异构多核处理器的任务调度算法

异构多核处理器的任务调度算法
异构多核处理器的任务调度算法

异构多核处理器的任务调度算法

蒋建春;汪同庆

【期刊名称】《计算机工程与应用》

【年(卷),期】2009(045)033

【摘要】在研究Min-min、Max-min算法和Sufferage算法基础上,针对异构多核处理器的特点,提出一种任务静态调度算法--自适应分段Sufferage算法(Adaptive Segmented Sufferage,ASS).该算法以最早完成时间和负载均衡为目标进行任务分配,先将任务分配分成两个阶段:在第一个阶段以最少完成时间作为分配原则进行分配,选择单位时间内节省时间最多的任务先分配;在第二个阶段以负载均衡为分配原则进行分配,选择执行时间大的任务先分配.然后选取不同调节参数,对任务进行多次重新分配,以最小的最大完成时间为最后分配结果,实现自适应调节.通过实验验证,该算法在实现最少完成时间的前提下能很好地达到负载均衡.%After studying the Min-min,Max-min and Sufferage algorithms,this paper presents an Adaptive Segmented Sufferage (ASS) algorithm that can be applied to heterogeneous multi-core processors system,and the goal is to assign optimally tasks to different cores to get the minimal Earliest Finish Time(EFT) and optimal load balancing.At first,the algorithm divides the allo-cating process into two phases:The first phase,the tasks whose saving time is maximum have priority to be selected to a core in the minimal execution time tasks set on the principle of the minimal EFT;the second phase,as the principle of load balancing, the tasks,which have the maximum execution time in the

多源信息融合软件的设计与实现精编WORD版

多源信息融合软件的设计与实现精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

多源信息融合软件的设计与实现 摘要:针对多源信息类型不一致影响信息利用效率的问题,文章在分析传统多源数据融合模型的基础上,研究了多源信息融合软件的架构及相关技术,设计并开发的软件具有较高的实用价值。 关键词:多源信息;信息融合;软件开发 多源信息融合是通过将多种信源在空间上和时间上的互补与冗余信息依据某种优化准则组合起来,产生对特点对象的一致性解释与描述。数据融合技术是指利用计算机对获得的信息,在一定准则下加以自动分析、综合,以完成所需决策和评估任务而进行的信息处理技术。主要包括对各类信息源给出有用信息的采集、传输、综合、过滤、相关及合成,以便辅助人们进行态势/环境判定、规划、探测、验证。 数据格式统一是进行数据处理的前提。由于信息的来源多,数据格式类别差异较大,对于数据处理带来不便。多源信息融合软件能够实现多源异构数据信息整合,对于充分利用信息资源、提高数据处理系统性能具有实用价值。 1 多源数据融合模型 根据对输入信息的抽象或融合输出结果的不同,可以将信息融合分为不同的3级,包括数据级融合、特征级融合及决策级融合。 作为数据级的多源数据融合模型的结构如图1所示。多源数据经过数据清理、数据集成、数据变换,形成有效数据,通过数据处理形成数据挖掘分析等处理工作的有效数据。

数据清理是指去除源数据集中的噪声数据和无关数据,处理遗留数据和清洗脏数据,去除数据域的知识背景上的白噪声,考虑时间顺序和数据变化等。主要包括处理噪声数据,处理空值,纠正不一致数据等。 数据集成就是将多文件或多数据库运行环境中的异构数据进行合并处理,将多个数据源中的数据结合起来存放在一个一致的数据存储中。 数据变换就是将数据变换成统一的适合处理的形式。数据变换主要包括平滑、聚集、属性构造、数据泛化和规范化等内容。 2 多源信息融合软件设计 2.1 软件架构 多源信息融合软件的技术要求是实现多源异构数据向指定关系数据库进行可靠转换。就是按照指定关系数据库的表结构要求,实现多源异构数据的数据导入及格式转换问题。软件的组成框图如图2所示。软件主要包括2个主要模块,多源数据预处理模块和数据导入模块。数据预处理模块主要进行数据清理及格式转换,实现常用的数据(txt、xls、关系数据库等数据)转换为目标数据库支持的数据格式。数据导入实现指定类型数据转换为指定结构数据。 2.2 关键技术 为了保证多源信息软件的可靠运行,需解决数据类型的适应性和扩展性问题,以及数据转换的可靠性、可预制性、数据转换过程的可监督性问题。 2.2.1 基于模块化设计的类型转换

异构多核处理器的任务调度算法

异构多核处理器的任务调度算法 蒋建春;汪同庆 【期刊名称】《计算机工程与应用》 【年(卷),期】2009(045)033 【摘要】在研究Min-min、Max-min算法和Sufferage算法基础上,针对异构多核处理器的特点,提出一种任务静态调度算法--自适应分段Sufferage算法(Adaptive Segmented Sufferage,ASS).该算法以最早完成时间和负载均衡为目标进行任务分配,先将任务分配分成两个阶段:在第一个阶段以最少完成时间作为分配原则进行分配,选择单位时间内节省时间最多的任务先分配;在第二个阶段以负载均衡为分配原则进行分配,选择执行时间大的任务先分配.然后选取不同调节参数,对任务进行多次重新分配,以最小的最大完成时间为最后分配结果,实现自适应调节.通过实验验证,该算法在实现最少完成时间的前提下能很好地达到负载均衡.%After studying the Min-min,Max-min and Sufferage algorithms,this paper presents an Adaptive Segmented Sufferage (ASS) algorithm that can be applied to heterogeneous multi-core processors system,and the goal is to assign optimally tasks to different cores to get the minimal Earliest Finish Time(EFT) and optimal load balancing.At first,the algorithm divides the allo-cating process into two phases:The first phase,the tasks whose saving time is maximum have priority to be selected to a core in the minimal execution time tasks set on the principle of the minimal EFT;the second phase,as the principle of load balancing, the tasks,which have the maximum execution time in the

