定态薛定谔方程解的算例

合集下载

1-4-薛定谔方程应用举例

1-4-薛定谔方程应用举例

第一讲第讲主要内容振动和波动量子力学的诞生量子力学的基本原理薛定谔方程应用举例1薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子2薛定谔方程的应用举例定态薛定谔方程无限深方势阱中的粒子方势垒的穿透一维谐振子6一维无限深势阱中粒子能级有如下特点:维无限深势阱中粒子能级有如下特点:z能级量子化。

量子力学的普遍规律,束缚态(E <V 0)能级量离子化(离散的,非连续的)。

量子化能量的值要取决于束缚势能的具体情况。

值得指出的是,束缚粒子存在量子化这一事实,可简单和直接的由满足薛定谔方程的波函数应用边界条件就得到了。

z粒子的最低能级,这与经典粒子不同。

这是微观粒子波性的表静的波是有意的从02/2221≠=ma E πh 这是微观粒子波动性的表现,静止的波是没有意义的。

从不确定度关系也可以给予粗略的说明。

211zE ∝n ,能级分布是不均匀的。

CdSe量子点的吸收边和发射峰显著依赖尺寸大小。

可应用于:•生物标记•LED照明•平板显示•太阳能电池12薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子13扫描隧道显微镜20薛定谔方程的应用举例定态薛定谔方程一维自由粒子无限深方势阱中的粒子方势垒的穿透一维谐振子21谐振子能量本征值ωh ⎟⎠⎞⎜⎝⎛+=21n E n ( n = 0,1,2, … )m ω=βz为系统的本征角频率z束缚态,能级量子化。

图1.12 线性谐振子的势能曲线及本征值最低几条能级上的谐振子能量本征函数:122α谐本)(x n ψ)(x n ψ)2exp()(4/10x x απψ−=)21exp(2)(224/11x x x ααπαψ−=1exp(1212222x x x ααα−−=)2p()(2)(4/12πψ29)21exp()132(3)(22224/13x x x x αααπαψ−−=2⏐ψn (x )⏐图1.16 n =10时线性谐振子的几率密度z 实线表示量子谐振子位置概率分布,虚线为经典谐振子的概率分布。

9-4薛定谔方程

9-4薛定谔方程

隧道效应
贯穿势垒的概率定义为在 x a处透射波的强度与
入射波的强度之比:
T
3(a) 2
2a
e
2m(U0 E )
A2
贯穿概率与势垒的宽度与高度有关。
扫描隧道显微镜(STM)
原理: 利用电子的隧道效应。
金属样品外表面有一层 电子云,电子云的密度随着 与表面距离的增大呈指数形 式衰减,将原子线度的极细 的金属探针靠近样品,并在 它们之间加上微小的电压, 其间就存在隧道电流,隧道 电流对针尖与表面的距离及 其敏感,如果控制隧道电流 保持恒定,针尖的在垂直于 样品方向的变化,就反映出 样品表面情况。
z z 为 轴,角动量在 轴上的投影 Lz 只能取
Lz ml ml 0, 1, 2,..., l
ml 称为磁量子数。对于一定的角量子数l, ml 可以取 2(l 1) 个值。
B(z)
2 角动量的空间量子化 o 2
L 6
l2
三、电子的自旋
1925年,乌仑贝克 ( G.E.Uhlenbeck ) 和古兹密特(S.A.Goudsmit)提出电子自旋假说。把 电子绕自身轴线的转动称为自旋。
4 E1
n 1
0
a2
ax 0
a2
aEE1x0
四、一维势垒 隧道效应
一维方势垒如图
U
U
(x)

U0
0xa
0 x 0, x a
U0 E
粒子沿 x 方向运动,当
Ⅰ E U0
ⅡⅢ
粒子可以通过势垒。
oa x
当 E U0,实验证明粒子也能通过势垒,这只有 由量子力学的到解释。
设三个区域的波函数分别为 1, 2,3

12.6 定态薛定谔方程 ( 非相对论 )

12.6   定态薛定谔方程 ( 非相对论 )
第6节
§12.6 定态薛定谔方程 ( 非相对论 ) 下面介绍一种定态薛定谔方程的由来: (只是一种说明,不是严格的证明推导。事 实上,不可能严格推导,而是一个假设。) 一维波动方程:2/ x2 = u-2 2/ t 假设: (x , t ) = (x) f(t),且系统的总能 量恒守,即频率是精确地规定的。 所以随时间而变化的项 f(t)必然随时间作简 谐变化,我们可以取 f(t) = cos 2 t,于是 2 / x2 = f(t) d2/dx2 2 / t = (x) d2f/dt2 = - 42 2 f(t) (x)
第6节
定态波函数 (x) 应满足的条件: (1)有限 (2) 连续(3) 单值 (4)粒子在整个空间出现的几率为 1,即: -∞+∞ 2(x) dx =1 (归一化条件) 而更重要的是 (x) 必须符合由势能 V 决定 的边界条件。的确,把边界条件施加于波 函数,这才使得束缚系统能量量子化。 用非解析术语来说,我们必须把粒子 视为波,这波限制在束缚系统之内来回反 射,形成驻波。正是由于驻波适合边界条 件,才导致系统容许能量的量子化。
第12章
第6节
粒子在光滑的斜面上滑动

