水轮机冷却塔节能改造的条件

水轮机冷却塔节能改造的条件
水轮机冷却塔节能改造的条件

水轮机冷却塔节能改造的条件

水轮机冷却塔节能原理用水力驱动风机,而不是传统的电力。是以水轮机取代电机作为风机动力源,水轮机的工作动力来自循环水泵所具有的设计能量,换句话说:是能源的二次利用。该设计能量是在循环系统设计时必须保留的。改造后用水轮机的输出轴传动变速箱驱动风机旋转,达到节能目的,并确保水轮机设计参数时不另增水泵电耗。

水泵是必须具有富余扬程的,其来处有如下几个方面:

1、从流体力学方面计算,在计算设备和管路阻损及提升高度、输送距离的每个环节中,汽蚀、结垢等原因会使效率降低,所以必须放有一定余量以保证长期的正常运行,而水泵的富余扬程部分是完全可以用于水轮机取代电机驱动。

2、在计算出总的阻损后还应再乘1.1~1.3倍,并以此作为水泵选型的依据。

3、在水泵选型时,因没有恰好与选定参数一致的扬程和流量,而往往选择扬程较大的水泵.

4、系统中必然存在的富余流量可在很大程度上转化为富余扬程。

流量和富余扬程的关系?

流量和富余扬程之间是一种相互依存的关系。对水轮机节能改造而言,富余流量的存在有着至关重要的作用,尤其注意现场阀门的开启程度,阀门开启程度小于40%的,基本可以确定能改造。

水轮机节能改造的前提条件

水轮机是利用水泵的余压做功的,因此节能改造的成功与否,关键要看系统中水泵的富余流量和富余扬程,如果水泵没有富余流量和富余扬程(即没有余压),则不能用水轮机进行节造,但这种情况在现实工作中极为少见(采购时的疏忽)。

水轮机节能改造后的工作情况

一般情况下冷却塔布水器工作压力仅需0.5~1m,而从水轮机出口的压力仅势能部分就可以满足布水要求,水轮机取代了上塔阀门而工作。

水轮机冷却塔在北方严寒地区冬季使用时应采取的防冻措施,解决防冻问题主要有以下几种方法可供选择:

1、工业用冷却塔在冬季使用不需要风机运转时,关闭水轮机阀门,循环水直接进补水系统运行。碰到特别寒冷时可以在循环水中添加防冻剂;

2、加装消冰管;

3、设置室内水箱及时排净存水。

冷却塔节能改造的周期:一般情况下,合同签订后45天交货,改造时间需要4~5个无雨天。

冷却塔节能改造的经济回报

节能投资是一种长期性的高回报投资,相比于其他投资方式更为稳妥,风险更低,直观能看到节能率。东莞盈卓节能科技有限公司的报价是基于客户提前支付1年半至2年电费就可免费使用8年多的设备。也就是说1年半至2年内全部收回投资,政府还有节能奖励。这种投资所带来的效益是显而易见的。

冷却塔风机的节能及安全控制研究

冷却塔风机的节能及安全控制研究 摘要:对冷却塔风机节能及安全控制进行研究,以实现风机运行的节能、安全自动化在线管理,通过对实际使用效果考察表明:该控制系统解决了风机管理上存在的一些难题,实现了风机节能、安全自动化控制。提高了经济效益和设备可靠度,收到理想效果,也为加强设备的科学管理提供了新的思路。 关键词:冷却塔风机节能 A Study on Energy Saving and Safety Control for Cooling Tower Fan Abstract: The energy saving and safety control for cooling tower fans were studied to realize an energy-saving,sale and automatic operation of the fans as well as an on-line management.The study on the practical application results showed:With the said controlling system,some diffculties existing in the management of the fans were solved,an energy-saving,safe and automatic control of the fans was reallied,both economic efficiency and equipment reliability were improved,with ideal results achieved, which provided a new way of thinking in strengthening the scientific management of the equipment Keywords:cooling tower;fan;energy savin 冷却塔风机是循环水系统的核心设备[1]。北京燕山石化公司炼油厂目前拥有7套循环水装置,循环冷却水总设计处理量为4.665×104t/h;凉水塔风机105台(其中4.7m 98台,8.5m 7台),总装机功率为4060kW,同时开机情况下最大日耗电量达 9.74×104kW·h。 就循环水设备管理情况看,无论是从设备的数量、维修工作量、耗电量等哪个方面来讲,冷却塔风机都占有很大占比。风机台数占车间设备总量的57%,维修工时占总量的60%,电耗占总量的22%。如何在节能降耗、减少劳动力的情况下来保证设备的长周期运行,必然要应用先进的科学技术及管理方法 [2]。自1993年开始,笔者单位与中科院 工程热物理所合作,配合研制开发了风机节能自控和安全自控2套监测系统,即“KR-933