012032异构多核处理器的编程模型和编译技术

异构多核处理器的 编程模型和编译技术 杨灿群 李春江 国防科学技术大学关键词:异构多核 编程编译 引言 目前,芯片集成度的发展继续延续摩尔定律,即每18个月左右晶体管的密度翻一番。照这样的速度,预计到2010年前后,单个芯片能够集成数十亿个晶体管。而且目前来看,这一趋势将持续相当长的时间。因此,如何充分利用芯片上大量的晶体管资源设计高性能的微处理器,是当前产业界和学术界普遍关注的问题。在单芯片上集成多个处理器核构建多核处理器,以便开发更高级别的芯片内部并行性是处理器重要的发展趋势之一。 按照集成方式的不同,多核处理器可以分为同构多核处理器和异构多核处理器。同构多核处理器在一个芯片内集成了多个同构的处理器核,每个处理器核所面向的工作负载完全相同,因此其设计实现相对简单。目前,这一类处理器已经全面推向市场,近期主要以双核为主。 异构多核处理器则在一个芯片内集成了多个异构的处理器核,不同结构的处理器核负责处理工作负载中不同类型的操作。这样,在特定应用领域,异构多核处理器比同构多核处理器能发挥出更高的性能。因此,异构多核处理器是当前产业界和学术界的研究热点。 异构多核处理器对体系结构和软件两个领域都提出了许多新的研究课题。在软件方面的关键问题是支持什么样的编程模型、采用哪些编译优化技术才能充分发挥出处理器的高性能。 可以把异构多核处理器抽象为一个异构并行处理系统,其中存在着多个层次的并行性。面向异构多核处理器的编程模型和编译技术的核心问题是,如何充分开发这个系统中各个层次的并行性。在并行计算几十年的发展过程中,虽然面向并行系统的编程和编译技术已经取得了相当多的成果,但仍是并行计算发展的瓶颈之一。异构多核处理器的异构并行结构,为并行编程和编译优化技术提供了新的研究课题,同时也提出了更大的挑战。 异构多核处理器 异构多核处理器的结构特点 异构多核处理器通常面向特定的应用领域设计,目标是针对特定领域的应用获得高性能。而针对特定应用领域或者面向解决特定问题来设计计算机系统的微处理器,正是微处理器设计的发展方向。未来微处理器在计算机系统设计中所跨越的层次将发生如图1所示的变化[1],即微处理器设计过程中不再仅仅关注

异构计算综述

异构计算(Heterogeneous computing) 摘要 异构计算(Heterogeneous computing)技术从80年代中期产生,由于它能经济有效地获取高性能计算能力、可扩展性好、计算资源利用率高、发展潜力巨大,目前已成为并行/分布计算领域中的研究热点之一。本文主要介绍了CPU+GPU基础知识及其异构系统体系结构(CUDA)和基于OpenCL的异构系统,并且总结了两种结构的特点,从而对异构计算有了更深的理解。 关键词:异构计算CUDA OpenCL 1、引言 异构计算主要是指使用不同类型指令集和体系架构的计算单元组成系统的计算方式。常见的计算单元类别包括CPU、GPU等协处理器、DSP、ASIC、FPGA 等。我们常说的并行计算正是异构计算中的重要组成部分异构计算近年来得到更多关注,主要是因为通过提升CPU时钟频率和内核数量而提高计算能力的传统方式遇到了散热和能耗瓶颈。而与此同时,GPU等专用计算单元虽然工作频率较低,具有更多的内核数和并行计算能力,总体性能/芯片面积的比和性能/功耗比都很高,却远远没有得到充分利用。CPU的设计让其比较擅长于处理不规则数据结构和不可预测的存取模式,以及递归算法、分支密集型代码和单线程程序。这类程序任务拥有复杂的指令调度、循环、分支、逻辑判断以及执行等步骤。而GPU擅于处理规则数据结构和可预测存取模式。而APU的设计理念则正是让CPU和GPU完美合作,集合两者的长处,用异构计算来达到整体性能的最佳化。目前,已经有50款领先的应用能够利用AMD APU进行加速,而后续的应用也将陆续到来——异构计算普及的一刻应该是近在咫尺了。 1.1 CPU和GPU的本质区别 (1) CPU特点 a) CPU的目标是快速执行单一指令流; b) CPU将其用于乱序执行、寄存器重命名、分支预测以及巨大的cache上,

