常温下材料的冲击试验

常温下材料的冲击试验
常温下材料的冲击试验

实验三、常温下材料的冲击试验

一、实验目的

1、了解冲击实验原理和冲击实验机的主要结构

2、掌握金属材料常温下冲击韧度的测量方法

3、了解脆性材料和塑性材料冲击断裂断口宏观形貌特征。 二、实验原理

金属构件在实际工程应用中,不仅承受静载荷作用,有时还要在短时间内承受突然施加的载荷的作用,即受到冲击载荷的作用。材料受冲击载荷时的力学性能与静载荷时显著不同。为了评定材料承受冲击载荷的能力,揭示材料在冲击载荷下的力学行为,需要进行冲击实验

冲击实验是把要实验的材料制成规定形状和尺寸的试样,在冲击实验机上一次冲断,根据冲断试样所消耗的功或试样断口形貌特点,得到材料的冲击韧度和冲击吸收功。这些冲击性能指标对材料的韧脆程度及冶金质量、内部缺陷等情况非常敏感,因此可用冲击实验来评定材料的韧脆程度并检查材料的冶金质量和热加工产品质量。

实验室普遍采用的冲击实验为一次摆锤冲击实验。如图所示。实验时将材料制成带缺口 的标准试样,如图所示。试样水平放在实验机支座上,缺口位于冲击相背方向。然后将具有一定质量G 的摆锤举至一定高度H ,使其具有一定的势能GH 1。释放摆锤冲断试样摆锤的剩余能量为GH 2,则摆锤冲断试样失去的能量为GH 1- GH 2,此即为试样变形和断裂所吸收的功,称为冲击功,用A k 表示,单位为J ,用试样断口处单位面积上所消耗的冲击吸收功大小来衡量材料的冲击韧度,即 αK =Ak/F=G (H 1-H 2)/F

本实验分别以低碳钢和铸铁为原料制成缺口冲击试样,测定其在相同冲击能量下的冲击韧度的大小,从而评定这两种材料的韧脆程度并区别其断口宏观形貌。

三、冲击试样尺寸

按照国家标准GB /T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为m m 55m m 10m m 10??并开有mm 2或mm 5深的U 形缺口的冲击试样(图1-8)以及 45张角mm 2深的V 形缺口冲击试样(图1-9)。

夏比U 形冲击试样

(a )深度为mm 2;(b )深度为mm 5

夏比V形冲击试样

四、实验设备及材料

1、实验设备:JB-30型冲击实验机,能量范围:用小摆锤时,冲击能量为15Kgm,用大摆锤时,冲击能量为30Kgm。

2、实验材料:低碳钢(w c=0.15%)、灰铸铁(HT150)

五、实验内容及步骤

1、测量试件缺口尺寸,估算材料的αK值,选择实验机冲击能量范围。

2、安装试样前,将摆锤抬起,空摆一次,记录实验机因阻力所消耗的能量。

3、将摆锤稍微抬起,用顶块顶住,然后安装试样,应使试样紧贴支座,并使其缺口对称面位于两支座对称面上。

4、将摆锤抬起到需要位置,锁住;然后将操纵杆放在“冲击”位置,摆锤自由下落,将试件冲断。

5、摆锤停摆后从刻度盘上渎出冲断试样所消耗的能量A k(需减去因阻力消耗的能量)。每种材料需作三次以上,取其算术平均值,分别填入表中,做为计算αK的依据。

6、观察两种材料冲击断裂后断口的宏观形貌。

六、实验报告

1、简述实验目的、实验设备材料及实验过程。

2、实验数据记录及处理

3、分析低碳钢和灰铸铁冲击韧度的差别,比较两种材料宏观断口形貌特征。

材料的力学性能试验

第一章 材料的力学性能试验 材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。 材料的力学性能试验必须按照国家标准进行。 第一节 拉伸试验 一、实验目的 1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。 2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二、实验设备和仪器 1.万能试验机。 2.引伸仪。 3.游标卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分

组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或 d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 (a ) (b ) 图1-1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 四、实验原理与方法 1.测定低碳钢的弹性常数 实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。开动万能试验机,预加一定的初载荷(可取kN 4),同时读取引伸仪的初读数。 为了验证载荷与变形之间成正比的关系,在弹性范围内(根据A ?P σ求出的最大弹性载荷不超过kN 14)采用等量逐级加载方法,每次递加同样大小的载荷增量F ?(可选kN 2=?F ),在引伸仪上读取相应的变形量。若每次的变形增量大致相等,则说明载荷与变形成正比关系,即验证了胡克定律。弹性模量E 可按下式算出 l A l F E ????=

温度冲击和温度循环的区别和比较

对产品施加环境应力促使早期失效产品存在的潜在缺陷尽快暴露而予以剔除。ESS不是加速可靠性试验,主要适用于成品的可靠性筛选试验。 讨论: 好象没有什么可比性 mil202加速系数好象没有100~500倍多把? 202对应的是器件,温度冲击筛选故障的机理比较复杂,目前还没有定型. 温度循环前人已经总结出了筛选故障经验公式了.

