电源完整性分析-网际星空

电源完整性分析-网际星空
电源完整性分析-网际星空

本文始於2010年初,2011年開放閱覽,將說明PI不是只看Resonance、Target Impedance來下de-coupling cap.,或看IR drop而已,應先避免電源\地平面不當分割,再下電容加強改善Target Impedance,才是較好的設計方式。另外還以實例說明做PI模擬時,電容模型輸入正確寄生電感值的重要性,以及分地與合地設計時,近場的差異。

1.Verification of board import

1.1 check stack-up

1.2 check net

1.3 check circuit element

2.Resonant mode analysis

2.1 未修改前,原分地、分power

2.2 部分power plane合併(已合地)

2.3 加de-coupling電容(已合地、合power)

3.Target Impedance

3.1 VDD3.3V for general IO

3.2 RF_VDD33

4.Voltage Drop (IR drop)

4.1 Generate sources and sinks

4.2 Meshing

4.3 Plotting and analyzing results

4.3.1. 原分地、分電源

4.3.2. 合地、合電源後

5.案例分析-- DCDC noise couple

5.1 模擬方法描述

5.2 模擬結果

5.2.1 電流分佈密度

5.2.2 近場強度分佈

6.問題與討論

6.1 為何在數MHz低頻存在resonant頻點?

6.2 Resonant 要壓到什麼程度才夠?

6.3 Target Impedance要壓到什麼程度才夠?

6.4 為何可以用電流密度來解釋合地後noise改善的現象?

6.5 如何解釋合地後RF_VDD33的Target Impedance大幅改善的現象?

7.補充資料

7.1 Compare an microstrip line with different imperfect ground

planes

1.Verification of board import

1.1 check stack-up (確認堆疊的設定)

SIwave v4.0以後的版本,stack-up setting可以存成.stk匯出或匯入。

至於堆疊如何設定可參考此

1.2 check net

Display "Nets tab" by View\Workspaces\Nets, then select some

power/ground net to highlight and check them

原分地、分電源的狀況:電源-- RF_VDD33、VDD33、DVDD33

VDD1.8、VDDQ=1.8V

地-- GND

RF_GND

合地、部分電源整合後的狀態:電源-- RF_VDD33、VDD33(VDD33與DVDD33合併)

VDD1.8、VDDQ=1.8V

地-- GND (所有地都合併)

1.3 check circuit element (看import了哪些電容與電感about PI issue)

方法一:第一次在SIwave匯入.asc後,會在"Message Window"看到總共匯入多少RLC數目

方法二:在.siw中,從"Component Window"的RLC個別項目展開,查看"Local"目錄。

如果發現某些元件無法匯入,請參考此

方法三:Edit \ Circuit Element Parameters

2.Resonant mode analysis (plane分割的諧振狀態,IC擺放位置的諧振頻點) 2.1 未修改前,原分地、分power

不論分地或合地的情況,原始檔案從1M~17MHz就有50個諧振頻點,更別說到1GHz

有上千個諧振頻點了。

主因是power plane是破碎的,且沒有擺放足夠的de-coupling capacitor to suppress resonance

以下8張圖雖然只看1MHz~16MHz,但產生諧振頻點的位置,已經涵蓋了各路power domain。目前沒有看到諧振的位置,更高頻段可能還是存在諧振點,只是諧振點實在太多了,先看20MHz以下的。

挑幾個位置下de-coupling capacitor,以抑制2.13M、2.24MHz、3.51M、11.07MHz、12.8MHz、13.7MHz諧振

分析至此發現,若不把電源與地適度合併,只靠加de-coupling capacitor要解諧振問題,幾乎不可能。因為有些地方根本放不下電容,尤其在BGA正下方區域,整個連接非常破碎。

減少諧振的首要原則是,減少不必要的分地或分power,再來才是下電容。

2.2 把VDD33、DVDD3區域合併,重新跑一次諧振模擬(已合地)

在下列圈起處,多放32顆0.1uF

2.3 加de-coupling電容(已合地、合power)

1M~1GHz之間,區域諧振頻點變少了,只剩下高頻的幾個頻點(351M、492M、543M、565M)有大區域的諧振。

在下列圈起處,再多放16顆1nF,則520MHz以下諧振頻點都受到控制了。至此,已經多加了48顆電容,老闆要砍人了@@

3.Target Impedance

做PI模擬時,請善用(必須用)Edit \ Pin Group (by SIwave v3.5)功能

Tools \ Pin Group Manager (by SIwave v4.0)

Circuit Elements \ Generate on Components (by SIwave v4.0)

3.1 VDD3.3V for general IO

若地與power都分割,且沒有增加de-coupling電容的最初情況:Target Impedance 在2.5GHz以上會超過10歐姆(紅線)

若地合併,VDD33與DVDD3也合併,且增加de-coupling電容的最後情況:Target Impedance維持10歐姆以內(綠線)