一种多源异构数据融合技术在PGIS系统中的研究与应用

一种多源异构数据融合技术在PGIS系统中 的研究与应用 周凯1,2 (1.四川省公安科研中心,四川成都610015;2.四川大学,四川成都610064) [摘要]警用地理信息系统是公安机关维稳处突、打击违法犯罪行为的重要技术支撑平台。多源异构数据是维护该平台安全稳定、高效运行的底层核心数据。文章以某PGIS平台为例,针对多源异构数据使用中遇到的数据不兼容、格式不统一、属性数据非空间化、空间数据格式转化等问题,提出了一种多源异构数据的融合模型。通过属性清洗、属性追加、空间匹配、格式转化等流程化操作,实现了空间与非空间、结构与非结构等数据的融合使用。并可以基于PGIS平台,统一加载、统一展示、统一应用。通过利用该技术,挖掘了数据的利用价值,为类似平台数据处理提供了技术参考与经验。 [关键词]多源异构;PGIS;数据融合 [中图分类号]P208[文献标识码]A[文章编号]1674-5019(2019)02-0051-05 A Multi-Source Heterogeneous Data Fusion Technology in PGIS System Research and Application ZHOU Kai 1引言 数据融合的本质是多方数据协同处理,以达到减少冗余、综合互补和捕捉协同信息的目的。该技术已成为数据处理、目标识别、态势评估以及智能决策等领域的研究热点[1]。通过数据融合,能够将研究对象获取的所有信息全部统一在一个时空体系内,得到比单独输入数据更多的信息。警用地理信息系统(Police Geographic Information System,简称“PGIS”)是多源异构数据技术、地理信息技术和公安系统业务工作高度结合的产物[2]。利用多源异构数据融合技术的PGIS平台,可以实现跨省、市、县等行政区域的一张图展示,可达到资源的高度统一利用。但在实际工作过程中,支撑PGIS平台的基础地理信息数据种类繁多,从平面线划图到精细化三维成果,从空间数据到非空间数据,从海量兴趣点数据(poi)到各种图像数据应有尽有。面对大数据时代海量的数据资源,如何保障PGIS平台业务数据、测绘地理信息数据、“一标三实”等数据高效利用,互补短板,统一承载于警用地理信息平台,协同发挥数据最大价值,提高数据在分析决策中的应用价值,是当下PGIS平台发展研究的热点问题[2-3]。 2研究方法2.1多源异构数据融合技术 数据集成是数据融合的基础,融合是集成基础上的深化应用,通过数据集成与融合,可派生出更高更有价值的新数据,从而得到数据的更多利用价值[4]。马茜等人[5]基于物联网背景下多源数据获取、存储等存在的不足,提出了一种约束数据质量的异构多源多模态感知数据获取方法,提高了数据精度,降低了网络资源消耗。韩双旺[6]基于XML语言实现异构多源空间数据的映射和模式转换,利用WebGIS技术实现了空间数据的集成和互操作。惠国保[7]结合深度学习技术,构思了一种泛化性强的多源异构影像数据融合深度学习模型,实现了深度学习技术在多源异构数据方面的信息提取与挖掘。李文闯等人[8]提出了一种基于可交换图像文件(EXIF)原理以数字图像为载体融合空间位置信息和一般形式属性的数据模型,实现了空间位置和一般属性嵌入到数字图像物理结构,达到了数据融合的效果。 本文不仅需要解决各种数据的属性嵌套、数据集成,而且要解决空间数据和非空间数据、空间数据与空间数据、结构数据与非结构数据之间的转化问题。因此鉴于实际需求,本文提出了基于FME平台下自主构建多源异构数据引擎,开展数据融合,实现多源异构数据的集成统一、高效利用。

什么是异构多处理系统,为什么需要异构多处理系统

什么是异构多处理系统,为什么需要异构多处理系统 早期嵌入式处理系统通常由一个微控制器和一系列外设构成。这些系统通常用来完成获取少量数据、处理数据、做出决策、基于决策结果输出信息等工作。在某些情况下会实现简单的人机交互接口如读取键盘并显示结果。处理需求、同时产生需求,以现在的标准来看似乎微不足道。现代嵌入式系统通常需要处理和分析十亿字节级的海量数据,而且常常在确定性和低延时运算上还有一些额外要求。许多应用还要求系统在满足相关行业标准的同时可靠符合可靠性和安全性要求。 目前,似乎还不可能在单一处理器上同时满足处理高带宽数据、执行系统应用程序、响应实时请求并满足行业安全标准。然而,多核异构芯片却可以实现这些功能。这样的设备具有多个处理单元,每一个单元都有能力负责处理一个或多个前述需求,我们称这样的设备为异构处理系统。 1 什么是异构多处理呢? 一个异构多处理系统由不同类型的多个单核心或多核心处理器构成,异构多核处理系统最简单的形式是由一个多核处理器和GPU组成。然而,现代科技让一颗芯片上的异构多处理系统包含以下模块: ①多核应用处理器(MulTIcore ApplicaTIons Processors); ②多核图形处理器(MulTIcore Graphics Processors; ③多核实时处理器(MulTIcore Real-Time Processors); ④平台管理单元(Platform Management Unit); ⑤配置和安全系统(Configuration and Security Unit); ⑥在FPGA可编程逻辑上实现特定多核处理器。 本文所引用的异构多核处理系统包括上述的多个分类。使用FPGA逻辑实现多核处理器的优势是:它可以创建自定义特殊应用处理器,通过并行Pipes和多Pipeline stages来实现二维并行数据处理,使得在一个时钟周期里可以完成大量的计算。 多核处理器可以设计用来执行通用计算或者是专用计算。和通用处理器执行相同功能相比