水轮机冷却塔节能改造的条件

水轮机冷却塔节能改造的条件 水轮机冷却塔节能原理用水力驱动风机,而不是传统的电力。是以水轮机取代电机作为风机动力源,水轮机的工作动力来自循环水泵所具有的设计能量,换句话说:是能源的二次利用。该设计能量是在循环系统设计时必须保留的。改造后用水轮机的输出轴传动变速箱驱动风机旋转,达到节能目的,并确保水轮机设计参数时不另增水泵电耗。 水泵是必须具有富余扬程的,其来处有如下几个方面: 1、从流体力学方面计算,在计算设备和管路阻损及提升高度、输送距离的每个环节中,汽蚀、结垢等原因会使效率降低,所以必须放有一定余量以保证长期的正常运行,而水泵的富余扬程部分是完全可以用于水轮机取代电机驱动。 2、在计算出总的阻损后还应再乘1.1~1.3倍,并以此作为水泵选型的依据。 3、在水泵选型时,因没有恰好与选定参数一致的扬程和流量,而往往选择扬程较大的水泵. 4、系统中必然存在的富余流量可在很大程度上转化为富余扬程。 流量和富余扬程的关系? 流量和富余扬程之间是一种相互依存的关系。对水轮机节能改造而言,富余流量的存在有着至关重要的作用,尤其注意现场阀门的开启程度,阀门开启程度小于40%的,基本可以确定能改造。 水轮机节能改造的前提条件 水轮机是利用水泵的余压做功的,因此节能改造的成功与否,关键要看系统中水泵的富余流量和富余扬程,如果水泵没有富余流量和富余扬程(即没有余压),则不能用水轮机进行节造,但这种情况在现实工作中极为少见(采购时的疏忽)。 水轮机节能改造后的工作情况 一般情况下冷却塔布水器工作压力仅需0.5~1m,而从水轮机出口的压力仅势能部分就可以满足布水要求,水轮机取代了上塔阀门而工作。 水轮机冷却塔在北方严寒地区冬季使用时应采取的防冻措施,解决防冻问题主要有以下几种方法可供选择: 1、工业用冷却塔在冬季使用不需要风机运转时,关闭水轮机阀门,循环水直接进补水系统运行。碰到特别寒冷时可以在循环水中添加防冻剂; 2、加装消冰管; 3、设置室内水箱及时排净存水。 冷却塔节能改造的周期:一般情况下,合同签订后45天交货,改造时间需要4~5个无雨天。 冷却塔节能改造的经济回报 节能投资是一种长期性的高回报投资,相比于其他投资方式更为稳妥,风险更低,直观能看到节能率。东莞盈卓节能科技有限公司的报价是基于客户提前支付1年半至2年电费就可免费使用8年多的设备。也就是说1年半至2年内全部收回投资,政府还有节能奖励。这种投资所带来的效益是显而易见的。