即使多加了48個電容,對Target Impedance改善很少;試著de-active新加的48顆小電容,發現綠線的PI改善主要是因為合地,而不是下了電容的關係。但真的多下了48顆電容對PI的貢獻這麼微不足道嗎?? 也不是這樣,上圖的模擬結果是有問題的,因為所套用的0.1uF電容是理想電容,沒有考慮實際電容在高頻的寄生電感與ESR。

原先PCB上匯入的電容,其寄生電感與ESR都默認為理想值0。下圖則是把所有的

by-pass電容,都重新輸入寄生電感值0.4nH (4E-10)、ESR=0.1 Ohm,再跑一次模擬。下圖的趨勢,才是比較合理的

如果模擬時考慮了de-coupling電容的非理想效應,就可以看出合地與多加電容,對於target impedance都有幫助。參閱電容非理想特性

3.2 RF_VDD33

若地分割,且沒有增加de-coupling電容的最初情況:Target Impedance在600MHz 以上會超過10歐姆,最高超過100歐姆(紅線)

若地合併,且增加de-coupling電容的最後情況:Target Impedance維持20歐姆以內(綠線)

4.Voltage Drop (IR drop)

希望藉由SIwave所提供的IR drop分析功能,能找出sec. 3.3分地後,Target Impedance特別差的原因

4.1 Generate sources and sinks

選定Source IC:Edit \ Select \ Single Object,然後選定主IC。

下圖被選定的BGA主IC整個以黃色亮框顯示,且左下角有幾個綠色ball是彼此有細線相連的,即是sec. 3.3中做過pin group的結果。

綠色是指RF_GND,紅色是指RF_VDD33

在sec. 3.3是做Target Impedance分析,所以"Generate Ports"

時,是選擇建立"Port"。請先把之前建立的port砍掉。

以同樣的servo power pin group與servo ground pin group,重新建一個"Circuit Element Type"是"Current Source"的物件按"Create"後,就可以在最右邊的"Circuit Elements"欄位內,看到新建的Current Source,然後按"OK"

Locate VRM:在板子上RF_VDD的最源頭,放一個3.3V Voltage Source。

Circuit Element \ Voltage Source

4.2 Meshing

Simulation \ Compute DC Current/Voltage

-- "Perform Adaptive Mesh Refinement"一定要記得核選,Mesh R efinement 取1~3可以減少mesh time,一般選3 ~ 8-10

-- "Mesh Vias"不選可以跑的比較快,但準度會差一點。

-- Voltage Source (VRM)的negative terminal,記得要設"Negative"

4.3 Plotting and analyzing results

雖然在前一個設定步驟已經核選"Plot Current Density and voltage Distribution",理論上按OK開始進行DC Current/Voltage模擬完,會自動跳出模擬結果;但如果沒看到模擬結果,可以從Results \ DC IR Drop \ .. \ Currents/Voltage打開

4.3.1 原分地、分電源

4.3.1.1 Layer-2 current flow (GND layer)

电源完整性分析-网际星空

本文始於2010年初,2011年開放閱覽,將說明PI不是只看Resonance、Target Impedance來下de-coupling cap.,或看IR drop而已,應先避免電源\地平面不當分割,再下電容加強改善Target Impedance,才是較好的設計方式。另外還以實例說明做PI模擬時,電容模型輸入正確寄生電感值的重要性,以及分地與合地設計時,近場的差異。 1.Verification of board import 1.1 check stack-up 1.2 check net 1.3 check circuit element 2.Resonant mode analysis 2.1 未修改前,原分地、分power 2.2 部分power plane合併(已合地) 2.3 加de-coupling電容(已合地、合power) 3.Target Impedance 3.1 VDD3.3V for general IO 3.2 RF_VDD33 4.Voltage Drop (IR drop) 4.1 Generate sources and sinks 4.2 Meshing 4.3 Plotting and analyzing results 4.3.1. 原分地、分電源 4.3.2. 合地、合電源後 5.案例分析-- DCDC noise couple 5.1 模擬方法描述 5.2 模擬結果 5.2.1 電流分佈密度 5.2.2 近場強度分佈 6.問題與討論 6.1 為何在數MHz低頻存在resonant頻點? 6.2 Resonant 要壓到什麼程度才夠? 6.3 Target Impedance要壓到什麼程度才夠?