【CN110110082A】多源异构数据融合优化方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910294678.8 (22)申请日 2019.04.12 (71)申请人 黄红梅 地址 510610 广东省广州市天河区沾益直 街1号 申请人 何卓华 谢新屋 (72)发明人 黄红梅 何卓华 谢新屋  (74)专利代理机构 北京联瑞联丰知识产权代理 事务所(普通合伙) 11411 代理人 张学府 (51)Int.Cl. G06F 16/35(2019.01) G06F 16/903(2019.01) (54)发明名称 多源异构数据融合优化方法 (57)摘要 本发明公开了一种多源异构数据融合优化 方法,包括如下步骤:A)对数据实例、类别和属性 进行提取和分析,建立词库和短文本库;B)从互 联网获取多源异构数据;C)对多源异构数据进行 规范化处理,生成短文本;短文本有多个词构成, 规范化处理包括分词和去除停用词;D)将短文本 作为待匹配短文本,将待匹配短文本与短文本库 中存储的短文本进行匹配,得到短文本匹配结 果;E )根据短文本匹配结果对数据进行融合,建 立大数据内容模型,得到数据融合结果;F )对数 据融合结果进行评价,得到评价结果;评价结果 包括优、良、中和差。本发明能建立完整性、准确 性和一致性较强的高质量的大数据知识库。权利要求书2页 说明书5页 附图1页CN 110110082 A 2019.08.09 C N 110110082 A

1.一种多源异构数据融合优化方法,其特征在于,包括如下步骤: A)对数据实例、类别和属性进行提取和分析,建立词库和短文本库; B)从互联网获取多源异构数据; C)对所述多源异构数据进行规范化处理,生成短文本;所述短文本由多个词构成,所述规范化处理包括分词和去除停用词; D)将所述短文本作为待匹配短文本,将所述待匹配短文本与短文本库中存储的短文本进行匹配,得到短文本匹配结果; E)根据所述短文本匹配结果对数据进行融合,建立大数据内容模型,得到数据融合结果; F)对所述数据融合结果进行评价,得到评价结果;所述评价结果包括优、良、中和差。 2.根据权利要求1所述的多源异构数据融合优化方法,其特征在于,所述步骤D)进一步包括: D1)计算所述待匹配短文本与短文本库中的短文本之间的字符匹配因子; D2)计算所述待匹配短文本与短文本库中的短文本之间的词匹配因子; D3)根据所述字符匹配因子和词匹配因子,对所述待匹配短文本与短文本库中的短文本进行匹配,计算短文本匹配因子。 3.根据权利要求2所述的多源异构数据融合优化方法,其特征在于,所述字符匹配因子 采用如下公式进行计算: 其中,F 1表示所述字符匹配因子,c 1表示所述待匹配短文本包含的字符数,c 2表示所述短文本库中的短文本包含的字符数,p表示匹配的字符数,h表示换位的数目。 4.根据权利要求3所述的多源异构数据融合优化方法,其特征在于,所述词匹配因子采 用如下公式进行计算: 其中,F 2表示所述词匹配因子,n表示维数较高短文本向量的维数,σ表示修正因子,σ∈ [0.9,1.3],用于修正增加词带来的误差,A i 为所述待匹配短文本中的第i个词,B i 为短文本库中的短文本中的第i个词。 5.根据权利要求4所述的多源异构数据融合优化方法,其特征在于,所述短文本匹配因 子采用如下公式进行计算: 其中,Y表示短文本的匹配因子;设定匹配阈值Y 0,若Y≥Y 0,则说明所述待匹配短文本与短文本库中的短文本相匹配,若Y<Y 0,则说明所述待匹配短文本与短文本库中的短文本不匹配。 6.根据权利要求5所述的多源异构数据融合优化方法,其特征在于,所述步骤E)具体 权 利 要 求 书1/2页2CN 110110082 A

【大数据】多源异构通用大数据处理服务平台

一、项目背景及必要性 (一)国内外现状和技术发展趋势 大数据是指海量的数据加上复杂的数据类型。从产业的发展角度看,我们对数据的利用经历了传输、传播、处理三个阶段,而今眼目下,对数据的利用正处在处理这个阶段,即如何处理、如何管理、如何应用,如何优化是现阶段的主要工作。 大数据的具体特点主要表现为四个“V”:一是体量浩大(Volume),数据集合的规模已从GB到TB再到PB级,甚至已经开始以EB和ZB来计算。著名咨询公司IDC的研究报告称,未来10年全球大数据将增加50倍,管理数据仓库的服务器的数量将增加10倍。二是类型复杂(Variety),大数据类型包括结构化数据、半结构化数据和非结构化数据。现代互联网应用呈现出非结构化数据大幅增长的特点,到20152年末非结构化数据将达到整个数据量的75%以上。三是生成迅速(Velocity),大数据通常以数据流的形式动态、快速地产生,具有很强的时效性。数据自身的状态与价值也随时空变化而发生演变,数据的涌现特征明显。四是价值巨大但利用密度低(Value),基于传统思维与技术让人们在实际环境中面临信息泛滥而知识匮乏的窘态。 当今社会,新摩尔定律得到验证,大数据以成为各行各业的焦点。数据的来源多样化:以多源异构数据为代表的非结构化数据占世界上信息总量的95%以上,剩下的5%为结构化数据,包括网页、文本、交易数据、邮件、高清视频、3D视频、语音、图片、地质勘测