300MW机组自然通风冷却塔节能技术研究

300MW机组自然通风冷却塔节能技术研究 摘要对循环水系统及冷却塔淋水区的不同排列组合,通过实验的方法得到不同气温下的运行组合,去除冷却塔低效换热区运行,降低循环水量,提高冷却塔换热效率。 关键词自然通风冷却塔;循环水;堵塞现象;深度节能;节能运行 1 概述 目前我国最常用的冷却塔塔型仍为双曲线型常规冷却塔,具有能创造良好的空气动力条件,可减少通风阻力和塔顶出口处的空气回流,冷却效果相对稳定等特点。 自然通风冷却塔是发电厂冷端系统中重要的热力设备,冷却塔主要作用是循环水系统冷却,循环水通过循环水泵在冷却塔与凝汽器之间打循环,循环水在凝汽器端吸收汽轮机排汽热量,在冷却塔通过喷淋与空气进行换热降温。循环水在冷却塔中是通过塔底部的水道压入中央竖井,通过与中央竖井相连通的四个水槽流出,并在水槽两侧均布配水管道,通过配水喷头均匀地喷洒在冷却塔填料上方,通过填料进一步分散后从冷却塔填料层淋入底部水池中,高差約12米[1]。 2 国内外研究概况 以前,国内外研究人员对锅炉、汽轮机做了大量、深入、细致的研究工作,并研究出了相应的优化调整方法来提高热效率。目前,围绕电厂的节能降耗,更多的节能工作逐渐转向于电站的冷端系统,即致力于降低汽轮机的排汽温度,以提高朗肯循环热效率,主要体现在两方面:一是改善凝汽器的传热,提高真空度;二是研究冷却塔出水温度的降低途径,提高冷却塔的效率。近几年,关于冷却塔的研究多集中于塔内传热传质。 3 科技意义和应用前景 自然通风湿式冷却塔广泛应用于电站汽轮机冷端循环水的冷却。来自凝汽器的循环水由喷嘴喷淋出来,依次在配水区、填料区和雨区与进塔空气发生传热传质的换热,被冷却后返回凝汽器,参与系统的循环。 冷却塔冷却性能的好坏直接影响机组的效率。若冷却塔的性能不好或运行不稳定,将导致循环冷却水温度升高,进而导致凝汽器的真空下降,使汽轮机组的工作效率下降,导致发电煤耗量的增加。研究表明,对于300MW的机组,出塔水温升高1℃,汽轮机组效率降低0.23%,煤耗增加0.798g/kW·h。因此,研究冷却塔特性并提高其换热效率具有十分重要的意义。 目前,火力发电厂的冷端主要采用“一机一塔”的配置方式。

冷却塔的详细说明

冷却塔(The cooling tower)是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。 冷却塔是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程。 基本信息 ?中文名称 冷却塔 ?外文名称 Cooling tower ?别名 凉水塔 ?作用 为凝汽器提供凉水源 基本简介 冷却塔[1]按水与空气相对流动状况不同,不同类型冷却塔优、劣,是冷却塔业界在学术上长期争论不休的问题,这种争论有力地促进了冷却塔的技术的发展,在争论中各自扬长避短,使冷却塔技术不断完善,向节能降耗,提高效率,降低投资等目标不断技术进步。 冷却塔热力性能好坏、噪声高低、耗电大小、漂水多少是衡量冷却塔品质优劣的关键,是用户及设计师在选用冷却塔时反复考察比较中最观注的焦点。 冷却塔是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程。

冷却塔是利用空气同水的接触(直接或间接)来冷却水的设备。是以水为循环冷却剂,从一系统中吸收热量并排放至大气中,从而降低塔内循环水的温度,制造冷却水可循环使用的设备。随着冷却塔行业不断发展,越来越多的行业和企业运用到了冷却塔,也有很多企业进入到了冷却塔行业并发展。 设计参数 1.标准型:进塔水温37℃,出塔水温32℃ 2.中温型:进塔水温43℃,出塔水温33℃ 3.高温型:进塔水温60℃,出塔水温35℃ 4.超高温型:进塔水温90℃,出塔水温35℃ 5.大型塔:进塔水温42℃,出塔水温32℃ 主要应用 冷却塔主要应用于空调冷却系统、冷冻系列、注塑、制革、发泡、发电、汽轮机、铝型材加工、空压机、工业水冷却等领域,应用最多的为空调冷却、冷冻、塑胶化工行业。具体划分,如下: A、空气室温调节类:空调设备、冷库、冷藏室、冷冻、冷暖空调等; B、制造业及加工类:食品业、药业、金属铸造、塑胶业、橡胶业、纺织业、钢铁厂、化学品业、石化制品类等; C、机械运转降温类:发电机、汽轮机、空压机、油压机、引擎等; D、其他类行业…… 冷却塔的作用是将携带废热的冷却水在塔体内部与空气进行热交换,使废热传输给空气并散入大气中。 基本分类 按通风方式分为:①自然通风冷却塔;②机械通风冷却塔;③混合通风冷却塔。按水和空气的接触方式分:①湿式冷却塔;②干式冷却塔;③干湿式冷却塔。 按热水和空气的流动方向分:①逆流式冷却塔;②横流(直交流)式冷却塔;(3)混流式冷却塔

