稳定性的影响。对浇注爵酶纽霞进行了援纯,嚣发了由不嚣鼷盏曾料组成的韶镁浇注料。在太型连铸钢包、太型高炉怼硅德注沟中试』{l,获镣7较好的使用赦嚣。本文还对浇注辩内衬盼损球特征进行了分析。 关键词铝镁浇滤料,连铸锏包,脱聩倾注淘,损坏跨鼙 铝镁质浇注料采用氧化铝和镁砂原料直接制戚。据援遽H’2l,这释浇注释在铜龟中使霜,毙翻有铝镁尖晶石的铝尖晶石质浇注料有更好的耐用性。为此,采用廉价电熔矾土刚玉悸骨糕研制了大型钢包接浇注辩,戳降低成本;并尝试将竣浇注科用于高炉脱硅倾注淘,替代脱硅后耐用性板差豹A12瓴。慕£一e(以下穗^sC)髓辩。 1原料务实验方寨 实骢采用翦主瑶骨料为电熔矾土剐玉(p1)、电熔致密刚玉(P2)、烧结板状刚玉(P3)、烧结板状剐玉与逶爨电熔致密雕玉醚台(Ⅸ)(3.6实验采罔多种刚玉,其余均采用P1),其他原料有电熔镁砂、a一朋:也微粉、礁微粉和她铝酸钙水泥。根据文麸:{,2],Mgo蕊凡量为5%~lo疆时,浇注辩的物理性能和抗渣性较好;加人硅微粉可抑制过太妁镊镁覆瓣翦膨袋反应,毽过多搬人会导瑟邋烧结收缩和抗渣性恶化。本实验确定M如7%、硅 微粉O.5%,M柏粒度为o.15~0mm(A)、0.076~0蛳(B)、0,033~0m拜l(ej、小颞蕴与B按巍定院例混合(D).Ⅱ一A120,微粉la%~6a%,水泥量lc% 252蠢熏瓣簇纛纛黧麟l 一5c%,采用复合离效分散剂。 2试验 用跳察法溅定流动值,墨流魂值降为130mm时的对阐为可施工对闯。试样(§l∞mm×loomm)自然养护24h后放人恒温600℃两弗炉内,保温婶m诗,观察爆裂与否,评徐嫫烤捷爆裂性。测定1000℃至16∞℃(保温3h)热处理后试样豹线变化率、耐压强度。用静态坩埚法考核抗渣性(坩联瘫疆¥30Ⅲlx35mm,装浚25g),转炉终瀵按1600℃,3h条件处理,渣主嚣成分(%):si0212.6,Fe2。312.3,Fe015.4,eao39.7,M如2.3,caO/si0,3.15;脱硅荆接i500℃,3h条件处理,脱硅荆配比为烧结铁矿粉:石灰=3:1。观察侵蚀和渗遥绪援并{鬟《定嚣穗损失(渗透)酉分率。用40mm×40mm×160-m试样,经15。o℃,3h热处理后,于1100℃,20埘n循拜水玲5次,以抗拼强度损失率对比热震稳定往好坏。 3鳍聚与讨论 3.1微粉对流动性舳影响 研究了刚玉微粉(Al,D蛐=2.35掣m)、趣缨活性微耪(A童,D,o=O.46弘m)、Al和A2按1:l混台(A3)三种口.AkO,微粉对浇注料性能的影响(图1),鸯鞋承整垮为5.0驻。壶爨l霹彝:翅A粒虞较粗的A1对流动性罄本无贡献,加入械度很细的A2流动性较好,当两者复合加入时流动性最忧,在秘_人量为4a%时这最夫氆,说胡a。Ak03镦粉的粒度及不同的加^量对浇没料的流动性影响银 *收藕日期:l”一12一lO 修回日期:2000一∞一22编辑:紫傻兰  万方数据万方数据