MIL-STD-202 Method 107主要是评估元器件,对应的好象是GJB548. IEC60749-25 JEDEC JESD22-A104-b评估是焊点的可靠性的,评估焊接工艺的,和相关的IPC标准相当(有可能JESD22-A 104-b已经替代了相关的IPC的标准,没查) IEC68-2-1不仅仅使用与整机的,它和MIL-STD-2164-85不一样的,不在同一个量级别上的. IEC60749-25,JEDEC JESD22-A104-b和IEC68-2-1是一个量级 MIL-STD-202 Method 107和MIL-STD-2164-85是一个良级,不能搞混了 而且适用的范围没有说清楚. 就我对ESPEC和此文的了解做一个说明: 上面转贴的文字是针对焊点可靠性的测试,与其它无关,这在当初没有明确说明确实会让大家误解从而会对应用领域产生疑问,以后我会注意避免。 如果就焊点的寿命来讲,那么应用mil202的加速系数有可能是100~500倍,不过我具体没有做过相关研究不敢确定一定会有。那么下面的加速系数就不存在问题了。 另外在此简单介绍一下关于焊点可靠性的一些情况,现在国际上的最新测试手段是采用温度循环在做,其主要优点是可以精确控制温度变化律,从而避免了以前温度冲击所带来的不确定性,这在无铅制程可靠性的确认中得到了广泛的应用。另外对于失效的确认是采用随时检测漏电流来确定的,另外再辅助显微镜来观察焊点的开裂以及电子迁移等。 推荐使用稳定循环,因为这才是可控的试验,如果温度冲击那么无法控制温度变化率则对于实效很难分析。趋势是温度循环了。 另外你提到的哪一个更严格的问题,表明上看可能大家都无法理解了,呵呵,具体看规格吧。

常温下材料的冲击试验

实验三、常温下材料的冲击试验 一、实验目的 1、了解冲击实验原理和冲击实验机的主要结构 2、掌握金属材料常温下冲击韧度的测量方法 3、了解脆性材料和塑性材料冲击断裂断口宏观形貌特征。 二、实验原理 金属构件在实际工程应用中,不仅承受静载荷作用,有时还要在短时间内承受突然施加的载荷的作用,即受到冲击载荷的作用。材料受冲击载荷时的力学性能与静载荷时显著不同。为了评定材料承受冲击载荷的能力,揭示材料在冲击载荷下的力学行为,需要进行冲击实验 冲击实验是把要实验的材料制成规定形状和尺寸的试样,在冲击实验机上一次冲断,根据冲断试样所消耗的功或试样断口形貌特点,得到材料的冲击韧度和冲击吸收功。这些冲击性能指标对材料的韧脆程度及冶金质量、内部缺陷等情况非常敏感,因此可用冲击实验来评定材料的韧脆程度并检查材料的冶金质量和热加工产品质量。 实验室普遍采用的冲击实验为一次摆锤冲击实验。如图所示。实验时将材料制成带缺口 的标准试样,如图所示。试样水平放在实验机支座上,缺口位于冲击相背方向。然后将具有一定质量G 的摆锤举至一定高度H ,使其具有一定的势能GH 1。释放摆锤冲断试样摆锤的剩余能量为GH 2,则摆锤冲断试样失去的能量为GH 1- GH 2,此即为试样变形和断裂所吸收的功,称为冲击功,用A k 表示,单位为J ,用试样断口处单位面积上所消耗的冲击吸收功大小来衡量材料的冲击韧度,即 αK =Ak/F=G (H 1-H 2)/F 本实验分别以低碳钢和铸铁为原料制成缺口冲击试样,测定其在相同冲击能量下的冲击韧度的大小,从而评定这两种材料的韧脆程度并区别其断口宏观形貌。 三、冲击试样尺寸 按照国家标准GB /T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为m m 55m m 10m m 10??并开有mm 2或mm 5深的U 形缺口的冲击试样(图1-8)以及 45张角mm 2深的V 形缺口冲击试样(图1-9)。 夏比U 形冲击试样 (a )深度为mm 2;(b )深度为mm 5

材料力学性能实验指导书(材料成型及控制工程专业)

材料力学性能实验指导书(材料成型及控制工程专业) 张学萍 沈阳理工大学 二零一二年三月

目录 实验一硬度实验......................................................................... (3)

