精细控压钻井井底压力自动控制技术初探

压力控制器说明书

4150K、4160K系列Ⅱ压力控制器和变送器 说明 操作范围 本节介绍4150K、4160K系列2压力控制器和变送器(图1)的安装、操作、维护和部分信息,详细内容见阀门、执行器部分。 任何人在安装、操作和维护此套设备前,必须(1)进行全面培训,对阀门和执行器应有一定了解。(2)详细阅读本说明书,若有其它问题,请与Fisher销售部联系。 介绍 4150K、4160K系列2压力控制器和变送器使用波纹管或Bourdon管检测单元检测气或水表压力、真空、复合压力或差压。控制器和变送器的输出为气压信号,可用于操作控制单元、指示装置和记录装置。 规格 4150K、4160K系列2压力控制器和变送器的规格见表1、表2。 表2 适用类型 安装 警告:为避免由于压力释放而引起的人身伤害或财产损失必须: ?穿防护工作服带眼罩,戴手套 ?检查测量过程中是否可能为过程介质所伤害 标准安装 如图1所示,此套设备必须垂直安装,若为其它方向必须如图3所示保证排气孔向下。 适用类型 见表2 输入信号

类型:表压、真空、复合压力、差压 范围:表3或表4 第4页 输出信号 纯比例或比例加积分控制器和变送器输出信号均为0.2-1.0bar(3-15psig)或0.4-2.0bar(6-30psig)气压信号。 微分控制器 0和1.4Bar(3和15Psig)或0.4和20Bar(6和30Psig)气压信号。 作用 正作用:检测压力增加,输出信号增加。 反作用:检测压力增加,输出信号减小。 所需压力源 见表5 第7页 稳定状态下的气耗量见第7页图2 输入和输出的连接使用1/4英寸的阴制NPT 压力单位的换算见第7页表6 比例带调整 纯比例和比例加积分的控制器:对0.2-1.0Bar(3-15Psig)满量程压力输出变化为3%-100%可调,对0.4-2.0Bar(6-30Psig)满量程压力输出变化为6%-100%可调。 积分调整 比例加积分控制器:从0.01-74Min/Repeat可调(100-0.01Repeat/Min) 零点调整 检测单元范围内,定位量程在100%之内可调。 量程调整 检测单元满量程压力输出变化从6-100%可调。 特性 重复性:检测单元范围的0.5% 死区(微分控制器除外):输出范围的0.1% 100%比例带快速响应 执行器的输出:0.7Hz 波纹管控制器的输出:9Hz 操作环境温度 标准环境:-40-71℃(-40-160F) 高温环境:-18-104℃(0-220F) 环境温度的影响

气罐压力控制系统

过程控制仪表课程设计 题目: 学生姓名: 班级: 学号: 指导老师: 2010年12月30日

一、系统简介 气罐是工业生产过程中常见的装置和设备,其主要作用是存储生产过程中的气体,它是一种压力容器。气罐中的压力关乎整个生产过程的安全,因此对气罐压力的控制显得非常重要。气罐在生产过程中不是一个很复杂的控制对象,其输入量是输入气体流量,输出量是输出气体流量,是一个单输入单输出设备,而气罐中的气体压力则是我们主要控制的目标。 二、控制方案简介 本设计是以控制气罐中的压力为目的的控制系统。气罐是一个单输入单输出系统,因此在保证一定的安全性和经济性情况下,采用简单的单输入单输出控制方案即可满足要求。 气罐压力控制系统如图1所示,该方案采用了最简单的单回路闭环控制系统,系统中只有一个调节器。控制系统方框图如图2所示,其主要由压力变送器、控制器、执行器和被控对象(气罐)组成。压力变送器实时检测气罐中的压力,并将其转换成相应的信号,然后将其输入到调节器的信号测量端,与调节器的给定值进行偏差计算,偏差信号在调节器中进行PID运算,输出相应的信号到执行机构,按偏差方向调节阀门的开度,直到被控压力稳定在给定值。 图1.气罐压力控制系统 图2.气罐压力控制系统框图

该压力控制方案中,统一采用DDZ-Ⅲ型系列仪表,仪表间传输信号为4—20mA直流电流信号,抗干扰能力强,误差小,利于远传。 三、仪表选型 1、调节器选型 1)型号:KSC5-AH智能PID调节仪。 KSC5系列智能PID调节仪与各类传感器、变送器配合,可实现对温度、压力、液位、成分等过程的测量、变换、显示、通讯和控制。采用先进的PID智能控制算法,抗超调,具备自整定功能。误差小,并具备调校、数字滤波功能,可帮助减少传感器、变送器误差,有效提高测量、控制精度。适用于电压、电流、热电阻、热电偶、mV、电位器、远传压力表等信号类型。 2)参数 ①输入 电流:4~20mA、0~10mA、0~20mA可通过设定选择 电压:1~5V、0~5V可通过设定选择 热电阻:Pt100、Cu100、Cu50、BA1、BA2、G53可通过设定选择 热电偶:K、S、R、B、N、E、J、T可通过设定选择 ②调节方式 连续PID调节 位式PID调节 ③精度 测量周期:0.3s 控制周期:0.3s~75.0s可设置 测量精度:±0.2%F·S±1个字,自动对温漂、时漂进行补偿 测量分辨率:1/16000、14位A/D转换器 显示范围:-1999~9999 热电阻输入导线电阻:小于20Ω 热电偶输入冷端补偿范围:0~60℃,精度±1℃ 设定精度:与显示值一致无相对误差