镁铝尖晶石质耐火材料

镁铝尖晶石质耐火材料 (西安建筑科技大学华清学院) 摘要:阐述了镁铝尖晶石质耐火材料的性能及合成,论述了镁铝尖晶石质耐火材料的应用及发展趋势。关键词:镁铝尖晶石质耐火材料;结构特点;应用;发展趋势 The Development and Application of Magnesia-alumina Spinel Refractories Abstract: The properties and synthesis ofmagnesia-alumina spinel refractories was expounded together with discussion on the application and developing trend of them. Key words: magnesia-alumina spinel refractories; structure characteristic; application; developing trend 1 前言 耐火材料是用作高温窑炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。随着高温工业的发展,对炉衬耐火材料的生产和使用也提出了更高的要求。炉衬耐火材料不仅要求长期处在高温的工作环境,能经受高尘,强腐蚀性炉气及炉渣的冲刷和侵蚀,还要经受温度骤变、机械和物料的撞击、磨损以及各种应力的综合影响。为满足高温工业的需要,炉衬耐火材料产品的使用性能还需进一步提高。而镁铝尖晶石质耐火材料的研究与开发正适应了这一发展趋势。 2 镁铝尖晶石质耐火材料的结构特点 镁铝尖晶石优良的高温性能,使其成为耐火材料中重要的组成部分。从MgO-Al2O3二元系相图(图1)可以看出,Mg-Al2O3是此二元系统的一个中间化合物,熔点为2 135 ℃。方镁石从1 500 ℃开始固溶于尖晶石中,且随着温度的升高固溶量增加。当温度达到1 995 ℃时,溶解度达到最大值10 %。刚玉在高温下也可以固溶在镁铝尖晶石中,且固溶量随着温度的升高而增加,在1 900 ℃以上时,固溶量可以达到20 %以上。 图1 MgO-Al2O3二元系相平衡图【1.2】 在镁铝尖晶石构造中,Al O、Mg O之间都是较强的离子键,且静电键强度相等,结构牢固【3】。因此,镁铝尖晶石晶体的饱和结构【4,5】使其具有良好的热震稳定性能、耐化学侵蚀性能和耐磨性能,能够在氧化或还原气氛中保持较好的稳定性。但是在合成镁铝尖晶石时,会伴有5%~8%的体积膨胀,而且其再结晶能力差,很难合成致密的镁铝尖晶石

整体浇注钢包用浇注料

整体浇注钢包用浇注料问题解析 1、钢包的精炼方式有哪些?请具体说明。 答:钢包精炼的手段主要有:渣洗、真空、搅拌、加热、喷吹(包括喂丝和喷丸等方法)。目前国内外常用精炼的方式无外乎是这几种手段的单一使用或组合应用,具体方式见下表1-1。 表1-1 各种炉外精炼方法的精炼手段和主要冶金功能 序号名 称 精炼手段主要冶金功能 渣 洗 真 空 搅 拌 喷 吹 加 热 脱 气 脱 氧 去 夹 杂 控 制 夹 杂 物 形 态 脱 硫 合 金 化 均 匀 成 分 和 温 度 脱 碳 1 异炉渣洗√√√√ 2 同炉渣洗√√√√ 3 混合炼钢√√√√√ 4 钢包吹氩√√√ 5 SAB +√√√+√ 6 CAB +√√√+√ 7 VC √√ 8 真空室钢 包脱气 √√ 9 SLD √√ 10 TD √√ 11 连铸在线 真空脱气 √√ 12 Finkl法√√√√ 13 ISLD √√√√ 14 VSR √√√√√√ 15 DH √√ 16 RH √√ 17 PM √√√√