前言 《材料力学性能》这门课的实验是该课的重要组成部分,是该理论课的基础,正确地掌握实验的理论和方法,对提高学生的动手能力、分析问题和解决问题的能力有重要意义。 编写本实验指导书,是根据《材料力学性能》教学大纲及教材的有关内容、又根据我院设备、仪器实际情况编写的,这样,与教材的内容相一致,便于安排实验教学。 本实验指导书适用于:材料成型及控制工程专业 编者 2012 年3月

实验一硬度实验 一.实验目的 1.掌握洛氏、布氏硬度的基本原理及测试方法。 2.根据材料的性质正确选择硬度计类型及压入条件。 3.熟悉各种硬度值之间的换算。 二、实验内容 用洛氏硬度计测定试样热处理前后的硬度;用布氏硬度计测定45刚退火后的硬度。 三、概述 硬度试验操作简便,对工件损伤小,可在零件上直接测试,故在生产实践中应用很普遍。 硬度所表征的不是一个确定的物理量,它是衡量材料软硬程度的一种性能指标。硬度值的意义随试验方法而不同。硬度试验基本上可分为压入法和刻划法。对于以压入法进行的硬度试验,其硬度值是表示材料抵抗另一物体压入其表面的能力,洛氏、布氏和维氏硬度都属于压入法硬度试验。 (一)洛氏硬度试验法。 1.洛氏硬度是以压痕的深度来表示 材料的硬度值。图1-1为洛氏硬度试验 原理图。 测试洛氏硬度时,用规定的压头, 先后施加两个负荷:预负荷F0和主负 荷F1。总负荷F= F0+F1。图1-1中, 0-0位置为未加负荷时的压头位置;l-l 位置为施加10kg预负荷后的位置,压 入深度为h1;2-2位置为加上主负荷后 的位置,此时压入深度为h2;3-3位置图1-1 洛氏硬度试验原理 为卸除主负荷后由于弹性变形的恢复而 使压头略微提高的位置,此时压头的实际压入深度为h3。由主负荷引起的残余压入深度h=h3-h1,用此来衡量金属硬度值的大小。若直接用h来表示硬度,则会出现硬的金

冲击试验设备

冲击试验设备 冲击试验设备性能说明: 冲击试验设备主要用于测定金属材料在动负荷下抵抗冲击的性能进行检测,是冶金、机械制造等单位必备的检测仪器,也是科研单位进行新材料研究不可缺少的测试仪器。 1.本机为微机屏显式全自动冲击试验机,可实现扬摆→送料→定位→冲击→二次 扬摆等一体化操作,操作简便,工作效率高,测量精度高。特别适用于连续做冲击试验的实验室和大量做冲击试验的冶金、机械制造等行业更能体现其优越性。 2.试验机主机为分体式结构,悬臂式挂摆方式,摆锤锤体U型。 3.冲击刀采用螺钉安装固定,更换简单方便。 4.试样简支梁式支承,试样端面定位。 5.主机装有安全防护销,并配备了安全防护网。 6.验机按国家标准GB/T3808-2002《摆锤式冲击试验机》、GB/T229-2007《金属夏 比摆锤冲击试验方法》对金属材料进行冲击试验。 冲击试验设备测控部分说明: 1)联想品牌电脑(17吋液晶,1G内存,160G硬盘) 2)惠普激光打印机 3)Windows操作系统为工作平台,屏幕显示,鼠标操作。 4)软件支持多个摆锤。 5)记录冲击强度,冲击能量等.也可计算最大最小平均值和标准偏差。 6)实验数据自动处理,自动测量摆动周期 7)系统参数全部开放,用户级操作者全方位掌握系统核心。

8)具备完美的数据分析功能,适合于用户进行各类复杂的数据分析。 9)具备完整的文件操作系统。、试验报告文件、试样文件等。 10)以ASC码的形式存贮试验数据,可用任何通用商业报表、字处理软件对试验 数据进行用户方再处理 11)单台计算机通过配置AD、I/O等卡板,可满足多台试验机的测控需要。 12)在线提示,使您的工作得心应手。 13)支持各类商业通用打印机。 14)出厂设置可以文件形式存贮,便于恢复。 15)系统升级简易。 16)测控系统界面显示 主窗口(如图)是软件操作控制中心。主管试验结果管理. 测试软件能实时虚拟数码管显示,监控能量值和角度值,并实时保持一次打击或空摆的冲击能量 主窗口 结果窗口