电源完整性分析(于争博士)

电源完整性设计 作者:于博士 一、为什么要重视电源噪声 芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。随着芯片的集成度越来越高,内部晶体管数量越来越大。芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。 对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。 除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。比如电源噪声会影响晶振、PLL、DLL的抖动特性,AD转换电路的转换精度等。解释这些问题需要非常长的篇幅,本文不做进一步介绍,我会在后续文章中详细讲解。 由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。 二、电源系统噪声余量分析 绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%。例如:对于3.3V 电压,为满足芯片正常工作,供电电压在3.13V到3.47V之间,或3.3V±165mV。对于1.2V 电压,为满足芯片正常工作,供电电压在1.14V到1.26V之间,或1.2V±60mV。这些限制可以在芯片datasheet中的recommended operating conditions部分查到。这些限制要考虑两个部分,第一是稳压芯片的直流输出误差,第二是电源噪声的峰值幅度。老式的稳压芯片

Cadence-PDN电源完整性分析

Cadence PDN电源平面完整性分析 ——孙海峰 随着超大规模集成电路工艺的发展,芯片工作电压越来越低,而工作速度越来越快,功耗越来越大,单板的密度也越来越高,因此对电源供应系统在整个工作频带内的稳定性提出了更高的要求。电源完整性设计的水平直接影响着系统的性能,如整机可靠性,信噪比与误码率,及EMI/EMC等重要指标。板级电源通道阻抗过高和同步开关噪声SSN过大会带来严重的电源完整性问题,这些会给器件及系统工作稳定性带来致命的影响。PI设计就是通过合理的平面电容、分立电容、平面分割应用确保板级电源通道阻抗满足要求,确保板级电源质量符合器件及产品要求,确保信号质量及器件、产品稳定工作。 Cadence PCB PDN analysis电源平面分析主要可以解决以下几个问题: 板级电源通道阻抗仿真分析,在充分利用平面电容的基础上,通过仿真分析确定旁路电容的数量、种类、位置等,以确保板级电源通道阻抗满足器件稳定工作要求。 板级直流压降仿真分析,确保板级电源通道满足器件的压降限制要求。 板级谐振分析,避免板级谐振对电源质量及EMI的致命影响等。 那么Cadence PCB PDN analysis如何对PCB进行电源平面完整性的分析?接下来,我将以一个3v3如下图所示的电源平面为例,来进行该平面的电源平面分析。

对图中3v3电源平面进行完整性分析,具体步骤将作详细解析。 在对该电源平面进行分析之前,我们需要首先确定PCB参数的精确,如:电源平面电平Identify DC Nets、PCB叠层参数Cross-Section等,这些参数都必须和PCB板厂沟通(板厂对叠层参数生产能力不同),在此基础上精确参数方能得到精确的分析结果。这些参数也可以在PDN Analysis分析界面上点击Identify DC Nets,Cross-Section来调整优化。

电源完整性设计详解

于博士信号完整性研究网 https://www.360docs.net/doc/0b14266035.html, 电源完整性设计详解 作者:于争 博士 2009年4月10日

目 录 1 为什么要重视电源噪声问题?....................................................................- 1 - 2 电源系统噪声余量分析................................................................................- 1 - 3 电源噪声是如何产生的?............................................................................- 2 - 4 电容退耦的两种解释....................................................................................- 3 - 4.1 从储能的角度来说明电容退耦原理。..............................................- 3 - 4.2 从阻抗的角度来理解退耦原理。......................................................- 4 - 5 实际电容的特性............................................................................................- 5 - 6 电容的安装谐振频率....................................................................................- 8 - 7 局部去耦设计方法......................................................................................- 10 - 8 电源系统的角度进行去耦设计..................................................................- 12 - 8.1 著名的Target Impedance(目标阻抗)..........................................- 12 - 8.2 需要多大的电容量............................................................................- 13 - 8.3 相同容值电容的并联........................................................................- 15 - 8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 - 8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 - 8.6 怎样合理选择电容组合....................................................................- 18 - 8.7 电容的去耦半径................................................................................- 20 - 8.8 电容的安装方法................................................................................- 21 - 9 结束语..........................................................................................................- 24 -

电源完整性基础理论

电源完整性理论基础 ------- 阿鸣随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称PI(power integrity)。其实,PI和SI是紧密联系在一起的,只是以往的EDA仿真工具在进行信号完整性分析时,一般都是简单地假设电源绝对处于稳定状态,但随着系统设计对仿真精度的要求不断提高,这种假设显然是越来越不能被接受的,于是PI的研究分析也应运而生。从广义上说,PI是属于SI研究范畴之内的,而新一代的信号完整性仿真必须建立在可靠的电源完整性基础之上。虽然电源完整性主要是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分,通常把如何减少地平面的噪声也作为电源完整性中的一部分进行讨论。 一. 电源噪声的起因及危害 造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路上存在的电感。从表现形式上来看又可以分为三类:同步开关噪声(SSN),有时被称为Δi噪声,地弹(Ground bounce)现象也可归于此类(图1-a);非理想电源阻抗影响(图1-b);谐振及边缘效应(图1-c)。