18 LF +*√√*√√+√√ 19 GRAF +√√√√√√+√√ 20 ASEA-SKF +√√+√√√√+√√+ 21 V AD +√√+√√√√+√√+ 22 CAS-OB √√√√√√√ 23 铝热加热法√√√ 24 VOD √√√√√√√ 25 SS-VOD √√√√√√√ 26 RH-OB √√√√ 27 AOD √√√√√√ 28 DLU √√ 29 IRSID法√√√ 30 TN法√√√ 31 SL法√√√√√ 32 ABS √√ 33 WF √√√ 注:符号“+”表示可以添加的手段及能取得的冶金功能。 *LF增设真空手段后被称为LFV,它具备与SKF相同的精炼手段和冶金功能。 2、钢包的混合砌筑是如何进行的? 答:钢包的混合砌筑方式分为:(1)隔热层用纤维毡、永久层用高铝砖、工作层铝镁质浇注料;(2)隔热层用纤维毡、工作层铝镁质浇注料;(3)隔热层用纤维毡,永久层用轻质高铝浇注料、工作层用(如:镁碳和砖铝镁碳)砖;(4)隔热层用纤维毡,永久层用高铝自流浇注料、工作层用(如:镁碳和砖铝镁碳)砖;(5)但从工作层考虑,如:a渣线用镁碳砖,其它部位用铝镁浇注料,b渣线用镁碳砖,其它部位用铝镁碳砖应该也是一种混砌方式。 其中典型的混砌方式是渣线镁碳砖,低蚀区用铝镁浇注料。砌筑渣线镁碳砖时,要注意以下两点: A.浇注包壁时,量出渣线部位,停止浇注; B.抹平包壁浇注料,待其凝固后用火泥将砖一层层的砌筑好。

镁质浇注料开裂的解决措施

镁质浇注料开裂的解决措施 赵子龙陈勇罗先进吴晓宋世峰 濮阳濮耐高温材料(集团)股份有限公司河南濮阳457100 摘要从分析镁质浇注料开裂原因入手,选取MgO-SiO2体系作为解决问题的基本方案,通过调整镁质浇注料的配比和改进生产工艺等措施,较好的解决了制品开裂问题。 关键词镁质浇注料,镁砂水化,硅微粉,金属铝粉,镁质预制件 1 引言 镁质耐火材料属碱性耐火材料,具有耐火度高、荷重软化温度高等特点,且能够吸收熔融钢水和渣中Al2O3夹杂物,在其表面形成镁铝尖晶石,对碱性渣和铁渣都有很好的抗侵蚀性,同时也具有净化钢水的作用。资料[1]表明,镁质耐火材料对钢液的污染明显低于高铝质耐火材料。然而镁质浇注料的显著缺点就是所使用的镁砂易于水化,在生产过程中容易出现上涨、裂纹等现象,另外在快速烘烤过程中,容易产生很大的热应力而造成热震损伤,甚至发生爆裂现象,严重影响材料的高温使用性能,从而限制了镁质浇注料的大规模使用。 2 镁质浇注料体系的选取 镁质浇注料在自然养护和干燥过程中,容易出现上涨、开裂等现象,这是由镁砂水化引起的。镁砂水化就是镁砂中的MgO在常温下与H2O发生溶解析出反应,同时伴随很大的体积膨胀,促使镁质浇注料产生内应力,最终导致裂纹的产生。 采用高密度的大结晶镁砂、通过添加有机物包裹镁砂等方法,可以提高镁砂的抗水化性能,然而在实际应用中,由于受产品价格和工艺等因素的制约,具体操作起来往往比较困难。 根据工艺的实际情况,并参考李楠[2]等人对镁质浇注料的研究:常温下SiO2超微粉遇水后,其表面形成羟基,即Si-OH键,经自然养护和干燥后,脱水架桥形成了硅氧烷网络结构。同时,由于其表面有大量未键合的O2-,而O2-很容易被吸附于MgO颗粒表面的Mg2+离子上而形成镁氧硅链,从而减少了与Mg2+结合的OH一基团,与形成H-O-Mg-O-H及氢氧硅链相比,水分子减少了。每形成一个镁氧硅链即可减少一个水分子。由于排出的水量减小,降低了镁质产品烘烤过程中开裂的可能性。同时由于MgO 颗粒被镁氧硅链互相连接起来,从而提高了产品的强度。最终选取SiO2超微粉作为镁质浇注料的结合剂进行具体的实验分析。 3 镁质浇注料的配比优化 3.1 硅微粉加入量的选择 试验用原料为95中档镁砂,挪威ELKEM公司生产的牌号为U920的二氧化硅微粉,其化学组成见表1。根据Andreasen方程MgO颗粒临界粒径选为8 mm,将级配不同的MgO颗粒和SiO2超微粉按照

