数学的三次危机——第三次数学危机
历史上三大数学危机之三

第三次数学危机一、起因魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。
但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。
二、经过经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。
看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。
法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。
然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。
1918年,罗素把这个悖论通俗化,成为理发师悖论。
罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。
罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。
于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。
产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。
如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。
三、影响第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。
为了解决第三次数学危机,数学家们作了不同的努力。
由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。
数学史上的三大危机

数学史上的三大危机无理数危机、无穷小是零危机和悖论危机无理数的发现-第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大的冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!无穷小是零吗?-第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。
(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。
因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。
它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。
这是数学史上的一个里程碑。
毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。
后来,又发现数轴上还存在许多点也不对应于任何有理数。
因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。
例如, ,22,8,6,2等都是无理数。
无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。
事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。
第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。
这种状态一直保持到笛卡儿解析几何的诞生。
中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。
即算术阶段。
希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。
在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。
总之,第一次数学危机是人类文明史上的重大事件。
无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。
首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。
数学史三次危机简介

数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
(完整版)简述数学史上的三大危机

简述数学史上的三大危机世界曾经发生过金融危机,比如美国的金融危机席卷全球,造成了史无前例的影响。
实际上,在数学界也发生过翻天覆地的变革,那就是数学史上的三次数学危机。
在古希腊,哲学家都是格外重视数学。
像无论是最早的唯物主义哲学家泰勒斯,还是最早的唯心主义哲学家毕达哥拉斯,都特别推崇数学。
在那些伟大的数学家中,在数学上成就最大的,当推毕达哥拉斯。
毕达哥拉斯建立了一个带有神秘色彩的团体,被称为毕达哥拉斯学派。
这个学派传授知识,研究数学,还很重视音乐。
“数”与“和谐”是他们的主要哲学思想。
他们认为数是万物的本源,数产生万物,数的规律统治万物,也就是“万物皆数”的观点。
“万物皆数”就是万物皆可用自然数或分数表示。
然而,这一观点在后来确被毕达哥拉斯自己给推翻了。
这还得从一个有趣的故事说起。
有一次毕达哥拉斯去朋友家做客,他发现朋友家的地板上的方形图案很有意思,凭借着他数学家头脑的直觉,得出了我们今天所学的勾股定理以及证明。
然而根据勾股定理,边长为1的正方形,其对角线的长度应当是根号2,毕达哥拉斯发现根号2既不是自然数,也不是分数。
这个事实的发现,是毕达哥拉斯学派的一大成就,它标志着人类思维有了更高的抽象能力。
但这一发现引起了毕达哥拉斯学派的惶恐不安。
因为他们心目中的数只有自然数与自然数之比---分数。
如今发现边长为1的正方形的对角线这个明明白白地摆在那里的东西竟不能用“数”表示。
这难道不是自己否定自己信仰的真理吗?于是毕达哥拉斯学派千方百计封锁消息,但是纸包不住火终于还是传开了。
当时研究数学的希腊学者们便对数的重要性有了怀疑。
哲学家们认为世界上的量都可以用数表示,任何两个分数,无论多么近,他们之间还有无穷对个分数,这么多的数居然还不能表示出线段上某些点的长度,数的万能的力量因为根号2的出现被否定了,这就是所谓的第一次数学危机。
第二次数学危机我们生活着的这个世界,在一刻不停地变化着。
古希腊哲学家赫拉克利特说:人不能两次踏入同一条河流,因为河水在流动,当人第二次踏进同一条河流时,已经不是第一次踏进时的河水了。
数学史上的三大危机是什么

数学史上的三大危机是什么?数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,所以我们应该辨证地看待这三大危机。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的理解还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不但严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这个发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。
两个几何线段,如果存有一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。
正方形的一边与对角线,就不存有能同时量尽它们的第三线段,所以它们是不可通约的。
很显然,只要承认不可通约量的存有使几何量不再受整数的限制,所谓的数学危机也就不复存有了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。
但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。
第二次数学危机发生在十七世纪。
三次数学危机的产生与解决