高压气井动态控压固井新技术及应用

高压气井动态控压固井新技术及应用 发表时间:2018-11-14T20:39:03.023Z 来源:《基层建设》2018年第28期作者:陈婉怡 [导读] 摘要:钻井过程中井底压力的稳定是保障井控安全的基础,但是由于地质条件可预知性差,特别是在窄安全密度窗口地层中,钻井过程中的起下钻、活动钻具、接单根以及泵入排量的变化均会引起较大的井底压力波动,导致井漏、井涌等问题,增加非生产时间,导致勘探开发费用大幅度提高。 中海油田服务股份有限公司天津 300459 摘要:钻井过程中井底压力的稳定是保障井控安全的基础,但是由于地质条件可预知性差,特别是在窄安全密度窗口地层中,钻井过程中的起下钻、活动钻具、接单根以及泵入排量的变化均会引起较大的井底压力波动,导致井漏、井涌等问题,增加非生产时间,导致勘探开发费用大幅度提高。常规的钻井工艺过程中,主要通过改变钻井液密度实现环空压力的控制,但该处理措施一般耗时较长,容易使复杂情况恶化,而且需要额外的钻井液添加剂,增加了作业成本;另外,在窄密度窗口地层(如裂缝性漏失地层)中钻进时,安全钻井液密度窗口往往不到0.02g/cm3,而环空循环摩阻通常在0.03-0.15g/cm3之间,因此极易发生开泵漏失、停泵溢流的复杂情况。为此,文章对高压气井动态控压固井新技术及应用方面进行分析,具有重要的现实意义。 关键词:动态控压;新技术;固定 引言:控压钻进是实现井底压力快速地稳定在安全钻井液密度窗口内的重要钻井工艺技术,自动节流管汇是实施该技术的关键。综合考虑控压钻井工艺要求和海上钻井平台面积有限的局限性,设计一种具有层式空间结构的撬装自动节流管汇,并配套设计液压控制系统。该自动节流管汇是一套集压力、流量、温度等参数采集和井口回压控制于一体的自动化系统,具有节流控压、压力补偿、放喷、流量和压力监测等功能,而且优化了阀件布置,大大降低了整套设备的占地面积,提高了设备通用性,为海上控压钻井技术的应用和设备配套提供了借鉴。 一、控压钻井节流控制原理 常规钻井主要通过调整钻井液密度,继而改变静液柱压力,实现井底压力的改变,但该处理方法一般耗时较长。考虑在井口处施加一定的回压,通过改变也能起到改变井底压力的目的,这就是所谓的控压钻井,由于压力改变为机械波传播速度,井底压力调控速度较快。控压钻井的实质是在井口处安装一定的节流装置,通过对井底压力的实时监测、水力参数的分析计算,对节流装置的开度进行精确调整,改变钻井液流过该装置时产生的节流压差,从而在井口环空处的产生一定的回压,最终影响井底压力。控压钻井自动控制的对象是回压值。根据钻井过程中钻井液的循环状态,钻井施工可以分为钻进或循环、停泵、开泵和停止循环四种工况,为了实现不同工况下的安全高效钻进,有必要保持井底压力的恒定。 二、控压钻井自动节流管汇设计 自动节流管汇是控压钻井技术的执行机构,决定着控压钻井作业的成败。在钻井过程中,由于受钻井工况、设备及施工操作等因素的影响,井眼环空压力经常发生变化,并且各影响因素(如井眼轨迹、钻压、转速)之间相互关联、相互作用。要实现井底压力的快速准确控制,必须具备一整套集压力、流量、温度等参数采集和井口回压控制于一体的自动节流管汇,要求该管汇具备以下基本功能:第一,正常钻进时,能够利用节流作用在井口套管环空处形成回压;第二,停止循环时,能够利用回压泵形成小循环,在井口环空处形成回压;第三,能够实时准确监测钻井液返出量;第四,发生紧急情况时,具有放喷功能。由于海上钻井平台面积有限,为了节省管汇安装空间和满足海上控压钻井的需要,作者采用了层式空间撬装结构设计,顶层包括液动节流阀A、液动节流阀B、1个流量计、3个四通和2个手动板阀;中间层包括液动板阀A和3个手动板阀;底层包括液动板阀B、手动板阀C、手动板阀D、5个四通、1个单向阀、1个岩屑过滤装置和1个压力传感器。管汇与外部设备及管汇内部设备间的连接及安装如下图所示,顶层和中层的设备按图中箭头所示向上翻转,该管汇与控制柜等配套设备安装在撬装底座上,结构合理而紧凑,不仅满足了节流、压力补偿、流量监测和放喷等工艺需要,而且便于运输安装及海上平台安装使用,有效节省管汇占地面积(中石油钻井院研制的精细控压钻井自动节流管汇占地面积14.63m2,与其相比减少近5m2),扩展了控压钻井的应用范围。 节流管汇示意图如下: 为了适用于海洋平台环境及场地要求,该液控系统的高压管路材质选用316L不锈钢,集中组装在控制柜内,与节流管汇一起安装在撬装底座上。该系统额定工作压力为10.5MPa,采用一台气动液泵和一台手动泵为系统提供液压源,通过蓄能器为系统保压,以维持各阀的正常工作及换向关闭,而且能够实现超压(≥23.5MPa)自动排放功能,以维持各阀的正常开启。该系统可通过远程自动控制、本地手动控制两种模式精确控制两只液动节流阀和两只液动平板阀的开关,而且为了保证操作安全,远控和手动控制具有互锁功能。第一,远程控制模式。通过计算机采用电控液方式控制高压液压油导通或关闭,从而对管线系统进行控制,实现对两只液动节流阀和两只液动平板阀开关的远程控制。第二,本地手动控制模式。若计算机控制系统出现问题,可以通过控制柜面板手动调节节流阀开度和平板闸阀的开关,本地控制采用液动换向阀直接控制液压回路,实现通道的切换和阀门开度的调节。自动节流管汇液控系统的回路设计主要包括气体回路、节流阀控制回路、平板阀控制回路。其中,气体回路。气体回路采用干净干燥的压缩气体,主要用于驱动气动液体增压泵的启停、调节气动增压泵的输出压力等。节流阀控制回路。节流阀控制是整个液控系统设计的关键,需要确保钻进期间井底压力的伺服控制。管汇中有两个液控节流阀YJ1_top和YJ2_top,要求能够同时对两个节流阀进行独立控制,因此,设计了两个相同的节流阀控制回路。自动控制时,节流阀阀位传感器接收信号,计算机自动控制比例电磁阀的阀芯开口度,调整高压液体的流量,可实现管汇节流阀开大或关小的速度及位置。现场手动控制时,能够手动控制三位四通换向阀,可控制高压液体进入节流阀上腔(或下腔),同时节流阀下腔(或上腔)的回油流回回液