铝镁尖晶石浇注料施工总结

铝镁尖晶石浇注料施工总结 中间包铝镁浇注料,钢包铝镁浇注料,都是铝镁尖晶石,还有含钢纤维的铝镁浇注料。这些都是钢厂经常会用到的主要工作层耐火材料。由于他在施工时比较方便,收到钢厂朋友的欢迎,不过,有时候会因为条件的变化,出现一些问题,这些都是经过我们耐火材料长期现场试验总结出来的,分享给大家,以便大家不走弯路。 一、铝镁尖晶石施工中出现的问题及解决办法 凝固时间是影响铝镁浇注料施工的一个重要因素。环境温度对铝镁浇注料的凝固时间影响很大,特别是在夏季,当环境温度超过35℃时,铝镁浇注料趋于速凝,给浇注施工带来了一系列问题: (1)增加了职工的劳动强度。当环境温度高,浇注料凝固时间缩短时,浇注料自身流变性变差,特别是当浇注料速凝时,从搅拌机放出的浇注料来不及进入包内,在包胎上平面和流槽内已凝固,将浇注料送入包壁内的劳动强度增大; (2)影响使用寿命。在炎热的夏季,工人为增加浇注料的流动性往往多加水,由于用水量的增加造成浇注料烘干后气孔率增加,强度降低。另外,在环境温度超过40℃时,即使多加水,浇注料仍有速凝趋势,从而使强度降低,影响使用寿命; (3)脱胎困难。正常情况下,钢包浇注完毕,要放置24h才脱胎。但在炎热的夏季,由于浇注料凝固时间缩短,使浇注料和包胎紧紧粘在一起,造成脱胎困难。 因此,无论从降低工人劳动强度出发,还是给浇注施工创造一个良好条件,提高浇注料的使用寿命,减少使用事故,都有必要从根本上调整铝镁浇注料的凝固时间,使之满足现场的使用要求。经过一段时间的研究,发现木质素磺酸盐能改变浇注料的凝固时间,使铝镁浇注料的初凝时间即使在环境温度超过35℃时,也能延长到30min以上,彻底解决了铝镁浇注料在夏季凝固时间短的问题。需要注意的是,铝镁浇注料的凝固时间与木质素磺酸盐的加入量有关系,在满足施工要求的前提下,其加入量越少越好。另外随着季节的变化,其加入量也要作相应的调整,一般夏天加入量大,冬天少加甚至可以不加。如果冬天加入较多的木质素磺酸盐,由于铝镁浇注料的终凝时间延长,按正常操作脱胎时,就会造成塌料现象,这时反而是有害的。 二、铝镁尖晶石使用时出现的问题及解决办法 1、裂纹 铝镁浇注料在使用中出现裂纹,降低了使用寿命,其现象是:当钢包用到5炉次时,包内壁开始出现裂纹,布满整个包壁,随着使用次数的增加,裂纹变深变宽,当用到20多炉时,只好被迫停用。为解决浇注料裂纹问题,曾试验过以下一些方法: (1)将竖窑煅烧的率矾土熟料更换成由倒焰煅烧的铝矾土,这样矾土的烧结性和体积密度都增加了,认为可减少由于矾土煅烧不完全而在使用过程中重新烧结所造成的体积收缩,但没有成功; (2)认为裂纹和浇注料内细粉总量多有关,试着将浇注料内的细粉减少到30%(质量分数)以下,最低到25%,也没能解决问题;