中小型冷却塔的节能环保改造

中小型冷却塔的节能环保改造 1 玻璃钢冷却塔在河南神火铝业有限公司的应用 河南神火集团有限公司是以煤炭、发电、电解铝生产及产品深加工为主的大型企业集团,中国企业500强,河南省百户重点企业,河南省重点扶持的七家煤炭骨干企业及七家铝加工企业,河南省第一批循环经济试点企业。现有总资产160亿元,员工26000人,拥有10余家全资、控股、参股企业。其子公司河南神火铝业公司基础完善、实力雄厚,集铝电解、铝加工、发电、碳素阳极块生产于一体。拥有电解铝厂3个,铝加工厂2个,自备电厂2个,碳素厂2个,总资产逾70亿元。几年来公司始终以技术进步引导企业发展,进行了多项科技创新、技术改造,槽控机防雷技术、不停电开停槽技术、给电解槽增加“看门狗”装置等多项科技创新成果均创同行业的先例。其中于08年,对一台200m3/h的冷却塔进行了两次成功改造,不仅冷却效果明显变好,而且节能环保,经济和社会效益显著。有着良好的市场前景。 该公司永城铝厂铸造车间于04年6月份建成投产,共有4条铸锭生产线加上辅助设施用水,单小时循环水量约800m3/h,整个循环冷却水系统按循环水量的1.15倍计算约920m3/h,共配置6台开式200m3/h的冷却塔,运行方式为5台运行1台备用,至09年运行近5年,进行设备改造经济划算。 1.1 运行原理 介质水在起到冷却作用后进入顶部,湿热的水自淋水系统淋入塔内,到淋水填料上,便分成膜状下落,干燥的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽压力大的高温水分子向压力低的空气流动,当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,将水中的热量带走即蒸发传热,从而达到降温之目的,满足生产使用。 1.2 冷却塔的组成及功能简介 主要构件为:冷却风机(电机、减速器及扇叶)、风筒、收水器、气流分配装置、淋水填料、淋水系统、塔体、进风百叶窗、立柱等,结构简图见图1。

各种冷却塔的优缺点

各种冷却塔的优缺点 1逆流式节能冷却塔 逆流式节能冷却塔是指水流在塔内垂直落下,气流方向与水流方向相反的冷却塔。逆流式冷却塔是水在塔内填料中,塔内的水从上到下,塔内的空气从下到上进行反流,这既是逆流式冷却塔。 逆流式节能冷却塔的优点: 1、整套涉笔设计简单,配水系统通畅,整个配水过程不需要特别要求,并且不易堵塞。采用了淋水填料,防止老化和湿气回流。在温度比较低的地方,容易采取抗冻措施。并且可以设计多台冷却塔同时使用。 2、整套设备设计比较简单,操作比较简单。整套设备生产成本可以控制,通常会在一些大型的冷却循环水中使用。冷却塔工作原理是通风的空气从正确的角度吹向滴下来的水,当空气通过这些水滴的时候,一部分水就蒸发了,由于用于蒸发水滴的热量降低了水的温度,剩余的水就被冷却了。这种方法的冷却效果依赖于空气的相对湿度以及压力。当水滴和空气接触时,一方面由于空气与不的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。冷却塔的工作过程:圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。 2干式冷却塔 干式冷却塔,水和空气不直接接触,只有热交换的冷却塔。 干式冷却塔,干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。所以干式冷却塔的特点是:

水轮机在新冷却塔中的使用

水轮机在新冷却塔中的使用 水轮机代替电动机驱动风机存在前述的 4 个方面优特点,因此不仅用于老塔的改造中,也必然会与新冷却塔配套使用,那么提升水泵扬程(压力)如何确定,是否像老塔那样从省去了风机电动机来说而达到100 %节能,对这些问题应进行分析和研究。 1. 提升水泵的扬程 在设计中,从热水池把水提升到冷却塔配水系统所需要的扬程,是按计算所得理论值再加4~6m 的富余水头确定的。常用的富余水头为4m 左右。按表8-4 的计算,此水头做功是达不到水轮机所需要的轴功率的,则转速、风量、冷却都无法达到设计的要求。因此提升水泵的扬程必须满足水轮机所需要的水头(H )值,那么水泵的扬程如何确定,可分以下两种情况讨论: (1 )不考虑设计需要的富余水头 不考虑设计需要的富余水头就是不另增加4~6m 的水压,对水轮机来说,这4~6m的水头也用来推动水轮机做功了,则水泵需要的扬程用公式表示为: H扬=h净+Σ h1 +Σhf +h机(m )(8-23 ) 式中 H扬———水泵扬程(m ); h净———水泵吸水池最低水位到冷却塔配水系统高度(m ); Σh1 ———从水泵吸水管到塔配水系统管道中的沿程水头损失总和(m ); Σhf ———从水泵吸水管到塔配水系统的喇叭口、阀门、弯头等局部水头损失之和(m ); h机———水轮机轴功率所需要的水头H (m )。 设计考虑的4~6m 富余水头是因考虑可能产生的计算误差和今后管道粗糙度增加与沉淀物结垢,水头损失增加而设的安全系数。现选泵扬程中未考虑该因素(注:改造塔中原有多余水头全部利用了,也未考虑该因素)。从能量消耗来说,虽是节能了,但从运行、长期保持设计风量和水冷却效果来说,欠较安全。 (2 )考虑设计需要的富余水头 考虑设计的富余水头是指水泵扬程达到水轮机轴功率所需要的水头之后,还需增加4~6m 扬程。用公式表示为: H扬=h净+Σh1 +Σhf +h机+(4~6)(m)(8- 24 )水泵扬程比式(8-23 )多了4~6m ,考虑了可能产生的计算误差和今后的阻力增加,故是偏安全的。 以上两种选泵扬程方式中采用哪种方式为妥,要视具体情况而定。例如,在设计计算相对较精确,基本不大会产生多大误差的情况下,如果水泵提升系统的管道和配件采用的是塑料管和配件(PVC 、UPVC 、PE 、ABS 等)、钢塑、铝塑等复合管、玻璃钢管等,这可考虑采用第一种选择水泵扬程的方式。原因是上述水管内壁非常光滑,光洁度好,阻力很小,而且耐酸碱腐蚀、不易粗糙,也不易沉淀结垢而缩小过水断面,故基本上可不考虑富余水头或略考虑些即可。但如果管道系统采用的是铸铁管、钢管,甚至钢筋混凝管等,则要考虑今后阻力增大而消耗的水头损失,选择第二种水泵扬程的方式为妥。 2. 节能情况分析 假定设计的富余水头定为5m ,按第一种选择水泵扬程的方法,这5m 水头也用来推动水轮机做功了,则按表8-3 、8-4 中电动机功率和风机所需的轴功率及需要的水头来计算和分析节能的情况,见表8-5 。表中的节能是建立在已利用5m 富余水头的基础上,“需增加水头”一项中的值是达到水轮机轴功率值“做功需要水头”减去5m 得来的,这个增加水头能做多少功立在“增加水头做的功”一项中,然后把原风机配用的电动机功率减去“增加水头做的功”,得到“减少的功率”,也就是节省的功率(电能),再除以电动机功率得节能的百分比值。

上海市地方标准《冷却塔能效限定值、能源效率等级及节能评价值》

备案号: 上海市地方标 DB 31/414-2008 冷却塔能效限定值、能源效率等级 及节能评价值 The minimum allowable values of energy efficiency、energy efficiency grades and evaluating values of energy conservation for cooling tower. (报批稿) 2008-09-26发布2009-03-01 实施 上海市质量技术监督局发布

DB31/414-2008 前言 为加强合理用电、合理用水、推动产品的升级换代﹑确保上海市“十一五”节能减排目标的实现,提高冷却塔产品质量及其系统的经济运行管理水平,特制订本标准。 本标准中6.2条和7.1条是强制性的,其余是推荐性的。 本标准由上海市经济委员会、上海市能源标准化技术委员会共同提出。 本标准由上海市能源标准化技术委员会归口。 本标准主要起草单位:上海交通大学、上海市能源标准化技术委员会、上海市供水管理处本标准参加起草单位:上海良机冷却设备有限公司、上海金日冷却设备有限公司、上海尔华杰机电装备制造有限公司、斯必克(广州)冷却技术有限公司、江阴富兴复合材料制品有限公司、吴江北宇冷却塔有限公司。 本标准主要起草人:任世瑶、陈津迪、吴耀民、陈溢进﹑赖春发、罗金枝、张焕武、韩振东、江建林、吴金土。 DB31/414-2008 冷却塔能效限定值、能源效率等级及节能评价值 1 范围 本标准规定了机力通风冷却塔的能效限定值、能效等级、节能评价值、试验方法及检验规则。 本标准适用于以空气作冷源的机力通风横流、逆流、混流式湿式冷却塔。 2 规范性引用文件 下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB7190.1 玻璃纤维增强塑料冷却塔第一部分:中小型玻璃纤维增强塑料冷却塔 GB7190.2 玻璃纤维增强塑料冷却塔第二部分:大型玻璃纤维增强塑料冷却塔 GB/T18870节水型产品技术条件与管理通则 DB31/T204 冷却塔及其系统经济运行管理 3 术语