DLPCS-YL02压力控制实训系统技术文件20161219

旗开得胜 1 DLP CS-YL02 压力控制实训系统 技术文件 、产品功能和概述 该培训师提供了一个全面的实验,介绍了控制工程的基本原理,使用压力 控制的例子。空气压力控制系统是一个第二阶系统。 它包括一个由流量控制阀连 接的直列式压力容器。另一个罐上的附加阀使空气尽可能用以模拟一个扰动变量。 压力传感器测量二船的压力。所使用的控制器是一个国家的最先进的数字工业控 制器。回路中的执行器是气动控制阀的标准电流信号输入。控制变量 X 和操纵 ** J'" 读万卷书行万里路 * 二 亠-? — - 一$

旗开得胜变量y是直接绘制在集成双通道线记录仪。另外,该变量可以被窃听作为模拟信 号在开关柜的实验室插孔。这使得外部录音设备,如示波器或平板绘图仪。 ? ^±45 知 、实训项目 智能仪表的认识及应用自动记录仪的认识及应用气动调节阀的认识及应用压力 传感器的认识及应用压力PID控制系统应用 通过系统训练使学生掌握以下技能: 过程控制的应用了解电器元件怎样选型应用各类传感器的应用电气原理图的设 计及元器件符号的标准要求各类传感器的安装及灵敏度的调整,了解怎样判断传 感器的好坏及事故处理办法; %、 2 读万卷书行万里路

旗开得胜 3 J'"读万卷书行万里路 系统的调试工艺:试机运行;机械位置的调试;传感器的调试; 设备的故障诊断及维修 三、技术参数 2、环境温度: 四、主要配置 1、电气部分 1、输入电源: 单相三线制AC220V ±10% 50Hz 操作电源: DC24V 3A 气源压力: 0-6bar 环境湿度: <90% (25 C) 3、外形尺寸: 1000x700x1750mm (长X 宽X 高) 4、整机容量: < 1.5KVA

控压钻井技术规程

控压钻井技术规程 一、打开油气层前准备 1、打开油气层前要进行控压技术交底(交底内容:地质、工程、钻井液和井控装备、控压措施等方面);技术交底由钻井监督和地质监督组织,预测地层硫化氢含量高地层压力异常井有有项目部井控专家组织,井队、录井、泥浆、控压、定向井及井控专家等相关人员参加,可以在钻开油气层验收时进行。交底要以本井钻井、地质设计和本井实际情况为依据,全面分析可能存在的井控风险,制定有针对性的技术措施和应急预案,并形成本井控压钻井作业指令书由井队遵照执行。如油田有新的规定,按油田规定执行。 2、由项目经理部依据设计确定钻开油气层的密度。 3、对井控装备、硫化氢检测与防护、泥浆材料、重浆及除硫剂的储备、人员配备、井控专家到井情况、应急预案及演练、钻开油气层提出问题的整改情况等进行全面检查合格后,方可打开油气层。 4、根据邻井实钻情况,预测油气显示层位井深,在钻开显示层前要预先在钻井液中加入2%的除硫剂进行预处理,并维持出口钻井液的PH值为11以上,现场除硫剂储备不少于5吨(以设计为准),新浆补充须符合钻井时的PH值和除硫剂的含量; 5、根据钻井井控实施细则或钻井设计的相关规定,现场确保储备比重1.40g/cm3以上重浆有效量80m3以上,石灰石储备100吨以上(以设计为准)。 6、强化泥浆和录井坐岗监测制度,无论任何作业工况,钻井班

都必须落实专人24小时坐岗,观察钻井液池液面变化和钻井液出口情况,确保第一时间发现溢流,迅速准确关井,并按汇报程序汇报。 7、奥陶系目的层作业,钻具内必须带两只浮阀(MWD接头前和出套管鞋安装),起钻前必须在井底充分循环(一周半以上)进出口钻井液密度差不超过0.02g/cm3正常后方可进行起钻作业,油气层以上300m严格控制起钻速度,起钻必须按起出钻具体积(闭排)的1.5倍挤灌井浆。地质录井队人员和泥浆坐岗人员必须依次记录灌入量,并核对与起出钻具体积是否相符,同时要观察灌钻井液的间隙中出口管是否断流等情况。 8、钻进中若遇到钻速突然加快、放空、气测及油气水显示异常等情况,立即停钻观察,泥浆工和录井队加强液面的监测。如出现井漏失返,立即吊灌起钻(吊灌量是起出钻具体积的1.5~2倍),起到套管鞋,关井观察,泥浆工和录井核对好灌入量。 二、常规控压钻井技术措施 1、打开油气层关井观察15分钟后,如果套压≤5 MPa,直接进行常规控压作业,井口控压值≤5 MPa;若井口套压>5MPa,可请示提高钻井液密度,利用工程师法节流循环压井,降低井口压力,最终井口控压值≤5MPa,液面基本稳定,进行常规控压钻进。 2、控压循环或钻进期间在钻井液中及时增加除硫剂含量,保持钻井液的PH值为11以上,维护钻井液性能;井口控压不大于5MPa 以微过平衡方式继续控压钻进,出口点火,专人监测空气中H2S含量。如果钻井液中H2S含量在一个迟到时间内大于20PPm时,立即进行