数据、多源异构数据探测数据等等,这些数亿TB的数据正以超乎人们想象的速度增长,这对数据的存储系统的容量和实时计算速度提出了空前的要求。同时,大到智慧地球,小到智慧城市的数字化建设,使其越来越多的人、设备和传感器通过数字网络连接起来,产生、传送、分享和访问数据的能力也得到彻底变革。这些行业包括:互联网、制造业、医疗行业、媒体行业、零售销售行业、金融业、能源业、航空航天等等。预计2015年,超过40亿人(世界人口的60%)在使用各种智能终端,以全方位的方式与各行各业发生交互融合。其中大约12%拥有智能终端——其渗透率以每年20%以上的速度增长。如今,3000多万联网传感器节点分布在互联网、交通、汽车、工业、公用事业和零售部门,其数量正以每年30%以上的速度增长。预计到2020年,全球数据使用量预计暴增44倍,达到35.2ZB。35.2ZB也就是说全球大概需要376亿个1TB硬盘来存储数据。 人们对数据日益广泛的需求导致存储系统的规模变得越来越庞大,管理越来越复杂,数据的爆炸性增长和管理能力的相对不足之间的矛盾日益尖锐。同时,数据的高速增长也对存储系统的可靠性和扩展性提出了挑战,海量数据的共享、分析、搜索也显得越来越重要,充分挖掘海量数据中的有效价值。这就要求我们得实现一种有别于传统系统而全新的存储管理平台,该平台必须具备高扩展性、高可靠性、高时效性,同时也需要具备高经济性,只有这样才能更好的为国民经济和生活服务。 国外的大数据发展现状,以GOOGLE/FACEBOOK为代表的

论中医药多源异构大数据融合方法研究的意义

Traditional Chinese Medicine 中医学, 2018, 7(5), 282-285 Published Online September 2018 in Hans. https://www.360docs.net/doc/096709274.html,/journal/tcm https://https://www.360docs.net/doc/096709274.html,/10.12677/tcm.2018.75047 On the Significance of the Method of Multi-Source Heterogeneous Data Fusion in TCM Hanqing Zhao, Zhiguo Wang* Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing Received: Aug. 18th, 2018; accepted: Aug. 26th, 2018; published: Sep. 3rd, 2018 Abstract Multi-source isomerism is one of the basic features of large data. It is a hot issue in recent years to study traditional Chinese medicine diagnosis and treatment methods based on data. Building a generalization model is one of the methods to solve multisource heterogeneous data fusion and shares and extends the scope of traditional Chinese medicine data. However, the complexity of the large data of traditional Chinese medicine is high. Many problems, such as rich semantics, uneven distribution and poor objectivity, have greatly restricted the research and application of big data in Chinese medicine. In this paper, the importance of multi-source heterogeneous data fusion me-thod under the background of Internet+ large data is discussed, and the importance of mul-ti-source heterogeneous data fusion method based on the combination of disease and syndrome is discussed. It is the original cause of the important component of the large data of traditional Chi-nese medicine in the future, and the further study of the multi-source isomerism of traditional Chinese medicine. The method of large data fusion provides a theoretical reference. Keywords TCM Informatization, Diagnosis and Treatment Mode, Combination of Disease and Syndrome, Big Data, Multi-Source Heterogeneous Fusion 论中医药多源异构大数据融合方法研究的意义 赵汉青,王志国* 中国中医科学院中医临床基础医学研究所,北京 收稿日期:2018年8月18日;录用日期:2018年8月26日;发布日期:2018年9月3日 *通讯作者。

智慧城市多源异构大数据处理框架

智慧城市多源异构大数据处理框架 摘要:智慧城市建设的重心已由传统IT系统和信息资源共享建设,转变为数据的深度挖掘利用和数据资产的运营流通。大数据中心是数据资产管理和利用的实体基础,其核心驱动引擎是大数据平台及各类数据挖掘与分析系统。讨论了智慧城市大数据中心建设的功能架构,围绕城市多源异构数据处理的实际需要,对数据中心大数据平台的架构进行了拆分讲解,并以视频大数据处理为例,阐述了数据中心中大数据平台的运转流程。 关键词:智慧城市;大数据;多源异构;视频分析 1 引言 随着智慧城市建设逐步由信息基础设施和应用系统建设迈入数据资产集约利用与运营管理阶段,城市大数据中心已成为智慧城市打造核心竞争力、提升政府管理效能的重要工具。一方面政府借助大数据中心建设可以将有限的信息基础设施资源集中高效管理和利用,大幅降低各自为政、运维机关庞杂、财政压力过大的问题;另一方面,可以在国务院、发展和改革委员会大力支持的政策东风下,打破部门间数据壁垒,推动政府各部门职能由管理转为服务,提高数据共享利用率和透明度。以大数据中心为核心构建城市驾驶舱,实现城市运转过程的实时全面监控,提高政府决策的科学性和及时性。智慧城市大数据中心建设功能框架如图1所示,其中针对不同部门的数据源,由数据收集系统完成数据的汇聚,并根据数据业务类型和内容的差异进行粗分类。为避免过多“脏数据”对大数据平台的污染,对于批量数据,不推荐直接将数据汇入大数据平台,而是单设一个前端原始数据资源池,在这里暂时存储前端流入的多源异构数据,供大数据平台处理调用。