《循环水冷却塔节能改造可行性方案》

《循环水冷却塔节能改造可行性方案》 化循环水冷却塔技改可行性计算 1、系统各单元实际运行参数及工作状况1.1循环水泵型号:rdl700-820a;向外供水实际压力:0.48mpa出口阀门开度:全开;额定电压:10kv额定电流:96.8a;实际电流:86-89a1.2风机部分电机额定功率:200kw;额定电压:380v电机额定电流:362a;电机实际电流:260a1.3冷却塔部分 海鸥方形逆流塔:7台;设计流量4500m3/h;实际流量3800-4000m3/h;实际温差8-9℃;上塔管径:900;上塔阀门开度40o;系统回水压力0.25-0.26mpa;布水器高度:11米。 2、风机轴功率及系统富余能量核算2.1风机轴功率计算 p电机=3×u×i×cosφ=1.732×380×260×0.85=145.45kw受电机效率、传动轴效率、减速机效率等影响风机实际功率为:p风机=p 电机×η电机×η减速机×η传动轴=145.45×0.92×0.91× 0.98=119.33kw(说明:根据机械设计手册第 二、四卷电机效率为0.9 2、传动轴效率为0.9 8、减速机效率为0.91)2.2系统富余压头计算目前上塔阀门没有完全打开,开度为400,阀门消耗的压头可由下列公式计算流速:v=q/s压头:h=§v2/2g其中:h-----系统中阀门所消耗的扬程 §-----阻力系数;查《水工业工程设计手册》水力计算表;取为

400阀门开度时,§=81v-----循环水系统水的流速g-----重力加速度9.81m2/sq-----实际流量:按实际3850m2/h计算s-----管道横截面积 计算。v=q/s=1.68m/s。 h=§v2/2g=81×1.682/2×9.81=11.65m。 目前系统回水压力按0.25mpa计,克服阀门阻力和布水高程11m 阻力,布水阻力按3m损失计算到达布水喷头余压为:25-11.65-11-2=0.35m理论计算与实际基本相差不大。 从上计算可以看出,改造后将阀门全开,水轮机可利用的系统富余压头为:回水管阀前压力-布水管高程-布水管至塔顶高程-布水阻力=25-11-2=12m2.3系统实际富余能量计算 p=η水轮机×g×q×h÷3600η水轮机:贯流式水轮机效率93p 水轮机=0.93×9.81×3850×12÷3600=117.08kwp风机(水)=p水轮机×η减速机×η传动轴=117.08×0.91×0.98=104.41kw 3、水轮机改造条件判断 水轮机输出功率为:p风机(水)=104.41kw;冷却塔风机需要的功率为:p风机=119.33kw。 改造条件判断:p风机(水)/p风机(电)=104.41/119.33=0.875从计算结果看,回水压力在0.25mpa时,改造p水轮机/p风机为0.875,基本达到电机功率水平但仍有差距, 回水压力在0.26mpa时则p水轮机=0.93×9.81×3850×13÷3600=126.84kwp风机(水)=p水轮机×η减速机×η传动轴=126.84×0.91×0.98=113.12kw改造条件判断:p风机(水)/p风机(电)