对于一个理想的电源来说,其阻抗为零,在平面任何一点的电位都是保持恒定的(等于系统供给电压),然而实际的情况并不如此,而是存在很大的噪声干扰,甚至有可能影响系统的正常工作,见图2: 开关噪声给信号传输带来的影响更为显著,由于地引线和平面存在寄生电感,在开关电流的作用下,会造成一定的电压波动,也就是说器件的参考地已经不再保持零电平,这样,在驱动端(见图3-a),本来要发送的低电平会出现相应的噪声波形,相位和地面噪声相同,而对于开关信号波形来说,会因为地噪声的影响导致信号的下降沿变缓;在接收端(见图3-b),信号的波形同样会受到地噪声的干扰,不过这时的干扰波形和地噪声相位相反;另外,在一些存储性器件里,还有可能因为本身电源和地噪声的影响造成数据意外翻转(图3-c)。 从前面的图3-c我们可以看到,电源平面其实可以看成是由很多电感和电容构成的网络,也可以看成是一个共振腔,在一定频率下,这些电容和电感会发生谐振现象,从而影响电源层的阻抗。比如一个8英寸×9英寸的PCB空板,板材是普通的FR4,电源和地之间的间距为4.5Mils,随着频率的增加,电源阻抗是不断变化的,尤其是在并联谐振效应显著的时候,电源阻抗也随之明显增加(见图4)。

SIwave电源完整性仿真教程

SIwave电源完整性仿真教程V1.0 目录 1软件介绍 (4) 2.1功能概述 (4) 2.2操作界面 (5) 2.3常用热键 (7) 2仿真的前期准备 (8) 2.1软件的准备 (8) 2.2 PCB文件导入 (8) 2.2.1 Launch SIwave方式 (8) 2.2.1 ANF+CMP方式 (9) 2.3 PCB的Validation Check (10) 2.4 PCB叠层结构设置 (11) 2.5仿真参数设置 (13) 2.6 RLC参数修正 (14) 2.6.1 RLC的自动导入 (14) 2.6.2检视自动导入的RLC默认值 (15)

2.6.3批量修改RLC值 (16) 2.6.4套用大厂的RLC参数 (16) 3 SIwave仿真模式 (17) 3.1谐振模式 (17) 3.2激励源模式 (19) 3.3 S参数分析 (22) 4实例仿真分析 (24) 4.1从Allegro中导入SIwave (24) 4.2 Validation Check (24) 4.3叠层结构设置 (24) 4.4无源参数RLC修正 (25) 4.5平面谐振分析 (27) 4.6目标阻抗(Z参数)分析 (28) 4.7选取退耦电容并添加 (29) 4.8再次运行仿真查看结果 (30) 5问题总结 (32)

5.1 PCB谐振的概念 (32) 5.2为何频率会有实部和虚部 (33) 5.3电容的非理想特性影响 (34) 5.4地平面完整与回流路径连续 (34) 5.5电源目标阻抗 (35)

1软件介绍 2.1功能概述 Ansoft SIwave主要用于解决电源完整性问题,采用全波有限元算法,只能进行无源的仿真分析。Ansoft SIwave虽然功能强大,但并非把PCB导入,就能算出整块板子的问题在哪里。还需要有经验的工程设计人员,以系统化的设计步骤导入此软件检查PCB设计。主要功能如下: 1.计算共振模式 在PDS电源地系统结构(层结构、材料、形状)的LAYOUT之前,我们可以计算出PDS 电源地系统的共有的、内在的共振模式。可以计算在目标阻抗要求的带宽或更高的带宽范围内共振频率点。 2. 查看共振模式下的电压分布图 避免把大电流的IC芯片放置于共振频率的电压的峰值点和电压谷点。原因是当把这些源放在共振频率的电压的峰值点和电压谷点的时候很容易引起共振。 3.侦测电压 利用电流源代替IC芯片放置于它们可能的LAYOUT placement位置的周围、同时放置电压探头于理想IC芯片的位置侦测该位置的电压频率相应。在电压的频率相应的曲线中,峰值电压所对应的频率点就是共振频率的发生点。 4.表面电压 基于电压峰值频率,查看这些频率点的表面电压的分布情况,把退耦电容放置于电压