图1 智慧城市大数据中心功能框架 大数据平台是城市大数据中心运转的核心驱动引擎,主要完成多源数据导入、冗余存储、冷热迁移、批量计算、实时计算、图计算、安全管理、资源管理、运维监控等功能[1],大数据平台的主体数据是通过专线连接或硬件复制各政府部门数据库的方式获得,例如地理信息系统(geographic information system,GIS)数据、登记信息等。部分数据通过直连业务部门传感监测设备的方式获得,例如监控视频、河道流量等。大数据平台的输出主要是结构化关联数据以及统计分析结果数据,以方便各类业务系统的直接使用。 不同部门间共享与交换的数据不推荐直接使用原始数据,一方面是因为原始数据内容密级存在差异,另一方面是因为原始数据内容可能存在错误或纰漏。推荐使用经过大数据平台分类、过滤和统计分析后的数据。不同使用部门经过政务信息门户统一需求申请和查看所需数据,所有数据的交换和审批以及数据的监控运维统一由数据信息中心负责,避免了跨部门协调以及数据管理不规范等人为时间的损耗,极大地提高了数据的流通和使用效率。另外,针对特定的业务需求,可以基于大数据平台拥有的数据进行定制开发,各业务系统属于应用层,建设时不宜与大数据平台部署在同一服务器集群内,并且要保证数据由大数据平台至业务系统的单向性,尽量设置业务数据过渡区,避免应用系统直接对大数据平台核心区数据的访问。 目前主流大数据平台都采用以Hadoop为核心的数据处理框架,例如Cloudera公司的CDH(Cloud er a Distribution for Hadoop)和星环信息科技(上海)有限公司(Transwarp)的TDH(Transwarp Data Hub)、Apache Hadoop等。以Hadoop为核心的大数据解决方案占大数据市场95%以上的份额,目前国内80%的市场被Cloudera占有,剩余20%的市场由星环信息科技(上海)有限公司、北京红象云腾系统技术有限公司、华为技术有限公司等大数据公司分享。随着数据安全意识的增强、价格竞争优势的扩大,国内企业在国内大数据市场的份额和影响力正在快速提升。大数据的应用历程可归纳为3个阶段:第一个阶段是面向互联网数据收集、处理的搜索推荐时代;第二个阶段是面向金融、安全、广播电视数据的用户画像和关系发现时代;第三个阶段是面向多数据源与多业务领域数据的融合分析与数据运营时代,并且对数据处理规模和实时性的要求大幅提高。 本文在智慧城市大数据中心建设方案的基础上,阐述了多源异构大数据处理的框架和流程,并以最典型的非结构化视频大数据处理为例,介绍了多源异构大数据处理框架运转的流程。 2 多源异构大数据处理框架 2.1 系统整体架构 多源异构是大数据的基本特征[2],为适应此类数据导入、存储、处理和交互分析的需求,本文设计了如图2所示的系统框架,主要包括3个层面的内容:基础平台层、数据处理层、应用展示层。其中,基础平台层由Hadoop生态系统组件以及其他数据处理工具构成,除了提供基本的存储、计算和网络资源外,还提供分布式流计算、离线批处理以及图计算等计算引擎;数据处理层由多个数据处理单元组成,除了提供基础的数据抽取与统计分析算法外,还提供半结构化和非结构化数据转结构化数据处理算法、数据内容深度理解算法等,涉及自然语言处理、视频图像内容理解、文本挖掘与分析等,是与人工智能联系最紧密的层,该层数据处理效果的好坏直接决定了业务应用层数据统计分析的准确性和客户体验;应用展

异构计算

异构计算 异构计算技术从80年代中期产生,由于它能经济有效地获取高性能计算能力、可扩展性好、计算资源利用率高、发展潜力巨大,目前已成为并行/分布计算领域中的研究热点之一。本文还强调了未来异构计算研究应注意的一些方面。 随着通信和网络技术的迅速发展,网络计算概念应运而生。同构网络计算系统now或cow首先兴起,接着很快涌现出异构网络计算系统,从而使异构计算近年来成为并行/分布计算领域中的主要研究热点之一。 基本概念 在异构计算系统上进行的并行计算通常称为异构计算。人们已从不同角度对异构计算进行定义,综合起来我们给出如下定义:异构计算是一种特殊形式的并行和分布式计算,它或是用能同时支持simd方式和mimd方式的单个独立计算机,或是用由高速网络互连的一组独立计算机来完成计算任务。它能协调地使用性能、结构各异地机器以满足不同的计算需求,并使代码(或代码段)能以获取最大总体性能方式来执行。 概括来说,理想的异构计算具有如下的一些要素:

(1)它所使用的计算资源具有多种类型的计算能力,如simd、mimd、向量、标量、专用等;(2)它需要识别计算任务中各子任务的并行性需求类型;(3)它需要使具有不同计算类型的计算资源能相互协调运行;(4)它既要开发应用问题中的并行性,更要开发应用问题中的异构性,即追求计算资源所具有的计算类型与它所执行的任务(或子任务)类型之间的匹配性;(5)它追求的最终目标是使计算任务的执行具有最短时间。 可见,异构计算技术是一种使计算任务的并行性类型(代码类型)与机器能有效支持的计算类型(即机器能力)最相匹配、最能充分利用各种计算资源的并行和分布计算技术。 基本原理 1、异构计算系统。 它主要由以下三部分组成:(1)一组异构机器。(2)将各异构机器连接起来的高速网络。它可以是商品化网络,也可以是用户专门设计的。(3)相应的异构计算支撑软件。 2、异构计算的基本工作原理。