冷却塔水轮机技改造分析

冷却塔水轮机技改造分析 冷却塔的热能交换能力主要由气水比来决定,多少质量流量的热水用多少质量流量的空气进行热交换即可实现冷却塔的预期温降。而空气是不论用什么方法获得,一般常用电机驱动风机获取。 如果改用水轮机来驱动,那么水轮机的轴功率与电机功率相同即可实现。而且冷却塔的结构、外形、尺寸、冷却原理都不需改变。 一、水轮机工作原理 冷却塔的进塔循环水压头一般是5-8m。由此可推算进冷却塔的水流中具备着水头5-8m 乘上相应的进塔水流量的功率。如100t/h标准塔的能耗为2.2kW左右,即100t/h标准塔所用的风叶的实际轴功率为2.2kW左右,风机效率高的还低于2.2kW,200t/h塔是4.5 kW 左右,1000t/h是22kW左右,4000t/h是90kW左右,依次类推。既然,现有冷却塔在正常运转情况下的水流中具备着这样的能量,为什么不可以将其利用起来,而白白的浪费掉。 冷却塔的进水压头的要求是根据塔的管路损失、塔的高度和布水的喷射力共同所需的总和来确定。其中布水的喷射力所需的压头仅0.5-1 m就足够了。这些工作压力来自于循环水泵,水泵的扬程选型计算是冷却塔所处位置的高度、沿程管路损失、弯头、阀门的阻力,以及用水设备阻力的总和。泵的流量口是按冷却塔公称名义匹配的,如100t/h塔即匹配100t /h泵,500t/h即匹配500t/h泵。泵的扬程乘上流量即为水流所具备的功率,进塔水的压头是总扬程减去供水系统阻力损失以后所剩下的5—8m。这宝贵的5-8m,大有文章可做。把它先通过水轮机而获得输出功率来驱动风机,可以完全省去风机电机。实际上工业选泵的扬程,为了确保流量,还必须考虑泵的效率,按规定扬程只允许大不允许小,它为水轮机提供了富裕的水头。 所以,凡是冷却塔符合常规设计选型,完全可以由水轮机取代风机电机,大可不必担心水轮机的原动力不够而影响风量、冷效。 二、盈卓冷却塔专用水轮机,既可应用于冷却塔改造,也可以用于新塔安装,其优点在于: 1、节能:该塔利用水轮机取代风叶电机,完全节省了风叶电机的运行电耗,且没有增加循环水泵的负担。 2、无噪声:水轮机的能量转换是在水流道内完成的;控制湍振的雷诺数,使水轮机不会发出干扰的噪音。 3、高效:水轮机轴直接输出风叶,不需再通过其它减速器等,且随着水流量的变化而风量相应变化,始终稳定在较好的气水比。 4、使用寿命长:水轮机结构简单,运转平稳,因此只要达到材料设计强度和密封,其寿命是长期的:一旦出故障,维修也极为简便,更换一些标准件即可,比电机减速器的维修要简便的多。 5、安全:冷却塔电机有漏电伤人,火花爆炸的潜在危险,水轮机不用电,且质量轻,高处作业不再为起吊卸下电机减速器而为难,增加了冷却塔的运行环境安全性。 6、适用:对任何形式的冷却塔都适用,特别适用于特大型的冷却塔,越打越可靠。

冷却塔常见的小知识

冷却塔的常见知识 冷却塔的原理是靠热水跟冷空气相结合来进行热交换的过程达到降温效果。 1.冷却塔形式分为 1.1 湿球温度为27度,一般叫冷吨,例如:流量10吨=7立方 1.2 湿球温度为28度,一般叫水吨,例如:流量10吨=10立方2.冷吨与水吨的区别: 2.1冷吨:流量小,冷却塔的构造内部填料少,面积小,例如:流量10吨=7立方,冷吨以吨为单位 2.2水吨:流量足够,冷却塔的构造内部填料高,面积大,一般1:1配置,例如:流量10吨=10立方。水吨以立方数为单位。 3.冷却塔温度值: 3.1标准冷却塔:热水温度37度,出水温度32度,湿球温度28度标准冷却塔,根据水吨的立方数来配置1:1相对应的冷却塔,一般适用于大型的空调主机,注塑机,制冰机,制冷机等温差比例较小的设备上。 填料选用PVC聚醚丙烯的填料,耐高温55度。 3.2 中温冷却塔:热水温度40-50度,出水温度32度,湿球温度28度(按实际工况配置) 中温型冷却塔,根据温度的不同,选配置的冷却塔参数也不一样,在内部填料要做一定的改变,和管路口径也要做一定更改,一般都用于工业设备使用。