信号完整性和电源完整性分析

558IEEE TRANSACTIONS ON ADV ANCED PACKAGING,VOL.30,NO.3,AUGUST2007 An Integrated Signal and Power Integrity Analysis for Signal Traces Through the Parallel Planes Using Hybrid Finite-Element and Finite-Difference Time-Domain Techniques Wei-Da Guo,Guang-Hwa Shiue,Chien-Min Lin,Member,IEEE,and Ruey-Beei Wu,Senior Member,IEEE Abstract—This paper presents a numerical approach that com-bines the?nite-element time-domain(FETD)method and the?-nite-difference time-domain(FDTD)method to model and ana-lyze the two-dimensional electromagnetic problem concerned in the simultaneous switching noise(SSN)induced by adjacent signal traces through the coupled-via parallel-plate structures.Applying FETD for the region having the source excitation inside and FDTD for the remaining regions preserves the advantages of both FETD ?exibility and FDTD ef?ciency.By further including the transmis-sion-line simulation,the signal integrity and power integrity is-sues can be resolved at the same time.Furthermore,the numer-ical results demonstrate which kind of signal allocation between the planes can achieve the best noise cancellation.Finally,a com-parison with the measurement data validates the proposed hybrid techniques. Index Terms—Differential signaling,?nite-element and?nite-difference time-domain(FETD/FDTD)methods,power integrity (PI),signal integrity(SI),simultaneous switching noise(SSN), transient analysis. I.I NTRODUCTION I N RECENT years,considerable attention has been devoted to time-domain numerical techniques to analyze the tran-sient responses of electromagnetic problems.The?nite-differ-ence time-domain(FDTD)method proposed by Yee in1966 [1]has become the most well-known technique because it pro-vides a lot of attractive advantages:direct and explicit time-marching scheme,high numerical accuracy with a second-order discretization error,stability condition,easy programming,and minimum computational complexity[2].However,it is often in-ef?cient and/or inaccurate to use only the FDTD method to deal Manuscript received March3,2006;revised November6,2006.This work was supported in part by the National Science Council,Republic of China,under Grant NSC91-2213-E-002-109,by the Ministry of Education under Grant93B-40053,and by Taiwan Semiconductor Manufacturing Company under Grant 93-FS-B072. W.-D.Guo,G.-H.Shiue,and R.-B.Wu are with the Department of Electrical Engineering and Graduate Institute of Communication Engi-neering,National Taiwan University,10617Taipei,Taiwan,R.O.C.(e-mail: f92942062@https://www.360docs.net/doc/0b14266035.html,.tw;d9*******@https://www.360docs.net/doc/0b14266035.html,.tw;rbwu@https://www.360docs.net/doc/0b14266035.html,.tw). C.-M.Lin is with the Packaging Core Competence Department,Advanced Assembly Division,Taiwan Semiconductor Manufacturing Company,Ltd., 30077Taiwan,R.O.C.(e-mail:chienmin_lin@https://www.360docs.net/doc/0b14266035.html,). Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/0b14266035.html,. Digital Object Identi?er10.1109/TADVP.2007.901595with some speci?c structures.Hybrid techniques,which com-bine the desirable features of the FDTD and other numerical schemes,are therefore being developed to improve the simula-tion capability in solving many realistic problems. First,the FDTD(2,4)method with a second-order accuracy in time and a fourth-order accuracy in space was incorporated to tackle the subgridding scheme[3]and a modi?ed form was employed to characterize the electrically large structures with extremely low-phase error[4].Second,the integration with the time-domain method of moments was performed to analyze the complex geometries comprising the arbitrary thin-wire and inhomogeneous dielectric structures[5],[6].Third,the?exible ?nite-element time-domain(FETD)method was introduced locally for the simulation of structures with curved surfaces [6]–[8]. With the advent of high-speed digital era,the simultaneous switching noise(SSN)on the dc power bus in the multilayer printed circuit boards(PCBs)causes paramount concern in the signal integrity and power integrity(SI/PI)along with the electromagnetic interference(EMI).One potential excitation mechanism of this high-frequency noise is from the signal traces which change layers through the via transition[9]–[11]. In the past,the transmission-line theory and the two-dimen-sional(2-D)FDTD method were combined successfully to deal with the parallel-plate structures having single-ended via transition[12],[13].Recently,the differential signaling has become a common wiring approach for high-speed digital system designs in bene?t of the higher noise immunity and EMI reduction.Nevertheless,for the real layout constraints,the common-mode currents may be generated from various imbal-ances in the circuits,such as the driver-phase skew,termination diversity,signal-path asymmetries,etc.Both the differential-and common-mode currents can in?uence the dc power bus, resulting in the SSN propagating within the planes. While applying the traditional method to manage this case,it will need a much?ner FDTD mesh to accurately distinguish the close signals transitioning through the planes.Such action not only causes the unnecessary waste of computer memory but also takes more simulation time.In order to improve the computa-tional ef?ciency,this paper incorporates the FETD method to the small region with two or more signal transitions inside,while the other regions still remain with the coarser FDTD grids.While the telegrapher’s equations of coupled transmission lines are further introduced to the hybrid FETD/FDTD techniques,the 1521-3323/$25.00?2007IEEE