精细控压钻井在塔里木塔中油田的应用

精细控压钻井在塔里木塔中油田的应用——郭庆丰 深井、复杂井钻井技术专场: 中国石油集团钻井工程技术研究院郭庆丰演讲——精细控压钻井在塔里木塔中油田的应用 尊敬的主持人,各位专家上午好。我是来自中石油钻井院的郭庆丰,很荣幸有这个机会把我们院的精细控压的研究和应用情况跟各位专家汇报。 我汇报分为五个方面,首先对控压钻井技术,包括它的国内外的一些应用和发展情况做一个简要的概况。这一段就是IDC对控压钻井的定义,首先控压钻井的最终的目的就是控制压力剖面,有两个技术的特征,首先要做到精细控制,第二就是自适应。自适应就是分为两个层面,一个是控压钻井的技术和装备要对井下工况的压力波动的自适应,所以同这个来讲只有具备了这两个特征才是控压钻井技术。 我们钻井从现代钻井开始基本是与压力打交道,所以压力控制是深入到钻井各方面的一个东西。所以这一块我们加了一个精细,就是有别于之前的简单的一些控制。而控压钻井具体要干什么,它主要的核心观念就是为了钻井的安全。这张图很简单的把控压钻井的一些原理说明了一下,因为技术原理很简单,就是因为常规钻井的压力波动超出了我们地层允许的可以称之为窄的窗口,所以说无法进行正常的钻井,带来了一系列的问题,而控压钻井是井底的压力波动曲线,相对于常规的波动它是很小,所以说它在蓝线和黑线的窄窗口中安全的进行钻井。 窄窗口面临的主要地层问题我们总结了六点,窄窗口主要面临就是超高压和含有硫的问题,还有井壁易塌,还有地应力高等。这是因为地质问题导致我们面临的工程问题,也是主要分为了六点。常规我们现在控压解决的核心焦点就是A和B,就是说我们在窄窗口上使用了高密度的钻井液导致了漏失,或者窄窗口上涌漏同存,我们实验中发现同存的可能性很小,基本上是同时存在。 控压钻井的主要作用和优势分为了三个方面。首先控压钻井消失了对井底压力的影响,这样就保证安全施工。第二个是井底的压力极巨见效,调节了密度钻井的空间。因为控压钻井主要是调节井口活压,通过它先进的装备我们可以调节井底的压力,调节状况。它是以一个循环周为计数,它的压力传递是压力波,基本上2秒可以作用到井底。所以对原来出现的一些情况我们就可以解决,这样就解决了原来的风险井、低效井,甚至原有技术不可能打的井我们都可以解决,这是主要分为六个方面。 主要的核心还是针对地层出现的压力体系多,压力异常,包括压力窗口窄的情况。第一个就是压力的敏感地层,上部的异常高、低压,枯竭油气层,深海的海底等等的压力的问题。 从2004年到2007年在北海亚太、墨西哥湾以及中国的南海和西部地区存在的寨口问题相当突出。下面就简要的介绍一下国内外控压钻井发展的情况,从这个曲线可以看到从上世纪60年代已经开始了这方面的应用,但是因为那时候的我们的油漆开采还没有进入到非常

气相色谱的电子压力控制技术

气相色谱的电子压力控制技术 Electronic Pressure Control Technique in Gas Chroma tograph 郭登峰 摘要:在调节气相色谱仪器的诸多性能时,电子压力控制技术能精确控制载气流速。文章叙述了电子压力控制技术在气相色谱中应用的基本原理,并以农药样品分析为例介绍了它在进样和柱分离时的作用。 关键词:电子压力控制气相色谱环境监测 1、引言 高分辨率、高灵敏度、高速度的气相色谱(GC)应用于基体复杂的水、土壤和固体废弃物的监测分析时,通常采用常压程序升温。但由于随柱温上升载气黏度变大,柱流速下降,同时柱流失变大,基线上移,不利于后期的流出。最新的电子压力控制(EPC)系统能自动精确控制载气流速,从而调节仪器诸多性能,以适应环境监测标准分析方法的基本要求。 2、基本原理 EPC系统是由电子压力阀(比例控制阀)、压力传感器和讯号处理板构成的反馈回路。当压力传感器测得气路实际压力与设定值不符时,向讯号处理板输出电压。讯号处理板响应出新电压反馈给比例控制阀,由它调节阀孔开启面积,改变流量。相当高的反馈频率可获得非常平稳的压力实时控制。在用空心毛细管柱分离样品时,EPC系统以程序升温为条件,根据以下关系调节柱头压以提供恒定流量:

如果从GC键盘或化学工作站输入压力和流量参数(柱径、柱长和载气类型),则EPC系统可根据以下关系计算出温度T时的流量和平均线速度,从而进行线性、高次或指数型流量变化的程序控制: 式中, F—流量; μ—平均线速度; r—毛细柱内径; η—载气黏度; L—柱长 t M —死时间; T ref —常温(298.15K); P ref —常压(101.325kPa); P 1 —柱头压; P o —出口压。 当GC检测器出口是101.325kPa、气相色谱/质谱(GC/MS)出口是真空时,P o =0,远小于P 1 , (1)、(2)、(3)式还可化简。此外,EPC系统还有恒压操作、压力编程和真空补偿等操作模式。如果配合填充进样口使用大口径(0.53mm)毛细柱时,可以发挥大体积进样减少样品分解和柱流失的优点。 1、具体作用