第12章
墙 壁
5
斜 面
O
X
第6节
例 : NH3 分子的波函数、概率分布、能级。
第12章
势 能 曲 线
第6节
例 : NH3 分子的波函数、概率分布、能级。 波函数 概率分布
第12章
第6节
例 : NH3 分子的波函数、概率分布、能级。 能 级
第12章
第6节
第12章
第6节
f(t) 2 / t = (x) d2f/dt2 = - 42 2 f(t) (x) 代入方程 2/ x2 = u-2 2/ t , 则得: f(t) d2 /dx2 = - 42 2 f(t) (x) / u2 即: d2 /dx2 = - ( 2 / )2 = - ( p / h )2 系统的总能量 E = EK + V = p2/ 2m + V p2 = 2m ( E - V ) d2 /dx2 + (2m/ h2) ( E - V ) = 0 一般形式: 2 + (2m/ h2) ( E - V ) =高 势 阱

量子力学概论第2章 定态薛定谔方程

量子力学概论第2章 定态薛定谔方程
E0=12ћω(2.60) 现在我们安全地站在梯子的最底部(量子谐振
子的基态),从而我们可以反复应用升阶算 符生成激发态,20 每升一步增加能量ћω ψn(x)=An(a+)nψ0(x),和En=n+12ћω, (2.61)
例题2.4 求出谐振子的第一激发态。 解:利用式2.61
ψ1(x)=A1a+ψ0=A12ћmω-ћddx+mωxmωπћ1/4emω2ћx2=A1mωπћ1/42mωћxe-mω2ћx2.(2.62)
我们可以直接用“手算”对它进行归一化:
∫ψ12dx=A12mωπћ2mωћ∫+∞-∞x2e-mωћx2dx=A12, 恰好,A1=1。 我们不想用这种方法去计算ψ50(那需要应用升阶算符
(式2.5)称为定态(time-independent)薛定谔方程; 如果不指定V(x)我们将无法继续求它的解。
Ψ(x,t)=∑∞n=1cnψn(x)e-iEnt/ћ=∑∞n=1cnΨn(x, t).(2.17)
尽管分离解自身是定态解,
Ψn(x,t)=ψn(x)e-iEnt/ћ,(2.18)
即,概率和期望值都不依赖时间,但是需要强调的 是,一般解(式2.17)并不具备这个性质;因为不同 的定态具有不同的能量,在计算Ψ2的时候,含时指 数因子不能相互抵消
f(x)=∑∞n=1cnψn(x)=2a∑∞n=1cnsinnπax.(2.32)
例题2.2 在一维无限深方势阱中运动的粒子,其初始波函数 是Ψ(x,0)=Ax(a-x), (0≤x≤a),A是常数(如图2.3)。设在势阱外 Ψ=0。求Ψ(x,t)。
解:首先需要归一化波函数Ψ(x,0)求出A 1=∫a0Ψ(x,0)2dx=A2∫a0x2(a-x)2dx=A2a530, 所以A=30a5. 第n项的系数(式2.37)是 cn=2a∫a0sinnπax30a5x(a-x)dx

第三章_某些定态体系薛定谔方程的解

第三章_某些定态体系薛定谔方程的解

则自由粒子的能量为:
21
量子化学 第三章 2. 二维、三维势箱中的自由质点
边长为a,b的二维势箱中的自由质点的解为:
22
量子化学 第三章
边长为a,b,c的三维势箱中的自由质点的解为:
零点能 节面 最可几位置 简并态
? 二维或三维势箱
23
量子化学
以二维势箱(边长a, b)为例:
①零点能
第三章
②粒子最可几位置: 以12为例:
12
量子化学 第三章
能量量子化,相邻两个能级差为:
显然,m, l 越小,能 级差越大。当m,l 大到宏
观数量级时,能级差就很 小,可以看成是连续的, 量子效应消失。
13
量子化学 第三章
例如:将一个电子9.1*10-31Kg束缚于长度为
10-10m的一维势箱中,能级差为:
E (2n 1)*37.7eV
16
量子化学 第三章
(2)应用:
一维势箱是一个抽象的并不存在的理想模型, 但它有实际应用意义。
金属中正离子有规律地排布,产生的势场是 周期性的,逸出功使处于金属表面的电子不能脱 离金属表面,如同势墙一样,略去势能的周期性 变化,金属中自由电子的运动可抽象为一个一维 势箱中运动的粒子。
17
量子化学 第三章
③ 121,粒子的最可几位置为
28
目录
量子化学 第三章 3.2 粒子在中心力场中的运动
中心力场是指粒子的位能只与其到某中心的距
离相关,即 : V V (r)
粒子在中心力场中的运动理论是原子结构理论的基 础。氢原子和类氢离子即为其典型的例子。
中心力场中粒子的Schrödinger方程为:
29
中心力场问题大多 采用球极坐标系:

量子力学典型例题解答讲解

量子力学典型例题解答讲解

量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。

2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。

[证]。

是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。

本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。

求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。

薛定谔方程

薛定谔方程

Asinkx
而在I、 III 两区, ( x) 0 ,所以有
Asin( ka ) 0,
2
A
ka sin(
)
0,
2
可得
ka 2
l1
π,
ka 2
l2
π
ka 2
l1
π,
ka 2
l2
π
式中 l1 , l2 是整数。 记作
上两式相加得 2 (l1 l2 ) π l π
式中 l 也是整数。 所以有 l π
因为
k2
2m 2
E
En
n2
π2 2 2ma 2
,
( E 称为能量本征值, n 称为量子数)
n 所以有 o Asin a x,
n e Acos a x,
n 2,4,6, n 1,3,5,
2.1 薛定谔方程
2.1 薛定谔方程
一. 薛定谔方程
i (r, t) [ 2 2 U(r, t)] (r, t)
Hale Waihona Puke t2m式中 m……粒子的质量 U……粒子在外力场中 的势能函数(所处条件) 2……拉普拉斯算符
2
2 x2
2 y2
2 z2
奥地利物理学家 薛定谔 (Schrodinger 1887-1961)
U→∞
U=0
a
金属

x
U=0
Ⅰ a Ⅱ a Ⅲ x
2
2
无限深方势阱
它的势能函数为 0, x a / 2
U( x) , x a / 2
U(x) U→∞
U→∞
这种势场表示粒子可以在
U=0
势阱中运动,但不能越出势阱, Ⅰ a Ⅱ a Ⅲ x

定态薛定谔方程

定态薛定谔方程

n
2a
x,
0
n为偶数 x a xa
利用sin( ) sin cos cos sin
sin n (x a) sin( n x n )
2a
2a 2
sin n x cos n cos n x sin n
2a
2
2a
2
s c
in n
2a
os n
x, x,
2a
n为偶数 n为奇数
∴势阱中波函数可写为
i [ (r) f (t)] [ 2 2 U (r)] (r) f (t)
t
2
两边同时除以 (r,t) (r) f (t)
i
1 f (t)
t
f (t)
1 (r)
[
2
2
2
U (r)] (r)
上式两边各有不同的变量 t, r ,它们是独立
变化的,要使上式对任意的变量 t, r 都成立,
两边必须等于一个常数,设常数为E,则
dx 2
通解为 (x) Asin(x) B cos(x)
由波函数的连续性和边界条件确定A、B (1)当x=a时
(x) 0 Asina B cosa 0
(2)当x=-a时,
(x) 0 Asina B cosa 0
两式相加及相减,得到
Asina 0 B cosa 0
A.B不能同时为零,否则为零解。解有两组
Ae e
(5)
(5)式中E有明确的物理意义,是粒子能量。 而(4)式中E是作为常数引入的,对比两式, 发现此常数E应是粒子的能量,这个常数是不 随时间改变的。
综上:作用于粒子上的力场不随时间改变, 即体系的哈密顿量H不显含时间, U U (r)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的间距为 。能量本征值只能取一些不连续的值。 2)最低能态的总能量(或称之为零点能)为:
1 1 E0 h 2 2
当温度趋于绝对零度时,电磁场的简谐 振动或晶体点阵上的原子振动处于基态
对量子谐振子它们仍在振动,且平均动能大于零,意味着 量子的束缚态是不可能为零的。 3)位于谐振子势井中的质点, 量子力学的结果:当n=0时,在x=o处粒子出现的几率最大。
d 2 ( x) V ( x) E ( x) 2 2m dx
2
V ( x)
I
V 0
a 2
Ⅰ为无限深势 阱中势能是常 量,粒子不受 力做自由运动
III
V
a 2
x
d 2 ( x) 2m(V E ) ( x) 0 2 2 dx
I区中 V 0
d 2 2mE 2 0 2 dx
2
求出本征函数ψ 的表 达式和 本征值E的数值
求解微分方程,需要利用一定的边界条件
1、一维简谐振子势
1 2 1 2 2 • 势能 V ( x) kx m x 2 2
哈密顿方程为:
势能函数是 一条抛物线
V ( x)
d 2 ( x) 1 2 kx ( x) E ( x) 2 2m dx 2
2mE E:动能>0 令 k 2
2
d 2 ( x) 2 k ( x) 0 2 dx
通解为
( x) A cos kx B sin kx
II、III区中
V
d 2 ( x) 2m(V E ) d 2 ( x) 2 ( x ) ( x) 0 2 2 2 dx dx
1 2 kx 2 Ψ
2 2
(ξ )
ξ
ξ
ξ
在任一能级上,势能曲线以外概率密度并不为零
Ψ
2 3
(ξ )
Ψ
2 4
(ξ )
Ψ 5(ξ )
2
1 U kx 2 2
ξ
ξ
ξ
微观粒子运动的特点:它在运动中有可能进入势能大于其总能量的区域。 这在经典理论看来是不可能出现的!
• 物理意义:
1)量子谐振子的能级是量子化的,等间隔均匀分布。能级
经典力学则认为:当n=0时,在x=o处粒子出现的几率最小。
当量子数n很大时与经典力学的结果趋于一致。
例题1: 设想一个质量为m=1g的小球悬挂在一个小轻弹
簧下做振幅为 A=1mm的简谐振动。弹簧系数为
k=0.1N/m。按量子理论计算:
1)此弹簧谐振子的能级间隔有多大?
2)与它现有的振动能量对应的量子数是多少?
1 1 E0 h 2 2
零点能
V ( x)
n4 n3 n2 n 1 n0
7 2 5 2 3 2 1 2
9 2
这也意味着,量子束缚态的动能不 可能为零,与经典的情况不相同!
x
谐振子的几率分布
Ψ 0(ξ )
2
U
1 2 kx 2
Ψ (ξ )
2 1
U
波函数的图形
ψ(ξ)=A0e
-1/2ξ2
ψ(ξ)=A1ξe-1/2ξ
2
ξ
n=0 n=2
n=1
( x) ( x)
n=3
偶函数
波函数的空间 对称是偶性的, 就称宇称是偶 性的—偶宇称
奇函数 奇宇称
n=4 n=5