电源完整性问题以及改进思路分析

电源完整性问题以及改进思路分析-Ⅱ 上网日期: 2008年08月06日 有[ 1 ]名读者发表评论申请免费杂志订阅收藏打印版推荐给同仁发送查询 网友推荐相关文章 ?电源完整性问题以及改进思路分析-Ⅰ(2008-07-29) 精品文章 ?提高低静态电流LDO负载瞬变响应性能的诀窍 ?解决手持式设备设计挑战的几点建议 ?电源完整性问题以及改进思路分析-Ⅱ 更多精品文章关键字:电源完整性环路电感工艺缩放 在本文的第一部分里,详细介绍了电源完整性的基本概念,以及环路电感、L×(di/dt)和工艺对电源完整性的影响等。这里,将详细介绍电源完整性设计中的最优IR压降方法,以及片上电感对电源完整性所带来的影响。另外,还将详细介绍像45nm这类更新的工艺节点上,电源完整性经常存在的导致器件良率下降的问题,包括呈2次方或指数式增长的L×(di/dt)噪声,全面电源完整性技术和EDA工具的严重缺乏,无法清楚地理解芯片电源完整性等等。最后将讨论针对上述这些问题的可能解决方法。 IR压降与片上电感 那些更负责任的设计师会遵循最优的IR压降方法,并推导出平均芯片电流会增加,因此需要更多的电源网格金属。设计师面临着两种选择,一种是增加电源总线的数量,这意味着减少总线间距,一种是增加总线中金属走线的宽度,但受布线要求的约束。通常设计师会选择增加金属走线宽度,而不选择减少总线间距而使布线更加拥挤,并利用IR压降工具来改善噪声。遗憾的是,这种解决方案很不实用,特别是当主要的噪声来源是L×(di/dt)时,因为增加金属走线宽度和总线间的轴向隔离度对改善噪声的作用非常有限,甚至会出现负面影响。除此之外,高频电流通常被限制在电源总线的低电感区域。

ADS信号完整性与电源完整性的仿真分析与设计

信号完整性与电源完整性的仿真分析与设计 李荔博士 leo_le@https://www.360docs.net/doc/0b14266035.html, 安捷伦科技 1简介 信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。在讨论信号完整性设计性能时,如指定不同的收发参考端口,则对信号还原程度会用不同的指标来描述。通常指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时对信号还原程度主要依靠上升/下降及保持时间等指标来进行描述。而如果指定的参考收发端口是在信道编码器输入端及解码器输出端时,对信号还原程度的描述将会依靠误码率来描述。 电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。同样,对于同一系统中同一个器件的正常工作条件而言,如果指定的端口不同,其工作电源要求也不同(在随后的例子中将会直观地看到这一点)。通常指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的产品手册应给出该端口处的相应指标,常用纹波大小或者电压最大偏离范围来表征。 图一是一个典型背板信号传输的系统示意图。本文中“系统”一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。从设计目的而言,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。

图1 背板信号传输的系统示意图 在本文的以下内容中,将会看到由于这些支撑与互联结构对电信号的传输呈现出一定的频率选择性衰减,从而会使设计者产生对信号完整性及电源完整性的担忧。而不同传输协议及不同数据内容的表达方式对相同传输环境具备不同适应能力,使得设计者需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。 为描述方便起见以下用“完整性设计与分析”来指代“信号完整性与电源完整性设计与分析”。 2 版图完整性问题、分析与设计 上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。这种层叠平板结构可以由三类元素组成:正片结构、负片结构及通孔。正片结构是指该层上的走线大多为不同逻辑连接的信号线或离散的电源线,由于在制版光刻中所有的走线都会以相同图形的方式出现,所以被称为正片结构,有时也被称为信号层;负片结构则是指该层上基本上是相同逻辑连接的一个或少数几个连接(通常是电源连接或地连接),通常会以大面积敷铜的方式来实现,此时光刻工艺中用相反图形来表征更加容易,所以被称为负片结构,有时也称为平面层(细分为电源平面层和地平面层);而通孔用来进行不同层之间的物理连接。目前的制造工艺中,无论是芯片、封装以及PCB 板大多都是在类似结构上实现。 1001010… -0.50.00.51.01.5 -1.0 2.0V c o r e , V

电源完整性分析

电源完整性分析 姓名:郝晓飞 班级:电研-10 一、基本概念 电源完整性,简称PI(power integrity).目前,对于信号完整性的分析,除了要考虑反射,串扰以及电磁干扰(EMI)外,电源完整性的分析被人们越来越多的关注,可靠稳定的电源供应成为设计者们研究的一个重要方向。在以往对信号完整性分析时,一般都假设电源处于绝对稳定的状态,但是随着系统设计对仿真精度的要求不断提高,这种假设越来越不能被接受,因此,PI应运而生。信号完整性主要与传输线上的质量相对应,电源完整性主要与高速电路系统中电源和地的质量相对应。在对高速电路进行仿真时,往往因信号参考层的不完整性造成信号回路路径变化多端,从而引起信号质量变差和产品的EMI性能变成,并直接影响信号完整性。为了提高信号质量、产品的EMI性能,人们开始研究为喜好提供一个稳定、完整的参考平面,随即提出了电源完整性的概念。 二、电源完整性的起因 造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路存在电感。 从表面形式上来看又可以分为三类:同步开关噪声(SSN),有时被称为Δi噪声,地弹(Ground bounce)现象也可归于此类;非理想电源阻抗影响;谐振及边缘效应。 电源完整性的作用是为系统所有的信号线提供完整的回流路径。但是随着科技的发展往往电源完整性得不到实现,其破坏电源完整性的主要因素只要有以下几种:地弹噪声太大,去耦电容设计不合理,回流影响严重,多电源、地平面的分割不当,地层设计不合理,电流分配不均匀,高频的趋肤效应导致系统阻抗变化等等。 三、基于电源完整性考虑的设计分析 由上文可以了解到有很多因素可以破坏电源完整性。在此,通过分析电源电阻的设计,达到避免由于完整性遭到破换影响信号实现功能的目的。 电源噪声的产生在很大程度上归结于非理想的电源分配系统。电源分配系统的作用是给系统的每一个器件提供足够的电源,使其满足系统要求。电源之所以