常规控压钻井操作规程(修订).docx

塔中常规控压钻井操作规程 一、钻开目的层前准备 1、控压技术交底 技术交底由项目部组织,井队、录井、泥浆、欠平衡、定向井等相关人员参加,在二开中完时进行,以本井钻井、地质设计为依据,结合邻井实钻情况进行交底。 交底内容:预测油气显示层位井深、钻遇裂缝溶洞井段、地层压力、硫化氢含量;邻井钻井情况,可能钻遇的复杂情况等及针对性的技术措施和应急预案。 2、物资器材准备:应在满足钻井设计的前提下,还应满足 (1)钻井液:密度1.40g/cm3×80m3,密度1.30 g/cm3×80m3,坂土浆60 m3,地面循环量150 m3,若罐容不足应增加应急罐。石灰石100吨,重晶石100吨,除硫剂10吨。 (2)内防喷工具:箭型止回阀6只,旋塞4只,浮阀2只。 (3)应急设备:对讲机9部,硫化氢监测仪7台,(其中1000PPm高量程2台),可燃气体监测仪3台,空气呼吸器15套。 (4)700型或1050型压裂车1台(EPCC临时基地值班)。供浆系统1套,具备分别采用砂泵和螺杆泵给压裂车供浆功能。 3、钻开目的层验收:由项目部组织,在进入目的层前100m进行,对井控装备、硫化氢检测与防护、泥浆材料、重

浆及除硫剂的储备、应急预案及演练、技术交底提出问题的整改情况等进行检查合格后,方可钻开目的层。 二、技术操作要求 (一)基本要求 1、钻井液密度:进入目的层前100米调整泥浆密度,泥浆密度值低于设计给定地层压力系数0.02g/cm3。 2、除硫剂和PH值:根据邻井实钻情况,预测油气显示层位井深,在钻开显示层前100~150米,在钻井液中加入1~3%的除硫剂,钻井液的PH值≥10,现场除硫剂储备5吨以上,循环泥浆PH值降低后,应及时提高PH值和补充除硫剂,新浆补充须符合钻进时的PH值和除硫剂的含量。 3、内防喷工具:近钻头安装1只箭回,钻具出套管鞋位置安装1只旋塞+1只箭回(旋塞在下,箭回在上)。 4、反循环压井管线:试压28MPa,冬季做好防冻保温,进入目的层每次起钻完进行吹扫。 5、钻具探伤:进入目的层后,每次起钻对钻具进行探伤,并将井口1000米钻具,倒换至下部。 6、上水罐:保持单罐上水,确保计量快速、准确。 7、点火要求:在建立循环和通过节流管汇观察时,应保持液气分离器排气管出口有常明火。 8、死卡:配套与钻具尺寸相匹配的死卡及固定钢丝绳。当一个迟到时间内H2S持续出现、套压超过10MPa和井内钻具较少时应安装死卡。 9、应急设备:配备对讲机9台,井控专家、值班干部、

钻井新技术及发展方向分析

钻井新技术及发展方向分析 1 钻井技术新进展 1.1石油钻机 钻机是实现钻井目的最直接的装备,也直接关系到钻井技术进步。近年来,国外石油钻机能力不断增强,自动化配套进一步完善,使钻机具备更健康、安全、环保的功能,并朝着不断满足石油工程需要的方向发展。主要进展有: (1) 采用模块化结构设计,套装式井架,减少钻机的占地面积,提高钻机移运性能,降低搬家安装费用。 (2) 高性能的“机、电、液”一体化技术促进石油钻机的功能进一步完善。 (3) 采用套管和钻杆自动传送、自动排放、铁钻工和自动送钻等自动化工具,提高钻机的智能化水平,为提高劳动生产率创造条件。 1.2随钻测量技术 1.2.1随钻测量与随钻测井技术 21 世纪以来, 随钻测量(MWD) 和随钻测井(LWD) 技术处于强势发展之中,系列不断完善,其测量参数已逐步增加到近20种钻井工程和地层参数,仪器距离钻头越来越近。与前几年的技术相比,目前,近钻头传感器离钻头只有0.5~2 m 的距离,可靠性高,稳定性强,可更好地评价油、气、水层,实时提供决策信息,有助于避免井下复杂情况的发生,引导井眼沿着最佳轨迹穿过油气层。由于该技术的市场价值大,世界范

围内有几十家公司参与市场竞争,其中斯伦贝谢、哈里伯顿和贝克休斯3 家公司处于领先地位。 1.2.2电磁波传输式随钻测量技术 为适应气体钻井、泡沫钻井和控压钻井等新技术快速发展的需要,电磁波传输MWD(elect romagnetic MWD tool s ,EM MWD) 技术研究与应用已有很大进展,测量深度已经达到41420 km。 1.2.3随钻井底环空压力测量技术 为适应欠平衡钻井监测井筒与储层之间负压差的需要,哈里伯顿、斯伦贝谢和威德福等公司研制出了随钻井底环空压力测量仪(annular pressure measurement while drilling,APWD) ,在钻井过程中可以实时测量井底环空压力,通过MWD 或EMMWD 实时将数据传送到地面,指导欠平衡钻井作业。 1.2.4 随钻陀螺测试技术 美国科学钻井公司将航天精确陀螺定向仪封装在MWD 仪器中研制出随钻陀螺测试仪( gyro measurement-while-drilling ,gMWD) ,截至2007 年底,gMWD 已经在美国的多分支井中成功应用数百口井,特别是在需要精确定向或对接井中起到了关键作用。 1.2.5 井下随钻诊断系统 美国研究人员开发出了井下随钻诊系统(diagnostics-whiledrilling,DWD)包括井下温度、压力、钻头钻压、钻头扭矩、井斜方位和地层参数等各种参数测量仪器,高速实时数据传输系统及其相关的仪器,地面