高性能钢包耐火材料用镁铝尖晶石

高性能钢包耐火材料用镁铝尖晶石 Raymond P.Racher Almatis Inc. 501West Park Road Leetsdale,PA15056,USA Robert W.McConnell Almatis Inc 4701Alcoa Road Bauxite,AR72011USA Andreas Buhr Almatis GmbH, Olof-Palme-Str.37, D-60439Frankfurt/Main Germany 摘要 优质钢的生产要求钢在钢包中进行更多的处理。这对钢包用耐火材料有显著的影响,例如需要透气砖等高性能功能耐火材料。增加出钢温度,较长的停留时间,侵蚀性更强的二次冶炼等操作的改变要求耐火材料衬更薄,寿命更长。这些综合因素重新唤起了对镁铝尖晶石研究的兴趣。 镁铝尖晶石已经作为各种类型用于炼钢用耐火材料很多年了。本文阐述了尖晶石的生产、理化性能和使用性能,也讨论了尖晶石应用的进展情况。 1 引言 本文讨论了镁铝尖晶石的结构、性能和应用,尤其描述了镁铝尖晶石在生产洁净钢用耐火材料上的优点。 镁铝尖晶石由于强的抗渣侵蚀性、优良的抗热震性和高温强度高等特点,越来越多的被应用于炼钢用耐火材料。20世纪60年代中期最初生产的尖晶石耐火材料是通过氧化铝和镁砖中的方镁石的原位反应制备的,用于水泥窑的内衬。高质量的预合成尖晶石使得发展优质不定形耐火材料和耐火砖成为可能。 2 性能 2.1 结构

镁铝尖晶石是具有相同晶体结构的氧化物中的一种,这种晶体结构称为尖晶石结构。尖晶石组有二十多种氧化物,但只有很少数是常见的。尖晶石组的结构式是AB2O4,这里A代表二价金属离子,例如镁、铁、镍、锰和/或锌,B代表三价金属离子,例如铝、铁、铬或锰。除非特别指明,本文的尖晶石表示MgAl2O4,矿物尖晶石是二元系统MgO–Al2O3的唯一化合物。 尖晶石族矿物的明显特征是,它是一种组分可被替代的固溶体,尖晶石组分中一种或两种都可以被这组矿物中的其他组分大量的代替,而且是在晶体结构不改变或晶格没有任何变形的情况下。镁离子和铝离子都可被较小尺寸的其他离子代替,保持电化学平衡。因此尖晶石族矿物有很多种固溶体。另外,随温度的增加,MgAl2O4相区域增加,尤其是朝着氧化铝含量较高的方向增加。通过这个结构中金属离子和氧离子的空位保持电化学平衡。以后将讨论这一特征,它在尖晶石抗钢渣的侵蚀上起很重要的作用。 2.2 物理性能 镁铝尖晶石的熔点是2135℃,是熔点较高的耐火材料。表1是MgO、Al2O3和尖晶石相的体积密度、热膨胀系数和热导率的对比。这些相在热膨胀系数上的差别体现出尖晶石优异的抗热震性。MgO和Al2O3生成尖晶石时,密度下降,体积增加,这使我们想到了技术应用上,例如生产浇注料,在浇注料里,MgO和Al2O3原位反应生产尖晶石。在下面的文章里,我们将更加详细的讨论这些效应和它们对使用性能的影响。 表1尖晶石,MgO和Al2O3的热性能和物理性能[1] 尖晶石MgAl 2O 4 方镁石MgO刚玉Al 2 O 3 体密(g/cm3) 3.58 3.58 3.99 热导率(W/m·K) 5.97.1 6.3 热膨胀系数 (dL/L.K.10^6)7.613.58.8

刚玉浇注料的配方

刚玉浇注料的配方 1、刚玉浇注料的使用现状 刚玉浇注料是我们公司镁碳砖包配套座砖周边的用料,根据反馈--损毁原因是被冲刷掉的,在钢包的使用后期刚玉料比座砖凹陷了,造成该料不耐用的原因有原料结合强度过低、经过钢水高温作用材料烧结不好。 2、刚玉浇注料的改进方案和数据采集 2011.8.2日起我们对当前公司生产的钢包座砖周边刚玉浇注料做了分析检测。采用配方有3个,一个是我们一直用的生产配料配方(定为3#样),另两个配方是根据现有原料制订的(分别定为1#和2#样)。 配方如下: 刚玉浇注料配方1# 刚玉浇注料配方2#

刚玉浇注料现2011.8.1日前生产3#小样 利用实验室现有条件分别做样测得结果如下:1# 实验数据和日期

2# 实验数据和日期 3# 实验数据和日期 2#配方 2011.8.8再次做样结果(该表未列入对比表)