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

机械冲击试验

机械冲击试验 机械冲击技术描述 机械冲击试验一般是确定军民用设备在经受外力冲撞或作用时产品的安全性、可靠性和有效性的一种试验方法。 掌握情况 我司可按GB/T2423.5—1995 电工电子产品基本环境试验规程试验EA:冲击试验方法、GJB 150.18A-2009军用装备实验室环境试验方法冲击试验进行机械冲击(含半正弦波冲击、后峰锯齿波冲击、方波冲击、冲击响应谱,舰船产品摆锤冲击、跌落试验)最大负载:1000kg、最大加速度:30000g. 用途 本试验是模拟产品在运输、安装及使用环境下所遭遇到的各种外力冲撞或作用时的环境影响,用来确定产品是否能承受各种环境冲击的能力。 设备技术参数Technical Specifications 冲击机性能指标: 载荷:≤200kg 台面尺寸:800 mm×650 mm 2 半正弦波:(50-300000)m/s 2 后峰锯齿波:(150-1000)m/s ; 2 梯形波:(150-1000)m/s ; 脉冲持续时间:0.05ms~30ms Load: ≤200kg Working table dimension:800mm×650mm 2Halfsine wave Acceleration:(50-300000)m/s 2 Sawtooth Acceleration:(150-1000)m/s 2 Trapezoidal wave:(150-1000)m/s Pulse duration: 0.05ms~30ms

冲击台载荷:≤200 Kg 台面尺寸(mm):400×400 峰值加速度:≤30000g 脉宽:≤18 ms Load:≤200kg Working table dimension(mm):400×400 Peak acceleration:≤30000g Duration:≤18 ms 碰撞台最大载荷:200 kg 台面尺寸(mm):800×650 峰值加速度:≤600g Load :≤200kg Working Table Dimension(mm):800×650 Acceleration:≤600g 跌落台最大载荷:200kg 倾斜角度:10°±1° 台面尺寸(mm):1100×1100 冲击面板尺寸(mm):1300×1300 冲击速度范围:≤3.87m/s Load:≤200kg Inclination Angle:10°±1° Carriage Table(mm):1100×1100 Working Table Dimension(mm):1300×1300 Impact velocity:≤3.87m/s 斜面冲击台性能指标 最大载荷:100kg 2 峰值加速度: (5~1000) m/s 脉冲波形:半正弦波 脉冲持续时间:18ms~6ms 脉冲重复频率: (20~80)次/分 脉冲形式:自由跌落 工作台面尺寸:500mm×700 mm Technical Specification Load: ≤100kg 2 Acceleration: (5~1000 )m/s Pulse shape: Half-sine Pulse duration:18ms~6ms Shock frequency: (20~80) times per minute Shock type: Free fall Working table dimension: 500mm×700 mm 公司介绍: 广州广电计量检测股份有限公司(GRGT)定位行业高端,引领行业先锋,历经近50年的发展,目前成为一家技术精湛、服务精心、管理精细的一流的计量检测专业机构。 GRGT是原国家信息产业部军工电子602计量测试站,通过国家实验室(CNAS)、国防实验室(DILAC)和总装军用实验室认可,并通过中国计量认证(CMA),是中国CB实验室,建立企业计量最高标准80多项,通过CNAS、DILAC认可项目591项。同时,获

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

材料力学实验报告答案

篇一:材料力学实验报告答案 材料力学实验报告 评分标准拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(p-δl曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度 0.02 mm 三、实验数据(2分) 四、实验结果处理(4分) ?s??b? psa0pba0 =300mpa 左右=420mpa 左右 =20~30%左右=60~75%左右 ?? l1?l0 ?100% l0a0?a1 ?100% a0 ?= 五、回答下列问题(2分,每题0.5分) 1、画出(两种材料)试件破坏后的简图。略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同?为什么?相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备(1分) 机器型号名称电子万能试验机(0.5分) 测量尺寸的量具名称游标卡尺精度 0.02 mm (0.5分) 三、实验数据(1分)四、实验结果处理(2分) ?b? pb =740mpaa0 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。略 2. 绘出两种材料的压缩曲线。略 3. 为什么在压缩实验时要加球形承垫?

材料的冲击试验实验报告

材料的冲击试验 实验内容及目的 1、测定低碳钢、铸铁和中碳钢的冲击性能指标;冲击韧度a k 2、比较低碳钢与铸铁的冲击性能指标和破坏情况 3、掌握冲击实验方法及冲击试验机的使用 实验材料和设备 低碳钢、中碳钢、铸铁、冲击试验机、游标卡尺 试样的制备 按照国家标准GB/T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为并开有或深的形缺口的冲击试样(图1)以及张角深的形缺口冲击试样(图2)。如不能制成标准试样,则可采用宽度为或等小尺寸试样,其它尺寸与相应缺口的标准试样相同,缺口应开在试样的窄面上。冲击试样的底部应光滑,试样的公差、表面粗糙度等加工技术要求参见国家标准GB/T229—1994。 (a)(b)图1 夏比U形冲击试样 (a)深度为mm 2;( b)深度为mm 5 图2 夏比V形冲击试样