压力控制系统

压力控制系统 摘要 所谓压力控制系统就是利用管道或容器中的介质压力作为被控制量,从而保证输出一个恒定的气压的反馈控制系统。目前生产中应用的压力控制系统,主要以传统的PID控制算法为主。但对于复杂的大型系统,其数学模型往往难以获得,传统的PID控制方式显得无能为力。为适应复杂控制系统的控制要求,人们研究了很多智能控制方法,模糊PID控制便是其中之一。 本文主要研究了模糊PID控制及其改进方法在压力系统中的应用。通过使用PID控制技术与模糊控制理论控制该压力系统,并利用MATLAB仿真软件对系统进行了仿真研究。仿真研究的结果表明,参数自整定模糊PID控制可以在线调整PID参数,使控制系统的响应速度快,超调量减少,过渡过程时间大大缩短,振荡次数减少,具有较强的鲁棒性和良好的稳定性。 一.课题背景 随着过程控制的迅速兴起与蓬勃发展,其稳定、安全、高效、经济等优点十分突出,所以其应用也十分广泛。而气压控制作为过程控制的重要一类,现今也是快速成为越来越重要的一种控制媒介,其理由为在气压缸之程序控制,气压控制提供了最逻辑的控制手段,应用在现今自动化的生产机器。气压是一个日常生活中常常接触到的物理量,初中时我们就接触了大气压的应用。在日常生活中,我们接触到的有气压计、抽水机、抽气机、打气筒、高压锅等等,在医学领域,最常见的有气压止血带、高气压消毒、血压计等等。在工业上,如气体压缩机、离心压缩机、富气压缩机等等,而这些在石油化工行业中起到了举足轻重的作用。 1.2压力控制系统的发展状况 随着自动控制技术的发展,精密气压产生与控制技术的应用越来越广泛。而传统的阀门控制器控制精度不够,运行速度缓慢,且价格昂贵,已不能满足这方面的要求。出现了多变量PID神经元网络控制系统,电气比例阀气压控制系统,基于硅微控阀门的气压控制系统,模糊PID控制压力控制系统等一系列高科技的压力控制系统。 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。 二.建立数学模型 2.1.1 数学模型的定义在各式各样的被控过程中,有的被控过程容易控制,而有些则很难控制,有些进行的慢,有些进行的快,要精确地描述被控过程的动态特性,离不开数学模型。所谓数学模型就是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 2.1.2 数学模型分类 (1)机理法机理法建模是根据生产过程中实际发生的变化机理,写出相

国外控制压力钻井工艺技术

万方数据

?28? 钻采工艺 DRlLLING&PRODUC’nON’rECHNOLOGY 2009年1月 Jan.2009 控制压力钻井 图1CBHPMPD井底压力变化图 2。带压泥浆帽钻井技术 泥浆帽钻井技术是一种“钻井液不返出地面”的较为成熟的钻井工艺,带压泥浆帽钻井(PMCD)则是在钻井中因环空流体密度较小而需在井口施加一个正压,因此称为带压泥浆帽钻井(见图2),这也是与泥浆帽钻井的主要区别。带压泥浆帽钻井是一种控制严重井漏的作业方法,适用于陆上和海洋油气井眼严重漏失地层的钻进作业。泥浆帽钻井和带压泥浆帽钻井都适用于钻严重漏失地层,但是,若储层压力低于静水压头,则应采用泥浆帽钻井工艺,在钻井液漏失过程中,向环空打入清水,一旦侵入井眼的气体被环空内的清水压回漏失层段,即可继续钻进,然而,当储层压力高于静水压头时,就必须采用带压泥浆帽钻井工艺,利用加重钻井液来平衡储层压力。 总垂深I \瓣 / 当量单 密度梯度 低密度钻井液 (如海水等) Pa一 圈2PMCD压力梯度分布 带压泥浆帽钻井过程中(图3),从地面向钻杆/套管环空内注入液态“泥浆帽”,通常,注入的泥浆帽已经过加重和增粘处理,注意高密度钻井液应缓慢注入环空,防止油气上窜进入环空,从而保持良好的井控状态。为了更好地携带钻屑,避免钻屑在钻头以上层段的孔洞或裂缝中沉积,在岩屑上返的同时,还需要向钻杆内注入一种Sac钻井液,通常是清水或盐水。若所钻地层含腐蚀性物质,则应向清水或盐水中添加缓蚀剂。 从图3看出,带压泥浆帽钻井工艺是采用低密度钻井液钻衰竭层段,然后采用高密度钻井液将低密度钻井液压人漏失层段,继续钻进,所有低密度钻井液和流入井眼的流体都被压入衰竭地层。采用这种方法,即使所有低密度钻井液都循环失返,侵入衰竭地层,也能够有效控制井眼。 图3OBHPT艺流程 3.双梯度钻井技术 双梯度钻井(DGD)技术是国外近年来提出的一种深水钻井技术新概念,其基本原理是在同一井筒内控制两种密度的流体,作业时井眼上部井段打入低密度钻井液,下部井段打人高密度钻井液,通过双泥浆密度体系,使压力窗口维持在地层孑L隙压力和破裂压力之间。实现双梯度可采用水下泵系统或灌注海水等方法降低隔水管中钻井液的密度。图4为双梯度钻井压力分布图。 总 垂 深 l 注:双梯度系统将打 开下部上覆岩层压力 窗口,或者迅速扩大 孔隙压力环境 单密度梯度 双密度梯度 B丑P Pa一 图4双梯度NPD压力梯度分布 双梯度钻井能够有效钻入破裂压力梯度低的深 部地层,其作业目的并不是将井底压力降低至欠平  万方数据

压力控制系统设计

一、引言 1.设计目的及意义 本设计采用单回路控制系统对管道的流量、液位进行控制,主要研究的是基于单片机的压力参数的控制和调节,即以单片机AT89C51为调节器,辅助以配套的A/D , D/A转换单元及电路,通过执行数字PID程序实现自动调整。单回路控制系统由于结构简单、投资小、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛应用。 2.任务要求 设计并制作一个压力监测与控制装置,意向图如下图所示 1、设计参数 上位水箱尺寸:800×500×600mm,上位水箱离地200mm安装,通过直径为20mm的PVC管道与其他设备相连,设备离地30mm,要求测量设备入口处的压力。测量误差不超过压力示值的±1%。 2、设计要求 (1)上位水箱通过水泵供水,通过变频器控制水泵的转速; (2)通过查阅相关设备手册或上网查询,选择压力传感器、调节器、调节阀、变频器、水泵等设备(包括设备名称、型号、性能指标等); (3)设备选型要有一定的理论计算; (4)用所选设备构成实验系统,画出系统结构图; (5)列出所能开设的实验,并写出实验目的、步骤、要求等。