3、三个配方的抗折和耐压强度比较 4、数据分析: 在配方成本上,根据我们公司购进原料的价格1#、2#和3#配方原料的堆积成本价格分别是4858.4元/吨、4856.4元/吨和4736.3元/

吨,成本相差80元/吨,也就是说我们修改过的配方成本比原来正常生产的配方成本增加了80元/吨,对此我们在以后的时间里重新再优化、来降低成本。 在综合性能上包括施工时间3个配方基本上都能满足现场施工的时间要求、原料搅拌需水量1#需水最少、2#需水也少、3#则相对的多些,当水分增加1%时材料的体积密度会增加3%,综合考虑干燥和1000℃烧后3个配方的检测值,2#配方仍然是表现的更稳定和优越一些。 在材料选择上1#和2#都加入了超细氧化铝微粉、硅微粉,使得材料在中温阶段就得到了较好的烧结结合,这样就提高了材料在使用初期阶段的耐冲刷性能。 在1#和2#配方中还减少了铝酸钙水泥的用量(3#配方中用了80水泥13%),这对提高材料高温性能和提高材料中温强度都是有利的。 综合上述情况我们选择了2#配方作为用于生产的配方,于2011.8.8日生产了该料5吨,于2011.8.12日发往1吨。 有些重要指标我们还没有参考,如现场状态、使用残样,材料的高温短时间的性能状态、一些原料的性能可靠性等,这些都有待以后实施。 科泰提供

刚玉尖晶石浇注料产品标准

ICS 济南钢铁集团耐火材料有限公司企业标准 刚玉尖晶石浇注料 济南钢铁集团耐火材料有限责任公司 发布 Q/JGNC

前言 本标准根据我公司实际情况并结合顾客的需求而制定,本标准规定了刚玉尖晶石浇注料的理化指标、技术要求、试验方法等。 本标准由济南钢铁集团耐火材料有限责任公司提出。 本标准由济南钢铁集团耐火材料有限责任公司科技质量部负责起草。 本标准主要起草人:赵吉玲李畅。

刚玉尖晶石浇注料 1 范围 本标准适用于刚玉尖晶石浇注料。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5069-2007 镁铝系耐火材料化学分析方法 YB/T5202.1-2003 不定形耐火材料试样制备方法第1部分耐火浇注料 YB/T5200-1993 致密耐火浇注料显气孔率和体积密度试验方法 GB/T3001-2007 耐火材料常温抗折强度试验方法 GB/T5072-2008 耐火材料常温耐压强度试验方法 GB/T5988-2007 耐火材料加热永久线变化试验方法 3 技术要求 3.1 尖晶石浇注料的理化指标应符合表1的规定。 4 试验方法 4.1 试样制备按YB/T5202.1-2003的规定进行。 4.2 化学分析按GB/T5069-2007的规定进行。 4.3 体积密度的检验按YB/T5200-1993的规定进行。 4.4 常温抗折强度的检验按GB/T3001-2007的规定进行。 4.5 常温耐压强度的检验按GB/T5072-2008的规定进行。 4.6 线变化率的检验按GB/T5988-2007的规定进行。 5 检验规则 5.1 产品交货发运前应分批取样检验,批重不超过50t。

浇注料的使用

产品名称 高强耐碱浇注料抗结皮浇注料 牌号 GT-13NL GC-13 化学成分 (%) AL2O3 <48 ≥78 SiC SiO2 >45 SIC:40-60 最高使用温度(℃):≥1300 1300 体积密度(Kg/m3)110℃×24h ≥2.10 ≥2400 耐压强度 (MPa) 110℃×24h≥ 70 100 1100℃×3h≥ 70 100 1500℃×3h≥

抗折强度 (MPa) 110℃×24h≥ 7 ≥8 1100℃×3h≥ 7 ≥9 1500℃×3h≥ 线变化率(%) 1100℃×3h -0.1~-0.5 ±0.4 施工参考用水量(%) 6~7 6~7 施工方法 振动 产品名称 高强耐碱水泥浇注料高铝质高强耐火浇注料 牌号 GT-13NL G-16 化学成分 (%) AL2O3 <48 ≥78