感谢观看
解决措施
针对三次数学危机,数学家们提出了各种解决措施。在第一次数学危机中, 欧多克索斯提出了实数的概念,将数学从困境中解脱出来;在第二次数学危机中, 数学家们对集合论进行严格的公理化,提出了公理化集合论;在第三次数学危机 中,
数学家们发展出了新的数学逻辑系统——模态逻辑,为数学的发展提供了更 加坚实的基础。
三次数学危机的产生与解决
目录
01 第一次数学危机
03 第三次数学危机
02 第内容
目录
06 总结
数学作为一门基础学科,是人类文明的重要组成部分。然而,在数学发展史 上,曾先后出现过三次严重的危机。本次演示将分别探讨这三次数学危机的产生 背景、原因及后果,并提出相应的解决措施。
第一次数学危机
第一次数学危机发生在公元前580年至568年之间的古希腊时期。这场危机的 起因主要在于当时数学界对无理数认识的不足。古希腊的数学家们认为,所有的 数都可以表示为整数或分数,即有理数。然而,当时希腊数学家希帕索斯发现了 一个问题:如果将
正方形的对角线进行等分,那么所得的线段长度就无法用有理数来表示。这 个发现动摇了当时数学界的基础,引发了第一次数学危机。
第二次数学危机
第二次数学危机发生在19世纪末期。这次危机源于康托尔的集合论,由于集 合论的某些基本概念含混不清,引发了数学界的恐慌。这场危机的根本原因是, 当时数学家们并未对集合论进行严格的公理化。为了解决这次危机,数学家们对 集合论进行了深入
研究,最终由策梅洛提出了公理化集合论,平息了这次危机。
发展。而在第三次数学危机时期,人们对数学的认知发生了根本性的改变, 使数学进入了一个全新的发展阶段。
总结
三次数学危机的产生与解决,是人类文明发展的重要组成部分。这些危机不 仅推动了数学的快速发展,而且也启示人们要不断深入思考和探索数学的内涵和 基础。通过了解三次数学危机的历史背景、原因、后果及解决措施,我们可以更 好地理解数学的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、第三次数学危机
数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。
1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素,英国人,哲学家、逻辑学家、数学家。
1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。
他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。
他关心社会现象,参加和平运动,开办学校。
1968~1969年出版了他的自传。
罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。
理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。
当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。
罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。
当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。
狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。
发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。
自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。
集合论的现代悖论与逻辑的几个古代悖论有关系。
例如公元前四世纪的欧伯利得悖论:“我现在正在做的这个陈述是假的”。
如果这个陈述是真的,则它是假的;然而,如果这个陈述是假的,则它又是真的了。
于是,这个陈述既不能是真的,又不能是假的,怎么也逃避不了矛盾。
更早的还有埃皮门尼德(公元前6世纪,克利特人)悖论:“克利特人总是说谎的人”。
只要简单分析一下,就能看出这句话也是自相矛盾的。
集合论中悖论的存在,明确地表示某些地方出了毛病。
自从发现它们之后,人们发表了大量关于这个课题的文章,并且为解决它们作过大量的尝试。
就数学而论,看来有一条容易的出路:人们只要把集合论建立在公理化的基础上,加以充分限制以排除所知道的矛盾。
第一次这样的尝试是策梅罗于1908年做出的,以后还有多人进行了加工。
但是,此程序曾受到批评,因为它只是避开了某些悖论,而未能说明这些悖论;此外,它不能保证将来不出现别种悖论。
另一种程序既能解释又能排除已知悖论。
如果仔细地检查就会发现:上面的每一个悖论都涉及一个集合S和S的一个成员M(既M是靠S定义的)。
这样的一个定义被称作是“非断言的”,而非断言的定义在某种意义上是循环的。
例如,考虑罗素的理发师悖论:用M标志理发师,用S标示所有成员的集合,则M被非断言地定义为“S的给并且只给不自己刮胡子人中刮胡子的那个成员”。
此定义的循环的性质是显然的——理发师的定义涉及所有的成员,并且理发师本身就是这里的成员。
因此,不允许有非断言的定义便可能是一种解决集合论的己知悖论的办法。
然而,对这种解决办法,有一个严重的责难,即包括非断言定义的那几部分数学是数学家很不愿丢弃的,例如定理“每一个具有上界的实数非空集合有最小上界(上确界)”。
解决集合论的悖论的其它尝试,是从逻辑上去找问题的症结,这带来了逻辑基础的全面研究。
从1900年到1930年左右,数学的危机使许多数学家卷入一场大辩论当中。
他们看到这次危机涉及到数学的根本,因此必须对数学的哲学基础加以严密的考察。
在这场大辩论中,原来不明显的意见分歧扩展成为学派的争论。
以罗素为代表的逻缉主义、以布劳威为代表的直觉主义、以希尔伯特为代表的形式主义三大数学哲学学派应运而生。
它们都是唯心主义学派,它们都提出了各自的处理一般集合论中的悖论的办法。
他们在争论中尽管言语尖刻,好象势不两立,其实各自的观点都吸收了对方的看法而又有很多变化。
1931年,哥德尔不完全性定理的证明暴露了各派的弱点,哲学的争论黯淡了下来。
此后,各派力量沿着自己的道路发展演化。
尽管争论的问题远未解决,但大部分数学家并不大关心哲学问题。
直到近年,数学哲学问题才又激起人们的兴趣。
承认无穷集合、承认无穷基数,就好象一切灾难都出来了,这就是第三次数学危机的实质。
尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。
现代公理集合论中一大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次数学危机表面上解决了,实质上更深刻地以其它形式延续着。
数学中的矛盾既然是固有的,它的激烈冲突——危机就不可避免。
危机的解决给数学带来了许多新认识、新内容,有时也带来了革命性的变化。
把20世纪的数学同以前全部数学相比,内容要丰富得多,认识要深入得多。
在集合论的基础上,诞生了抽象代数学、拓扑学、泛函分析与测度论,数理逻辑也兴旺发达成为数学有机体的一部分。
古代的代数几何、微分几何、复分析现在已经推广到高维。
代数数论的面貌也多次改变,变得越来越优美、完整。
一系列经典问题完满地得到解决,同时又产生更多的新问题。
特别是二次大战之后,新成果层出不穷,从来间断。
数学呈现无比兴旺发达的景象,而这正是人们同数学中的矛盾、危机斗争的产物。