二、硬件电路设计 图1为该压力控制系统简图,这是一个单回路反馈控制系统,控制的任务是使水箱的压力等于某定值,减小或消除来自系统内部或外部扰动的影响。交流电动机带动齿轮泵通过阀1向上水箱供水,调节阀2使之同时向外排水,达到被控压力参数的动态调整。 图1单容水箱压力控制系统简图 2.1 AT89C51 AT89C51是一种带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。外形及引脚排列如图所示

MPD控压钻井

控压钻井技术 控压钻井技术 国际钻井承包商欠平衡、控压钻井委员会(IADC UBD&MPD Committee)2003年给出了控压钻井技术的定义:控压钻井是一种自适应的钻井工艺,可以精确控制全井筒环空压力剖面,确保钻井过程中保持“不漏、不喷”的状态,即井眼始终处于安全密度窗口内。之后,国际钻井承包商协会又进一步将控压钻井技术分成两大类别:主动控压钻井技术和被动控压钻井技术。主动控压钻井技术是在钻前设计时融入控压钻井技术的理念,包括井身结构设计、钻井液设计和套管程序设计,从而达到精确控制井筒压力剖面的目的。被动控压钻井技术指使用一些设备如旋转控制头、节流阀和钻杆浮阀等,安全有效地处理井下事故。早期的控压钻井井底压力控制精度在0.35MPa以内,目前控制精度可高达0.1MPa,即基本实现井底压力的恒定。严格来讲,所有井都需要控制压力,都需要实施控压钻井,因为钻井的过程就是利用井筒流体压力(静止压力、动态压力等)来应对地层压力(孔隙压力、坍塌压力、漏失压力和破裂压力等)从而实现井内压力系统的某种平衡(近平衡、欠平衡、过平衡等)。钻井过程中的“卡、塌、漏、喷”几乎都跟井底压力有关,因此控压钻井并不是一个新名词,但随着钻井技术的发展,控压钻井被赋予了新的含义,突出体现在“有目的”和“精确控制”,控压钻井的本质就是确定井底压力界限,从而利用多种工具和技术有效控制相应的环空压力剖面以降低窄密度窗口条件下钻进时的风险与成本。 现代控压钻井技术是在欠平衡钻井和气体钻井基础上发展起来的钻井新技术。这三项技术有共同的特点,即都需要使用旋转防喷器、气体处理装置、节流管汇、单流阀等特殊设备。欠平衡钻井主要是为发现和保护储层、减少储层钻井问题、减小对储层的伤害、实现钻井过程中对油藏特性的优化等;气体钻井主要目的是钻井提速,大幅度提高难钻地层的钻井速度;控压钻井主要是为减少钻井过程中的复杂,通过降低大量钻井液的漏失和降低钻井相关的非生产时效等提高钻井经济性。三项技术有交叉,如欠平衡钻井也可以实现提速,气体钻井也可以实现储层保护,控压钻井即可以实现提速也可以实现储层保护等。欠平衡和气体钻井在钻井过程中井筒流体当量泥浆密度低于地层孔隙压力,而控压钻井在钻井过程中井筒当量泥浆密度大于或等于地层孔隙压力。换言之,欠平衡钻井和气体钻井是“欠平衡”,而控压钻井实质上是一种“微过平衡”。 控压钻井技术擅长应对高难度井 与传统过平衡钻井技术相比,控压钻井技术有更多、更有效、更迅速的手段和方法实现对井筒环空压力的控制,实现井底压力的相对不变。与欠平衡钻井技术相比,控压钻井技术是以解决钻井复杂事故为其基本出发点,采用微过平衡方式钻进,钻井过程中不诱导地层流体涌出,但能通过适当工艺设备安全、有效地处理操作中伴随涌入井筒的流体。过去在井口敞开情况下,靠改变泥浆密度调节井底压力,目前利用动态压力控制系统可以通过回压泵、节流阀系统让泥浆形成闭路循环,随时控制井底压力,达到平衡压力钻井。在含酸性有毒气体地层、井壁不稳定地层、漏失压力接近孔隙压力的地层等,控压钻井显示出比欠平衡钻井独特的优越性。 控压钻井工艺采用一系列的设备和技术,通过主动控制环空水力压力剖面,以消除或者降低与井下窄密度窗口环境相关的作业风险和费用。 控压钻井技术主要用于钻进窄密度窗口地层(高温高压井、海上深井等)、钻进衰竭性地层、开发成熟储层、保护易破碎地层,达到安全、高效、快速钻井的目的,减少套管使用,降低井漏和井涌风险,消除地层的呼吸效应,提高储层产量等。 目前控压钻井主要用于一些高难度井,如高温高压井、含酸性有毒气体的碳酸盐岩裂缝性地层、海洋窄密度窗口井,以及以前采用常规方法所无法钻达设计井深的井等。 国内控压钻井技术即将商业应用