2E


2n 1
所以谐振子的能量本征值为:
1 En ( n ) 2
2
x
谐振子—势能为V(x)、 质量为m的粒子
作变量代换,令 x, 待定常数,方程化为
2 d k 2 2 2 E 2 2m d 2 2
d 2 2mE mk 2 [ 2 2 2 4 ] 0 2 d
d 2 2mE mk 2 [ 2 2 2 4 ] 0 2 d
a a ( ) ( ) 0 2 2
即有
a a A cosk 2 B sin k 2 0 a a A cosk B sin k 0 2 2
mk 由于α 待定, 令 2 4 1
1 2 mk 1
变系 k
d 2 2 [ ] 0 2 d
k m
谐振子的角频率
当 2n 1时, 有解
1 2 2
n ( ) H n ( )e
n ( ) H n ( )e
其通式为:
1 2 2
Hn ( ) : 厄米多项式
2
n d n 2 H n ( ) (1) e e n d
n 0,1,2,
前5个厄米多项式为:
H0 ( ) A0
H1 ( ) A1
H2 ( ) A2 (1 2 2 ) H3 ( ) A3 (3 2 3 ) H4 ( ) A4 (3 12 2 4 4 ) H5 ( ) A5 (15 20 3 4 5 )
• 例题2:
• HCL气体能强烈吸收波长为3.465um的红外辐射。
这是HCL分子振子吸收入射光子能量的结果。 求:
1)振子的振动频率;
2)绝对零度时一摩尔HCL气体的总振动能量。
2、一维无限深势阱
目的:了解势井中量子状态的特点, 分立能级、零度能等。 II • 如图,Ⅰ中,势能为0; V • Ⅱ、Ⅲ中,势能为∞ 不分区的哈密顿方程
哈密顿方程为:
其形式上的通解:
x
( x) Ce x De x
依据波函数的边界条件
0 e x D 0 0 x 0 0e C ↑
x
由于 就有上式

() 0
表明:势阱外的波函数为0
势井中波函数 ( x) A coskx B sin kx ,在阱壁上为0, 所以边界条件为:
§2.5 定态薛定谔方程解的算例
目的:通过对解的讨论,了解量子力学体系的特征及其 物理意义 • 定态薛定谔方程问题,就是求解势能不随时间改变条件下 的薛定谔方程,就是求解哈密顿方程
H ( x) E ( x)
在一维条件下
d2 [ V ( x)] ( x) E ( x) 2 2m dx
相关文档
最新文档