SiC SiO2 >45 ≤15 最高使用温度(℃):≥1300 1600 体积密度(g/cm3)110℃×24h ≥2.10 ≥2.65 耐压强度 (MPa) 110℃×24h≥ 70 100 1100℃×3h≥ 70 100 1500℃×3h≥ 抗折强度 (MPa) 110℃×24h≥ 7 10 1100℃×3h≥ 7 10 1500℃×3h≥ 线变化率(%)1100℃×3h

-0.1~-0.5 ±0.3 施工参考用水量(%) 6~7 5.5~ 6.5 施工方法 振动 产品名称 高铝质钢纤维高强耐火浇注料高铝质高强耐火浇注料 莫来石刚玉质浇注料 牌号 HN-16E HN-16F HN-PA80 化学成分 (%) AL2O3 ≥75 72 ≥80 SiC ≥5 SiO2 ≤15 20 最高使用温度(℃):≥ 1600 1500

关于耐火浇注料的常用知识

耐火浇注料的常用知识 浇注料作为一种新型的耐火材料,其主要特点在于具有较高流动性,适用于以浇注方式成型的不定形耐火材料,同其他不定形耐火材料相比,结合剂和水分含量较高,流动性较好,故而不定型耐火材料应用范围较广,可根据使用条件对所用材质和结合剂加以选择。既可直接浇注成衬体使用,又可用浇注或震实方法制成预制块使用。 1、问:什么是浇注料? 答:浇注料是一种不定性耐火材料采用支模浇注振捣的施工方式可以排出材料中的气泡可以达到致密。 2、问:浇注料应用的领域? 答:建材行业(水泥玻璃陶瓷等)、石化行业、电力行业、冶金行业、有色金属及其使用工况类似的高温窑炉。 3、问:浇注料施工过程中加水量是否严格控制? 答:必须严格控制,严格按照产品施工说明书执行。 4、问:浇注料在夏季施工过程中应注意什么问题? 答:应注意以下问题: a、浇注料严禁暴晒应做遮阳处理 b、搅拌用水温不得超过25度 c、施工部位也应做遮阳处理有条件可在设备外壁做喷水降温处理 5、问:浇注料在冬天施工中应注意什么问题? 答:应注意以下问题: a、最好在有顶棚的车间中施工 b、若无条件可在现场搭棚保温 c、采用温水搅拌水温30度-50度 6淄博宇能窑炉科技有限公司,兴建于1985年,位于耐火原料基地,是专业生产不定型耐火材料及保温材料的厂家,主要产品有高铝砖、粘土砖、磷酸盐结合耐火砖、循环流化床锅炉用配套耐磨砖、高强度耐磨浇注料、保温耐火浇注料、保温砖、高铝骨料、硬质粘土熟料,及各种不定型耐火材料等品种齐全,质量优价格低 7、问:浇注料如何保存? 答:浇注料应保存在有顶棚的库房中并且下面要做防潮层不得淋雨受潮 8、问:浇注料施工完毕如何养护? 答:水硬性浇注料采用保湿养护24小时再自然养护24小时即可对于特殊大水泥量的传统水硬性浇注料保湿养护48小时对于热硬性浇注料养护过程中不得沾水,相对湿度应在85%以下对于水硬性浇注料的自然养护即可,具体按产品说明书执行。 9、问:浇注料如何烘炉? 答:浇注料一般烘烤制度严格按照产品说明书执行,以防不正确烘炉造成的不良后果。

耐火浇注料如何选择

耐火浇注料根据抗化学侵蚀不同分为酸性、碱性、中性浇注料;根据体积密度分为重质浇注料和轻质浇注料;根据使用材质分为硅酸铝质、镁质、镁铬质、刚玉质浇注料等。种类很多,在没有明确的指标、使用温度的情况下,很难做出选择。下面,就具体的选择方法给大家分享一下,以便大家进行参考。 1.需要满足窑炉的使用要求 该产品都有一定的使用部位,使用要求,在选择时要根据浇注料的特性去选择。如接触高温火焰的部位要选择耐高温性浇注料、接触高温溶液的部位要选择耐高温、抗渗透性强的浇注料、接触熔渣的部位要采用抗熔渣化学侵蚀性强的浇注料、接触各种物料冲击摩擦的部位采用高强度耐磨的浇注料、温度变化频繁的部位要采用抗热震性优良的浇注料等等,在选择时一定要满足主要的使用条件。 轻质耐火浇注料的主要使用部位就是隔热保温、降低承重结构、降低炉壳温度、减少热量损耗,从而达到节能效果。 2.成本的考虑