控制压力钻井技术与欠平衡钻井技术的区别

五、结论及建议 (1)该配方在小于临界交联密度时,能形成强度很高的堵剂,满足对大孔道的封堵要求。(2)在温度小于120℃的条件下,均能形成高强度堵剂,而且在80℃环境里能长期保持稳定。(3)能在矿化度小于30000mg/L 的条件下形 成高强度的堵剂,说明该配方能适应通常的油田矿 化度要求。 (4)通过流动实验证明封堵后的岩心突破压力梯度和封堵率都很高,有利于对大孔道的封堵。 (5)有必要进一步对大孔道形成机理及其相应 的堵剂配方进行研究,特别是将现有的常规堵剂进 行改性,以及进一步发展深部调驱技术[8],使大孔 道的封堵技术不断完善。 参考文献 [1]李科星,蒲万芬,赵军,等.疏松砂岩油藏大孔道识别综 述[J ].西南石油大学学报,2007,29(5):42-44. [2]吕广忠,张建乔,孙业恒,等.疏松砂岩油藏出砂机理物 理模拟研究[J ].应用基础与工程科学学报,2005,13 (3):284-290. [3]尤启东,陆先亮,栾志安,等.疏松砂岩中微粒迁移问题 的研究[J ].石油勘探与开发,2004,31(6):104-108. [4]Zait oun A,Kohler N.T wo -Phase Fl ow Thr ough Por ous M edia:Effect of an Ads orbed Poly mer Layer [J ].Paper SPE18085SPE Annual Technical Conference and Exhibi 2 ti on,2-5Oct ober1988,Houst on,Texas . [5]Ada m s Tidjani .Polyp r opylene -graft -maleic anhydride -nanocomposites:Ⅱ-fire behavi our of nanocomposites p r oduced under nitr ogen and in air[J ].Poly mer Degrada 2ti on and Stability 87(2005):43-49. [6]Seright,R.S .U se of p ref or med gels f or confor mance con 2 tr ol in fractured syste m s[J ].Paper SPE 35351.p resented at the 1996SPE /DOE sy mposiu m on i m p r oved oil recover 2 y,Tulsa,Ap ril 21-24. [7]韩明,施良和,叶美玲.黄原胶以三价铬交联的水凝胶的脱水行为[J ].高分子学报,1999,(5):590-595.[8]胡书勇,张烈辉,余华洁,等.油层大孔道调堵技术的发展及其展望[J ].钻采工艺,2006,29(6):117-119. (编辑:包丽屏) !科技简讯# 控制压力钻井技术与欠平衡钻井技术的区别 国际钻井承包商协会(I A DC )控制压力钻井分委员会将MP D 定义为“是一种应用钻井工艺,用于精确控制整个井眼的环空压力分布,其目的是确定井下压力窗口,并根据压力窗口控制环空压力分布。” 控制压力钻井(MP D )和欠平衡钻井(UBD )有着类似之处,许多UBD 设备同样适用于MP D 作业,且M P D 发展初期主要依靠UBD 理论和设备,其实这两种工艺从应用目的、设备配置、工艺方法与地质工程效果等方面均有一定区别。 UBD 钻井主要解决储层伤害问题,提高油气采收率;而M P D 则是一种解决钻井复杂问题的作业方法,M P D 是为了解决窄安全密度窗口带来的井漏、井塌、卡钻、井涌等井下复杂问题,采用MP D 比较经济而有效,因作业时采用的是闭式压力控制系统,更适合于控制井涌,通过动态压力控制或自动节流控制,可以快速控制地层流体侵入井内,安全性高。 UBD 和MP D 所需设备存在一定区别。大多数情况下,UBD 设备可用于M P D,而为M P D 所设计的分离设备的处理能力较小,但其他配套设备更为复杂。UBD 钻井中所采用的辅助流动管线、储备罐及地质取样设备在MP D 钻井中不需要,MP D 还需增加密闭循环系统、CCS 、举升泵等,以精确控制井底压力。 通过UBD 能够获得地层地质特征参数与综合地质分析;而MP D 是将地层流体压制在地层中,因此对产层的识别以及岩石物性不能直接进行评估,但可通过随钻测井(L WD )和随钻测量(MWD )仪进行储层评估。 (川庆钻探公司钻采院 朱丽华)?631? 钻 采 工 艺 DR I L L I N G &PRODUCTI O N TECHNOLOGY 2008年9月Sep.2008

钻井新技术

1.1 写出以下名词的解释或定义。(10分) (1)多分支井钻井: (2)几何导向钻井: (3)地质导向钻井: (4)套管钻井: (5)控压钻井: (6)泥浆帽钻井(mudcap drilling ): 1.2根据课程学习对现代钻井技术包含的内容和未来钻井技术发展方向做一简单评述。(10分) 1.2 根据课程学习分析我国(或所在单位)钻井技术发展现状、存在问题和努力方向。(10分) 1.3 根据课程学习分析我国钻井技术发展现状、存在问题和努力方向。(10分) 1.4 写出十种以上钻井新技术的中、英文名称。(10分) 1.5 写出如下英文缩写词的英文全称和中文含义。(10分) 2.1 完成一口水平井的设计和施工将包含哪些方面的技术研究工作?(10分) 2.2 水平井有那几种井眼类型?简述超短半径径向水平井的实现方法(给出原理图)。(10分) 2.3 简述水平井方位、压裂裂缝走向与地应力的关系。(10分) 2.4 简述短半径侧钻水平井技术的优点、设计原则。(10分) 2.5 如何确定侧钻水平井开窗位置,简述套管开窗的常用方法。(10分) 2.6 简述水平井钻井钻导眼的作用和类型特征(绘图并给出解释)。(10分) 2.7 简述水平井裸眼(机械)封隔器分段压裂的工艺方法和作业程序(最好有结构图做辅助说明)。(10分) 2.7 绘出一种水平井裸眼分段压裂作业管柱(压裂管柱)的结构示意图,标明各主要部件的名称,描述其实现分段压裂的作业流程。(10分) 2.8 简述水平井水力喷射分段压裂的工艺原理、方法(作业程序)和特点。(10分) 2.9 介绍几种(三种以上)常用的水平井分段压裂方法,简述其工艺流程和特点。(10分) 2.10 什么是工厂化作业?简述或举例说明钻井过程中是如何进行工厂化作

相关文档
最新文档