实验原理 实验室将试样放在试验机支座上,缺口位于冲击相背方向,并使缺口位于支座中间,然后将具有一定重量的摆锤举至一定的高度H1,使其获得一定的位能mgH1,释放摆锤冲断试样,摆锤的剩余能量为mgH2,则摆锤冲断试样失去的势能为mgH1-mgH2。如果忽略空气阻力等各种能量损失,则冲断试样所消耗的能量(即试样的冲击吸收功)为: A k=mg(H1-H2)。 A k的具体数值可直接从冲击试验机的表盘上读出,其单位为J,将冲击吸收功A k除以试样缺口底部的横截面积SN(cm2),即可得到试样的冲击韧性值a k。 (a)(b) 图3 冲击实验的原理图 (a)冲击试验机的结构图(b)冲击试样与支座的安放图 实验过程 1、了解冲击试验机的操作规程和注意事项。 2、测量试样的尺寸 3、按“取摆”按钮,摆锤抬起到最高处,并销住摆锤,同时将试样安放好 4、按“退销”按钮,安全销撤掉。 5、按“冲击”按钮,摆锤下落冲击试样。 6、记录冲断试样所需要的能量,取出被冲断的试样。 实验数据的记录与计算 (1)数据记录与结果

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

冷热冲击试验研究

冷热冲击试验研究 目前,各工程师在制定标准,执行标准时对于温度变化类的试验有很多不同的见解,且此类试验名称过多,导致实际应用中出现了一些不恰当的使用方法。本文特对温度变化类试验进行解读,一方面对各类试验项目进行分析,另一方面推荐使用合适的标准项目,以供各工程师参考使用。 温度变化类试验项目有众多名称:温度变化、温度循环、温度交变、快速温变、温度冲击、冷热冲击、温度梯度、分级温度等名称。且不同体系的标准中应用的试验方法是不同的,如何区分这些试验项目,如何选择试验项目,这需要对各类型试验的来源以及其区别进行分析。 本文针对的试验项目是温度变化类的,对于湿热类,温湿度循环等试验项目后续再以专题叙述。 1、温度变化试验 1.1 来源 各类标准中的温度变化试验均来源于IEC 60068-2-14 试验方法N:温度变化中的Nb 。在特定温度变率之温度变化试验。 1.2 定义 温度变化试验,为设置一定的温度变化速率进行高温与低温之间的转变。故在实际应用中有两类:一类为慢速的温度变化试验,其温度变化速率<3℃/min(一般各标准经常选择参数为1℃/min),也既一般应用中的温度变化、温度循环、温度交变试验(此三类为一种试验);另一类为快速的温度变化试验,其温度变化速率≥3℃/min(一般各标准经常选择参数为3℃/min、4℃/min、5℃/min、7℃/min、10℃/min),也既一般应用中的快速温变试验。温度变化速率越快,考核越严酷。 1.3 目的及应用范围 本试验适用于组件、装备或其它产品。为产品模拟带电工作时随温度的变化,如在系统/组件工作时快速改变周围温度。如果系统/组件处在热浸透温度(例如安装在发动机上的系统/组件),高温阶段附加的短暂温度峰值要确保产品在这期间的基本功能。为避免系统/组件内的电热扩散抑制系统/组件达到低温的效果,故在降温阶段将产品关闭。失效模式为温度变化引起的电气故障。 注:本试验不是寿命试验。 1.4 试验方法及参数 1.4.1 温度变化试验: 各类标准中建议采用ISO 16750-4 5.3.1 温度变化试验,具体试验程序见图1及图2,图1应用于非发动机舱产品,图2应用于发动机舱中零部件,因为其具有发动机熄火后的余热考核,故在温度变化中加入了极限高温贮存的考核。