在确定选择哪种耐火浇注料后,还要从经济上降低成本。如使用温度在1500℃的部位,在浇注料能满足工况的条件下,就不去选使用温度大于1600℃的浇注料;耐磨损部位采用高铝矾土熟料为主要材料能满足耐磨性要求的情况下,就不去选择以刚玉为主材料的浇注料。主要原因是耐火浇注料价格是根据使用的主材质含量不同而定价的,价格相差较大,没有必要为了最求更高品质而忽视经济条件。尤其是日常损耗的部位对这一要求就显得特别重要。 3.粒度选择 耐火浇注料施工的部位有厚有薄,采用的颗粒大小配比比例也是不同的。比如浇注厚度大于100mm的内衬,需要加入的大颗粒粒径骨料就比较多,以提高结构强度和耐磨性,浇注或涂抹厚度10mm的部位,大颗粒骨料就使用较少,避免加入大骨料使之凸出衬体,不仅影响外观,而且在使用效果上大颗粒易磨损,容易造成衬体出现坑洞,进而影响使用寿命。浇注厚度不同可采用浇注法施工或涂抹法施工,因此耐火浇注料的颗粒大小的选择也是比较重要的。

耐火材料结合剂的6大结合机理及选用原则

耐火材料结合剂的6大结合机理及选用原则 耐火材料结合剂的结合机理 结合剂的种类不同,其结合散状耐火原料的机理也有所区别。常见耐火材料结合剂的结合机理主要有以下几种: 1 水化结合 即在常温下通过结合剂与水发生水化反应生成的水化产物而产生结合作用。水泥类结合剂一般都是水化结合机理,如铝酸钙水泥遇水后发生水解和水化反应生成六方片状或针状CAH10(CaO·Al2O3·10H2O)、C2AH8(CaO·Al2O3·H2O)和立方粒状C3AH6(3CaO·Al2O3·6H2O)晶体和氧化铝凝胶体,形成凝聚一结晶网而产生结合。 2 化学结合 通过结合剂与硬化剂(促凝剂)之间的反应,或者结合剂与耐火原料在常温或高于常温而低于烧结温度的范围内发生反应生成具有结合作用的化合物而产生结合。气硬性结合剂和部分热硬性结合剂属于这种结合机理,例如水玻璃结合剂与氟硅酸钠硬化剂发生反应生成的水溶胶SiO2·nH2O经脱水形成硅氧烷(Si-O-Si)网络结构而产生结合强度;

磷酸二氢铝结合剂加MgO硬化剂时,在常温下即可发生脱水和交联反应而产生结合强度。 3 缩聚结合 借助于催化剂或交联剂,结合剂发生缩聚反应形成网络状结构而产生结合强度。例如甲阶酚醛树脂加酸作催化剂或受热时都可产生缩聚反应。 4 陶瓷结合 通过耐火原料或耐火原料与加入的烧结助剂在高温下形成的液相而产生结合。陶瓷结合实际上是一种由液相烧结而产生的结合。在耐火材料坯体中,耐火度较低的原料或耐火原料与助烧剂发生反应首先产生粘性液相使散状原料粘结在一起,随温度的提高,依靠液一固相反应生成具有更高熔融温度的新物相而产生坚固的结合。 5 粘着结合 借助于吸附作用、扩散作用和静电作用等物理作用而将散状耐火原料结合在一起。吸附作用有物理吸附和化学吸附,是依靠分子间的相互作用力一一范德华力而产生结合;扩散作用是在分子热运动的作用下,结合剂与被结合物的分子发生相互扩散,在界面上形成扩散层从而产生结合:静电作用,即若结合剂与被结合物的界面存在着双电层,

相关文档
最新文档