基于Abaqus软件的并行计算异构集群平台的搭建

第31卷第5期 2011年10月地震工程与工程振动JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.31No.5Oct.2011收稿日期:2011-05-27;修订日期:2011-07-25 基金项目:国家公益性行业(地震)科研专项(200808022);江苏省自然科学基金项目(BK2008368) 作者简介:毛昆明(1985-),男,博士研究生,主要从事轨道交通引起的环境振动方面研究.E- mail :kun -ming@yeah.net 通讯作者:陈国兴(1963-),男,教授,博士,主要从事土动力学与岩土地震工程研究.E- mail :gxchen@njut.edu.cn 文章编号:1000-1301(2011)05-0184-06 基于Abaqus 软件的并行计算异构集群平台的搭建 毛昆明,陈国兴 (南京工业大学岩土工程研究所,江苏南京210009) 摘要:在异构集群上充分利用新、旧硬件资源调度计算任务是实现集群高性能并行计算的难点。 通过测试已搭建集群服务器的CPU 和内存对Abaqus 软件计算速度的影响,发现CPU 的主频对 Abaqus /Explicit 模块计算速度的影响大,CPU 的缓存对Abaqus /Standard 模块速度影响大;当内存满 足计算任务的最小需求时, 增加内存对计算速度无任何影响;当内存不足时,计算速度会大幅减慢。据此测试结果,新增4台服务器作为计算节点和一台Infiniband QDR 交换机作为交换节点,搭建了新 的异构集群, 性能测试结果表明:相对于千兆以太网络交换机,Infiniband QDR 交换机的并行计算效率更好,且集群的计算节点越多越显著;Abaqus /Standard 模块并行计算效率的提高幅度要比Abaqus / Explicit 模块的稍高一些。针对异构集群硬件构架相差较大的2批新、旧硬件,设置了2个管理节点、 2个网络节点、2个存储节点,充分利用了新、旧硬件资源,高效地实现了在一个异构集群平台上提交 与下载任务。 关键词:异构集群;Abaqus 软件;并行计算;Infiniband QDR 交换机 中图分类号:P315.69文献标志码:A Construction of parallel computing heterogeneous cluster platform based on Abaqus software MAO Kunming ,CHEN Guoxing (Institute of Geotechnical Engineering ,Nanjing University of Technology ,Nanjing 210009,China ) Abstract :Taking full advantage of new and old hardware resources on the heterogeneous cluster to schedule compu-ting jobs is a difficult point in the realization of high performance parallel computing.The influence of servers ’CPU and memory on computing speed of Abaqus software on the cluster which has been constructed is tested.The conclusions are drawn :CPU clock speed has a great effect on the computing speed of Abaqus /Explicit module and CPU internal cache has a great effect on computing speed of Abaqus /Standard module.When memory satisfies the minimum requirement of a computing job ,increasing memory has no effect on the computing speed.When memory is insufficient ,computing speed will slow down sharply.According to the testing results ,four servers as the compu- ting nodes and an Infiniband QDR switch as the network node are added , and then the heterogeneous cluster is con-structed.Parallel computing speed of the Infiniband QDR switch is tested ,and the result shows that the parallel effect of the Infiniband QDR switch is superior to the gigabit ethernet switch.The more the number of computing nodes is ,the better the parallel effect is.Abaqus /Standard module ’ s elevated range of parallel computing efficien-cy is slightly better than Abaqus /Explicit module ’s.Specific to two groups of new and old equipment whose archi-

多源异构数据采集和可视化解决方案

工业互联网先进应用案例集 案例 可快速部署的低成本多源异构数据采集 和可视化解决方案 ——基于宜科边缘控制器和IoTHub平台的设 备智能管理应用 宜科(天津)电子有限公司成立于2003年,位于天津市西青经济开发区,在中国天津和德国德累斯顿设有研发中心。公司将“自动化技术+数字化工厂+工业互联网”定义为重要的发展战略,围绕工业互联网和智能制造业务持续发力,在工业互联网、智能制造、工业软件等方面积累了大量项目案例和实施经验,在工业互联网领域拥有核心产品和方案,在系统集成解决方案领域处于国内领先地位。 一、项目概况 宜科边缘控制器利用宜科IoTHub TM工业互联网赋能平台和Workbench工业APP快速开发工具,提供“设备连接+数据可视化”应用模式,将成为中小企业管理者直观了解工厂运行状态的最有效方式。