常温冲击试验

实验四、常温下材料的冲击试验 一、实验目的 1、了解冲击实验原理和冲击实验机的主要结构 2、掌握金属材料常温下冲击韧度的测量方法 3、了解脆性材料和塑性材料冲击断裂断口宏观形貌特征。 二、实验原理 金属构件在实际工程应用中,不仅承受静载荷作用,有时还要在短时间内承受突然施加的载荷的作用,即受到冲击载荷的作用。材料受冲击载荷时的力学性能与静载荷时显著不同。为了评定材料承受冲击载荷的能力,揭示材料在冲击载荷下的力学行为,需要进行冲击实验 冲击实验是把要实验的材料制成规定形状和尺寸的试样,在冲击实验机上一次冲断,根据冲断试样所消耗的功或试样断口形貌特点,得到材料的冲击韧度和冲击吸收功。这些冲击性能指标对材料的韧脆程度及冶金质量、内部缺陷等情况非常敏感,因此可用冲击实验来评定材料的韧脆程度并检查材料的冶金质量和热加工产品质量。 实验室普遍采用的冲击实验为一次摆锤冲击实验。如图所示。实验时将材料制成带缺口 的标准试样,如图所示。试样水平放在实验机支座上,缺口位于冲击相背方向。然后将具有一定质量G 的摆锤举至一定高度H ,使其具有一定的势能GH 1。释放摆锤冲断试样摆锤的剩余能量为GH 2,则摆锤冲断试样失去的能量为GH 1- GH 2,此即为试样变形和断裂所吸收的功,称为冲击功,用A k 表示,单位为J ,用试样断口处单位面积上所消耗的冲击吸收功大小来衡量材料的冲击韧度,即 αK =Ak/F=G (H 1-H 2)/F 本实验分别以低碳钢和铸铁为原料制成缺口冲击试样,测定其在相同冲击能量下的冲击韧度的大小,从而评定这两种材料的韧脆程度并区别其断口宏观形貌。 三、冲击试样尺寸 按照国家标准GB /T229—1994《金属夏比缺口冲击试验方法》,金属冲击试验所采用的标准冲击试样为 mm 55mm 10mm 10??并开有mm 2或mm 5深的U 形缺口的冲击试样(图1-8)以及 45张角mm 2深的V 形缺口冲击试样(图1-9)。 夏比U 形冲击试样 (a )深度为mm 2;(b )深度为mm 5

材 料 力 学 性 能 实 验 报 告.

材料 学性能实院系:材料学院姓名:王丽朦学号:200767027 验报力告 实验目的: 通过拉伸试验掌握测量屈服强度,断裂强度,试样伸长率,界面收缩率的方法;通过缺口拉伸试验来测试缺口对工件性能的相关影响; 通过冲击试验来测量材料的冲击韧性; 综合各项试验结果,来分析工件的各项性能; 通过本实验来验证材料力学性能课程中的相关结论,同时巩固知识点,进一步深刻理解相关知识; 实验原理: 1)屈服强度 金属材料拉伸试验时产生的屈服现象是其开始产生宏观的塑性变形的一种标志。弹性变形阶段向塑性变形阶段的过渡,表现在试验过程中的现象为,外力不增加即保持恒定试样仍能继续伸长,或外力增加到某一数值是突然下降,随后,在外力不增加或上下波动情况下,试样继续伸长变形,这便是屈服现象。呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力称为屈服点,记作σs; 屈服现象与三个因素有关:(1)材料变形前可动位错密度很小或虽有大量位错但被钉扎住,如钢中的位错为杂质原子或第二相质点所钉扎;(2)随塑性变形发生,位错快速增殖;(3)位错运动速率与外加应力有强烈的依存关系。影响屈服强度的因素有很多,大致可分为内因和外因。 内因包括:金属本性及晶格类型的影响;晶界大小和亚结构的影响;还有溶质元素和第二相的影响等等。通过对内因的分析可表征,金属微量塑性变形抗力的屈服强度是一个对成分、组织极为敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺都可使屈服强度产生明显变化。 外因包括:温度、应变速率和应力状态等等。总之,金属材料的屈服强度即受各种内在因素的影响,又因外在条件不同而变化,因而可以根据人们的要求予以改变,这在机件设计、选材、拟订加工工艺和使用时都必须考虑到。 2)缺口效应 由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将发生变化,产生所谓的“缺口效应”,从而影响金属材料的力学性能。 缺口的第一个效应是引起应力集中,并改变了缺口前方的应力状态,使缺口试样或机件所受的应力由原来的单向应力状态改变为两向或三向应力状态,也就是出现了σx(平面应力状态)或σy与σz(平面应变状态),这要视板厚或直径而定。

材料力学性能实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___ 指导教师签字:成绩: 实验一金属拉伸实验 Metal Tensile Test 一、实验目的Experiment Objective 1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率 φ的测定方法。 2、掌握金属材料屈服强度σ0.2的测定方法。 3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。 4、简单了解万能实验拉伸机的构造及使用方法。 二、实验概述Experiment Summary 金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。 三、实验用设备The Equipment of Experiment 拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力