电源稳定性分析

电源完整性理论基础 PCB设计复杂度对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,电源完整性,简称PI(power integrity)。其实,PI和SI是紧密联系在一起的,只是以往的EDA仿真工具在进行信号完整性分析时,一般都是简单地假设电源绝对处于稳定状态,但随着系统设计对仿真精度的要求不断提高,这种假设显然是越来越不能被接受的,于是PI的研究分析也应运而生。从广义上说,PI是属于SI研究范畴之内的,而新一代的信号完整性仿真必须建立在可靠的电源完整性基础之上。虽然电源完整性主要是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分,通常把如何减少地平面的噪声也作为电源完整性中的一部分进行讨论。 一.电源噪声的起因及危害 造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路上存在的电感。从表现形式上来看又可以分为三类:同步开关噪声(SSN),有时被称为Δi噪声,地弹(Ground bounce)现象也可归于此类(图1-a);非理想电源阻抗影响(图1-b);谐振及边缘效应(图1-c)。

对于一个理想的电源来说,其阻抗为零,在平面任何一点的电位都是保持恒定的(等于系统供给电压),然而实际的情况并不如此,而是存在很大的噪声干扰,甚至有可能影响系统的正常工作,见图2: 开关噪声给信号传输带来的影响更为显著,由于地引线和平面存在寄生电感,在开关电流的作用下,会造成一定的电压波动,也就是说器件的参考地已经不再保持零电平,这样,在驱动端(见图3-a),本来要发送的低电平会出现相应的噪声波形,相位和地面噪声相同,而对于开关信号波形来说,会因为地噪声的影响导致信号的下降沿变缓;在接收端(见图3-b),信号的波形同样会受到地噪声的干扰,不过这时的干扰波形和地噪声相位相反;另外,在一些存储性器件里,还有可能因为本身电源和地噪声的影响造成数据意外翻转(图3-c)。 从前面的图3-c我们可以看到,电源平面其实可以看成是由很多电感和电容构成的网络,也可以看成是一个共振腔,在一定频率下,这些电容和电感会发生谐振现象,从而影响电源层的阻抗。比如一个8英寸×9英寸的PCB空板,板材是普通的FR4,电源和地之间的间距为4.5Mils,随着频率的增加,电源阻抗是不断变化的,尤其是在并联谐振效应显著的时候,电源阻抗也随之明显增加(见图4)。

电源完整性仿真与EMC分析培训讲学

电源完整性仿真与 E M C分析

高速PCB的信号/电源完整性仿真与EMC分析 摘要 本文以高速系统的信号/电源完整性分析和EMC分析的为基本出发点,着重介绍了高速PCB的信号和电源完整性分析的基本要领和设计准则,通过EDA分析工具实现PCB的建模与参数提取;通过电磁场分析工具完成网络参数定量分析,从最基本的设计方法入手,提出了高速PCB的信号/电源系统设计参数优化方案,指出了信号/电源完整性仿真设计和EMC设计的内在联系,最后介绍了利用EDA仿真工具和EMC测试验证相结合解决单板PCB设计的EMI问题的成功范例,希望本文总结的经验能给予正在从事高速系统仿真的设计开发人员和EDA设计人员解决此类问题的基本思路与方法。 关键词 非理想化电容建模、信号/电源完整性分析、EMC分析、应用举例、问题总结 引言 当今的高速PCB设计领域,由于芯片的高集成度使PCB的布局布线密度变大,同时信号的工作频率不断提高,信号边沿(Tr)的不断变陡,由此而引发的信号完整性和电源完整性问题给EDA设计人员和硬件开发人员带来前所未有的挑战,信号/电源完整性问题处理不当同时会带来一系列的EMC问题,给产品的可靠性造成危害。目前,基于Cadence公司SQ的板级与系统级互连仿真已经在公司各事业部广泛应用,在硬件设计流程中引入了SI/PI/EMI的仿真分析环节。网络南