1. 项目背景 工业互联网平台是工业互联网建设的核心。工业设备上云正成为牵引工业互联网平台发展的先导性应用,也是当前工业互联网平台建设的切入点。 工业设备上云就是通过建立实时、系统、全面的工业设备数据采集体系。构建基于云计算的数据汇聚、分析和服务平台,实现工业设备状态监测、预测预警、性能优化,引导带来工业互联网平台的功能演进和规模商用。工业设备种类繁杂、数量多、通信协议与数据格式各异,当前尚缺乏有效的技术手段能够低成本、便捷地实现工业设备快速接入平台,导致绝大部分平台的设备接入数量有限。2. 项目简介 基于宜科边缘控制器,提供“数据+应用”的服务,充分利用IoTHub TM工业互联网赋能平台IaaS和PaaS资源,以及边缘计算设备的性能,提供数据采集能力和数据可视化应用。 数据:系统提供多种协议接口,支持典型的工业控制器、传感器、物联网采集监控终端,并提供协议连接及数据交互操作。 应用:工业APP开发工具,方便提供生产过程监控、调试维护配置、报警相应及处理、报表实时更新及显示生成等功能,方便平台应用。 数据+应用=服务 3. 项目目标 面向工业互联网应用,支持市场二十种以上主流工业协议解析,支持二十万台设备并发连接,提供面向工业现场的图形化、拖拽式和低代码快速开发APP 工具,支持本地、私有云、共有云混合或单一部署,提供多个重点垂直领域的基础应用APP。 在汽车整车及零部件、装备制造、冶金、电子信息领域发展客户上千家,设备连接数超百万。在设备监控、设备预测性维护、生产现场数据可视化、数据分析、实时报警等方面,帮助广大中小制造业企业解决“数据之痛”,提升生产效率,降低运营成本,提高管理水平,助力企业做大做强。

多核处理器的发展趋势

多核处理器的发展趋势 摘要:多核处理器以其高性能、低功耗优势正逐步取代传统的单处理器成为市场的主流。介绍了 Hydra、Cell、RAW 这 3 种典型的多核处理器结构,重点讨论了核心结构选择、存储结构设计、低功耗等 4个影响当前多核处理器发展的关键技术,最后得出多核处理器的未来将呈现众核、低功耗和异构结构 3 种发展趋势。 Abstract:Multi-core processor has replaced single processor as the mainstream in the market for its high performance and low power. Three typical structures of multi-core processor: Hydra, Cell, RAW is introduced, and then four key techniques is presented, such as core architecture, memory architecture design, low power and finally thedevelopmenttrends of multi-coreprocessor isdiscussed, whichare manycore, low power and heterogeneous. 多核处理器也称为片上多处理器 (chip multi-processor,CMP),或单芯片多处理器。自 1996 年美国斯坦福大学首次提出片上多处理器(CMP)思想和首个多核结构原型,到 2001 年IBM 推出第一个商用多核处理器 POWER4,再到 2005 年 Intel和AMD多核处理器的大规模应用,最后到现在多核成为市场主流,多核处理器经历了十几年的发展。在这个过程中,多核处理器的应用范围已覆盖了多媒体计算、嵌入式设备、个人计算机、商用服务器和高性能计算机等众多领域,多核技术及其相关研究也迅速发展,比如多核结构设计方法、片上互连技术、可重构技术、下一代众核技术等。然而,多核处理器的技术并未成熟,多核的潜力尚未完全挖掘,仍然存在许多待研究的问题。 多核处理器将多个完全功能的核心集成在同一个芯片内,整个芯片作为一个统一的结构对外提供服务,输出性能。多核处理器首先通过集成多个单线程处理核心或者集成多个同时多线程处理核心,使得整个处理器可同时执行的线程数或任务数是单处理器的数倍,这极大地提升了处理器的并行性能。其次,多个核集成在片内,极大地缩短了核间的互连线,核间通信延迟变低,提高了通信效率,数据传输带宽也得到提高。再者,多核结构有效共享资源,片上资源的利用率得到了提高,功耗也随着器件的减少得到了降低。最后,多核结构简单,易于优化设计,扩展性强。这些优势最终推动了多核的发展并逐渐取代单处理器成为主流。 在整体结构设计上多核处理器与传统的单处理器相比,多核内部结构没有固定的组织形式,可以有很多种实现方式。各个研究机构和厂商根据自己的应用目标设计出结构完全不同的多核结构。虽然如此,但在已有的多核处理器中仍存在几种比较典型的结构,它们分别代表了多核处理器结构中的某一类特点,而 Hydra、Cell 和 RAW 处理器就是 3 种典型的结构。 Hydra处理器是 1996 年美国斯坦福大学研制得一个集成了 4 个核心的处理器,这在当时是一种新型的处理器结构。Hydra在一个芯片上集成了 4 个核心,核心间通过总线结构共享片上二级缓存、存储器端口和 I/O 访问端口。4 个核心采用了通用的百万指令级(MIPS)处理器,每个独立的处理核心有私有的一级缓存,其中指令缓存和数据缓存相互分离。 4 个核心共享的二级缓存,采用 DRAM 存储。核心之间、核心到二级缓存、主存与片内以及I/O 设备与片内的通信都是由总线结构来实现的。Hydra 被认为是一种典型的多核结构,不仅在于它是第一个多核处理器设计原型,还因为它采用了共享二级缓存的同构对称设计和高速总线的核间通信方式。 2001 年 3 月,IBM 与 Sony、Toshiba 合作,着手开发一种全新的微处理器结构——Cell 处理器,旨在以高效率、低功耗来处理下一代宽带多媒体与图形应用。Cell 处理器主要包含 9 个核心、一个存储器控制器和一个 IO 控制器,片上的部件互联总线将它们连接在一起。核心间通信和访问外部端口均是通过内部总线进行,而且为了便于核间通信,整

相关文档
最新文档