实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。液压式万能实验机是最常用的一种实验机。它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。 (一)加载部分The Part of Applied load 这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。其加载方式是液压式的。在机座上装有两根立柱,其上端有大横梁和工作油缸。油缸中的工作活塞支持着小横梁。小横梁和拉杆、工作台组成工作框架,随工作活塞生降。工作台上方装有承压板和弯曲支架,其下方为钳口座,内装夹持拉伸试样用的上夹头。下夹头安装在下钳口座中,下钳口座固定在升降丝杆上。 当电动机带动油泵工作时,通过送油阀手轮打开送油阀,油液便从油箱经油管和进入工作油缸,从而推动活塞连同工作框架一起上升。于是在工作台与大横梁之间就可进行压缩、弯曲等实验,在工作台与下夹头之间就进行拉伸实验。实验完毕后,关闭送油阀、旋转手轮打开回油阀,则工作油缸中的油液便经油管泄回油箱,工作台下降到原始位置。 (二)测力部分The Part of Measuring Force 加载时,油缸中的油液推动工作活塞的力与试样所承受的力随时处于平衡状态。如果用油管和将工作油缸和测力油缸连同,此油压便推动测力活塞,通过连杆框架使摆锤绕支点转动而抬起。同时,摆锤上方的推板便推动水平齿杆,使齿轮带动指针旋转。指针旋转的角度与油压亦即与试样所承受的载荷成正比,因此在测力度盘上便可读出试样受力的量值。 四、试样Sample 拉伸试样,通常加工成圆型或矩形截面试样,其平行长度L0等于5d或10d (前者为长试样,后者为短试样),本实验用短试样,即L0=5d。本实验所用的试样形状尺寸如图1—1所示。 图1-1圆柱形拉伸试样及尺寸

冲击试验台性能指标及技术原理

冲击试验台性能指标及技术原理 1、技术指标 冲击试验台用于实验室模拟产品在实际使用中,需要承受的冲击破坏的能力,以此来评定产品结构的抗冲击能力,并通过试验数据,优化产品结构强度。使用环境应无腐蚀性介质及强烈振动源,环境温度为5~30℃,相对湿度不超过85%(25℃时,不结露),电源电压变化不超过±10%。 由于台体采用了减震器,一般在小能量情况下,可以不设置专用基础,用地脚螺钉紧固在坚固地面上即可。台体安装应保证水平位置,水平度不应超过1/1000。 台体安装完成后,将机械台体与电气箱用专用电缆连接,将个人电脑和电气箱用专用电缆连接,接通电源,接通油源。接通传感器。 2、冲击波形功率谱 具有测量量程设置功能,有效提高信号分辨率; 自动增益调整,FIR数字无级滤波; 具有冲击波形自动参数测量功能,可以自动显示冲击加速度峰值,脉冲宽度及速度变化量等参数; 具有单次采集和连续采集功能; 具有历史纪录显示,存储,最大值最小值统计功能; 提供数据库管理功能,实现采集参数的自动保存和加载; 测量数据保存和复现; 采集的数据能形成试验报告、word文档,方便用户打印冲击曲线和后期文档制作;

提供GJB150、GJB360A、GB2423、GJB548A、GJB1217、MIL-STD-810F等标准容差带; 提供冲击波形功率谱、响应谱分析功能(选项) 3、脉冲波形发生器 冲击台设计了减震装置,由底座、气囊和阻尼器组成,用于减小冲击时试验台作用在地基上的冲击力。测试件安装在工作台上,工作台由四根安装在底座上的滑动导轨导向,可以上下运动。两气缸通过安装在工作台上的支架和工作台连接,当气缸充气时,活塞杆伸出,活塞杆带动工作台提升运动。冲击时,气缸充气,工作台提升,当提升到设定高度时,气缸快速放气,工作台自由跌落,工作台底面撞击波形发生器,完成一次冲击过程。从以上的冲击过程可以看出,调节工作台的跌落高度,可以得到不同的冲击初始速度,从而可得到不同的冲击过载值;而改变波形发生器的刚度,可以得到不同的脉冲宽度值,两者协调配合,可

冲击试验

《钢材质量检验》单元教学设计一、教案头

二、教学过程设计

三、讲义 1.材料的韧性 韧性是指金属材料受冲击力的作用下,抵抗破坏的能力。 大部分金属在使用过程中,不仅受到静态力的作用,还受到快速形成的冲击力的作用。例如,火车车轮对铁轨的冲击,海水对轮船的冲击,压力容器受到的冲击。由于冲击力加载的速度非常快,金属受冲击时,应力分布和变形不均匀,极易发生断裂。因此,对承受冲击力的零件或工具来说,仅有强度指标是不够的,还要有足够的抵抗冲击负荷的能力,即韧性。 金属材料冲击韧性的评价采用冲击试验来完成。我国1994年颁布了金属韧性的测试标准 GB/T229—1994《金属夏比缺口冲击试验方法》。 2.冲击试验 (1)冲击试验原理 将标准试样置于冲击试验机的支座上,然后释放具有一定重力势能的重锤,重锤在下降过程中的快速冲击力作用下,将试样一次性冲断。测试试样在折断过程中的吸收功A k(能量差值)。 冲击功A k的测定原理是能量守恒原理,即摆锤在最高处静止时有一定的重力势能,将试样冲断后继续向前上升到最大位置处有一定的重力势能,二者的能量差即为试样在折断过程中的吸收功A k。冲击功可在试验机表盘上直接读出。 通常,金属的冲击功A k数值越大,其抵抗冲击破坏的能力就越强。有时候为了便于比较,不仅要测试试样的冲击功A k,还要将冲击功换算成冲击韧性。冲击韧性规定为单位面积上所受到的冲击力,即:a k = A k/S0 式中 A k——冲击功; S0——试样在冲击缺口处的横截面积。