研的信号/电源完整性仿真的最新进展表明:信号完整性与电源完整性分析做的较成功的PCB,电磁兼容性(EMC)也明显改善。 信号/电源完整性分析通过对PCB的信号互连与电源分配系统(PDS)分析,使用EDA与电磁场分析软件找出PCB的噪声点并加以抑制,通过PCB的优化设计改善层间噪声与电源层和地线层之间的阻抗。降低信号的反射和串扰;改进信号的回流路径,降低电源分配系统阻抗,同步开关噪声,消除PCB上关键点和关键频率的谐振,合理放置去耦电容改善电源地的阻抗与谐振,使用屏蔽过孔等措施减小PCB的边缘辐射。 随着信号的Tr变快,产品的EMC问题成为EDA设计的最大难点。EMC问题由来已久,涉及面较广,随着信号速率的提高和芯片尺寸的减少,传统的EMI设计方法显得力不从心。解决EMC问题和解决其它SI问题显著的不同点在于EMC 更依赖于测试,或者是仿真与测试过程两者的融合,不同类型的EMI包括来自于信号互连的连接器,电缆,PCB的连线以及边缘辐射等。 电源和信号完整性对EMI的性能有着直接的影响,从PCB设计阶段控制EMI,能起到事半功倍的作用。我们通常采用下列几种方法来分析并改进信号和电源完整性,从而减小EMI辐射。 1.减少电源地平面间噪声-电源完整性分析 2.优化电源地系统阻抗-电源完整性分析 3.降低串扰和反射-信号完整性分析 4.改善同步开关噪声-信号完整性分析 5.减少边缘辐射-信号完整性/电源完整性分析 一、关于电源完整性仿真的电容建模

电源完整性-EMC-EMI以及热分析

电源完整性/EMC/EMI以及热分析 面对高速高密度PCB设计的挑战,设计者需要改变的不仅仅是工具,还有设计的方法、理念和流程。 随着电子产品功能的日益复杂和性能的提高,印刷电路板的密度和其相关器件的频率都不断攀升,工程师面临的高速高密度PCB设计所带来的各种挑战也不断增加。除大家熟知的信号完整性(SI)问题,Cadence公司高速系统技术中心高级经理陈兰兵认为,高速PCB 技术的下一个热点应该是电源完整性(PI)、EMC/EMI以及热分析。 而随着竞争的日益加剧,厂商面临的产品面世时间的压力也越来越大,如何利用先进的EDA工具以及最优化的方法和流程,高质量、高效率的完成设计,已经成为系统厂商和设计工程师不得不面对的问题。 热点:从信号完整性向电源完整性转移谈到高速设计,人们首先想到的就是信号完整性问题。信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。一般认为,当系统工作在50MHz 时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。 信号完整性技术经过几十年的发展,其理论和分析方法都已经较为成熟。对于信号完整性问题,陈兰兵认为,信号完整性不是某个人的问题,它涉及到设计链的每一个环节,不但系统设计工程师、硬件工程师、PCB工程师要考虑,甚至在制造时也不能忽视。解决信号完整性问题,必须借助先进的仿真工具,如Cadence的SPECCTRAQuest就是不错的仿真工具,利用它可以在设计前期进行建模、仿真,从而形成约束规则指导后期的布局布线,提高设计效率。随着Cadence 在今年6月推出的专门针对千兆赫信号的仿真器MGH它是业界首个可以在几秒之内完成数万BIT千兆赫信号的仿真器信号完整性技术更臻完善。

SIwave电源完整性仿真教程

SIwave电源完整性仿真教程 目录 1软件介绍 ....................................................................................................... 错误!未定义书签。 功能概述................................................................................................... 错误!未定义书签。 操作界面................................................................................................... 错误!未定义书签。 常用热键................................................................................................... 错误!未定义书签。2仿真的前期准备............................................................................................ 错误!未定义书签。 软件的准备............................................................................................... 错误!未定义书签。 PCB文件导入 ......................................................................................... 错误!未定义书签。 Launch SIwave方式........................................................................ 错误!未定义书签。 ANF+CMP方式 ............................................................................... 错误!未定义书签。 PCB的Validation Check ......................................................................... 错误!未定义书签。 PCB叠层结构设置 ................................................................................. 错误!未定义书签。 仿真参数设置........................................................................................... 错误!未定义书签。 RLC参数修正.......................................................................................... 错误!未定义书签。 RLC的自动导入.............................................................................. 错误!未定义书签。 检视自动导入的RLC默认值........................................................... 错误!未定义书签。 批量修改RLC值............................................................................... 错误!未定义书签。 套用大厂的RLC参数....................................................................... 错误!未定义书签。 3 SIwave仿真模式 ........................................................................................... 错误!未定义书签。 谐振模式................................................................................................... 错误!未定义书签。 激励源模式............................................................................................... 错误!未定义书签。 S参数分析.............................................................................................. 错误!未定义书签。4实例仿真分析................................................................................................ 错误!未定义书签。 从Allegro中导入SIwave ......................................................................... 错误!未定义书签。 Validation Check ...................................................................................... 错误!未定义书签。

相关主题
相关文档
最新文档