(2)冲击试样 冲击功A k的大小受试样形状的影响较大。GB/T229—1994中规定可以采用以下两种缺口试样,即U型缺口试样和V型缺口试样。样坯切取应参照GB2975标准中的规定,式样的加工制造应符合下表中的规定。 3. 冲击试验注意事项 (1)室温冲击试验应在23士5℃下进行,有温度要求的试验应在规定温度士2℃下进行。 (2)试验机一般在摆锤最大能量的10%~90%范围内使用。打击速度:5.0~5.5m/s。 (3)试验前应检查摆锤空打时被动指针回零差不超过最小分度值的四分之一。 (4)试样应紧贴支座放置,缺口对称面与两支座对称面偏差不应大于0.5mm。 (5)数值修约:至少保留2位有效数字,大于100J的取3位。 4.冲击功和冲击试验在工程上的应用 作为韧性指标,为设计的选材和研制新型材料提供理论依据;检查和控制冶金产品的质量;监

温度冲击试验标准解读

温度冲击试验标准解读 热冲击试验(Thermal Shock Testing)常被称作温度冲击试验(Temperature Shock Testing)或者温度循环(Temperature Cycling)、高低温冷热冲击试验。温度冲击按照GJB 150.5A-2009 3.1的说法,是装备周围大气温度的急剧变化,温度变化率大于10度/min,即为温度冲击。MIL-STD-810F 503.4(2001)持相类似的观点。 不能因此理解为大于这个速率的试验就是温度冲击试验。温度冲击试验的速率比这个现况要严苛。经常能听到说温度冲击的速率大于20度/min,30度/min,50度/分钟,甚至更快。 温度变化原因有很多,相关标准里面都有提及: GB/T 2423.22-2012 环境试验第2部分试验N:温度变化 3 温度变化的现场条件 电子设备和元器件中发生温度变化的情况很普遍。当设备未通电时,其内部零件要比其外表面上的零件经受的温度变化慢。 下列情况下,可预见快速的温度变化: ——当设备从温暖的室内环境转移到寒冷的户外环境,或相反情况时; ——当设备遇到淋雨或浸入冷水中而突然冷却时; ——安装于外部的机载设备中; ——在某些运输和贮存条件下。 通电后设备中会产生高的温度梯度,由于温度变化,元器件会经受应力,例如,在大功率的电阻器旁边,辐射会引起邻近元器件表面温度升高,而其他部分仍然是冷的。 当冷却系统通电时,人工冷却的元器件会经受快速的温度变化。在设备的制造过程中同样可引起元器件的快速温度变化。温度变化的次数和幅度以及时间间隔都是很重要的。

GJB 150.5A-2009装备实验室环境试验方法第5部分:温度冲击试验 3.2应用 3.2.1正常环境 本试验适用于可能会在空气温度发生急剧变化的地方使用的装备。本试验仅用来评价温度急剧变化对装备的外表面、安装在外表面的零部件、或装在靠近外表面的内部零部件的影响。典型情况如下: A) 装备在热区域和低温环境之间转换; B) 通过高性能运载工具,从地面高温环境升到高空(只是热到冷); C) 仅用外部材料(包装或装备表面材料)进行试验时,从处在高空和低温条件下热的飞机防护壳体内向外空投。 3.2.2安全性和环境应力筛选 除3.3所述外,本试验适用于提示装备暴露在低于极端温度变化速率(只要试验条件下不超过装备的设计极限)下通常出现的安全性问题和潜在的缺陷。本试验虽然用作环境应力筛选(ESS),但经适当工程处理后,也可以将其作为一个筛选试验(使用更极端温度的温度冲击),用来揭示装备暴露在低于极端温度条件下会出现的潜在缺陷。 温度冲击的效应 GJB 150.5A-2009装备实验室环境试验方法第5部分:温度冲击试验 4.1.2 环境效应 温度冲击通常对靠近装备外表面的部分影响更严重,离外表面越远(当然,与相关材料的特性有关),温度变化越慢,影响越不明显。运输箱、包装等还会减小温度冲击对封闭的装备的影响。急剧的温度变化可能会暂时或长久地影响装备的工作。下面是装备暴露于温度冲击环境时可能引发的问题示例。考虑以下典型问题,有助于确定本试验是否适用于受试装备。 A) 典型物理效应有: 1) 玻璃容器和光学仪器的碎裂; 2) 运动部件的卡紧或松弛;

相关文档
最新文档