填料选用PVC聚醚丙烯的填料,耐高温55度。 3.4标准高温冷却塔:热水温度60度,出水温度35度,湿球温度28度 标准高温型冷却塔:温度值务必要在60度之间,冷却塔才行达到降温效果,热水温度越高,冷却塔降温效果越明显,在60度降到35度这个范围,温度点在58-62度之间波动。才能保证高温冷却塔最佳效果。一般用于工业设备上面。内部填料采用白色PP材质,耐高温120度。管件,喷头,布水管等全部用热浸镀锌铁件。 3.5 超高温冷却塔:热水温度90度,出水温度35度,湿球温度28度(按实际工况配置) 超温度冷却塔的温度范围值在65-90度之间,根据具体温度来选配置,相对应的冷却塔参数,跟中温型冷却塔有点相类似,一般用于工业上。内部填料采用白色PP材质,耐高温120度。管件,喷头,布水管等全部用热浸镀锌铁件。 4.冷却塔分为:圆型逆流式冷却塔,方型横流式冷却塔,方型逆流式冷却塔,无风机冷却塔,水轮机冷却塔,密闭式冷却塔,无填料喷雾型冷却塔等各种形式冷却塔。 4.1圆形逆流式冷却塔,一般适合制作小型冷却塔,100立方参数值以下,都使用圆形冷却塔,易损件为喷头,电机,风叶。此种塔最容易坏的地方是喷头。另外圆形的填料是用压斜波纹,为顺向逆流环绕而成,容易造成污垢,结构,杂质堵塞在填料的内部波纹里面,每个波纹的间隙为2MM,一旦堵塞,会造成,填料粘物多,水流速度急,

三种冷却塔的比较与选用

三种冷却塔的比较与选用 2.1风机的大直径节能化 冷却塔的大型化可以减少占地、节约投资,同时减 少了维护工作量,降低了维护费用, 这在业内已是共识。当冷却塔的大 小确定后,在不影响塔的技术性能的 条件下,应选择较大直径的风机,这 是因为:在风量相同时,风机直径越 大,风机出口空气动压越小,减少了 系统的动压损失,从而达到了节能降 耗的目的。举例来说,在洞庭湖氮肥 厂项目中,最初,风机有两种设计方 案: ①直径Φ9.14 m,风量323×104 m3/h,全压 203 Pa,动压112.2 Pa,所需轴功率212 kW; ②直径Φ10.06 m,风量323×104 m3/h,全 压167.2 Pa,动压76.45 Pa,所需轴功率174 kW。最终选用了Φ10.06 m风机,风机动压减小了

35.75 Pa,功率消耗减少了38 kW,起到了良好的节能作用。 2.2提高风机效率,做好机塔匹配 冷却塔风机的选型关系到冷却塔的效率、系统 能耗、管理维护及噪声影响等。正确选择配套风 机已成为冷却塔成功设计的标志之 一。以往在冷却塔风机的选取上,存 在两个方面的问题,一方面是根据冷 却塔要求的风量和风压,按风机厂家 提供的风机性能曲线进行选型,首要 考虑的是风机的风量、风压能否满 足要求,风机的效率次之。另一方面, 冷却塔设计时的风量和风压,都留有 一定量的裕度,裕度的大小因设计者 的习惯和经验而异,这就造成风机实 际塔内的工作点与理论 选型时的工作点出现偏离,风机的效率点也随之偏 离,甚至下降。以常用的Φ8.0~Φ 8.53 m风机为例,一般轴功率为135 kW左右,如果风机效率点下降3%,

火力发电厂冷却塔节能节水技术

火力发电厂冷却塔节能节水技术 高效雾化降温降低蒸发损耗装置 一、技术背景 冷却塔是能源动力及化工等领域的重要传热传质设备,其作用是将排出生产工艺流程的废热,通过使循环冷却水在塔内进行传热传质过程,将循环冷却水的温度降低。循环水在冷却塔中以传热和蒸发两种方式与空气进行热交换,传热即直接将循环水的热量传递给空气使其的温度升高;而蒸发是通过循环水向空气中的蒸发使空气湿度增大,称为潜热传递方式。由于空气在冷却塔中的温度升高,且蒸发饱和压力随其温度增高而增大,而冷却塔出口即为饱和湿空气,因此潜热占总热量传递的份额相当大,对火电厂的大型自然循环冷却塔而言冬天潜热占50%左右,而夏天潜热则占70%以上。这种换热方式导致了大量的蒸发水量损失。然而淡水资源短缺是当前世界面临的重要问题。火电企业是耗水大户,目前普遍采用的常规湿冷系统的冷却塔在冷却循环水的同时通过蒸发向环境排出大量的水分,以300MW机组为例,每年通过冷却塔消耗的淡水量在500万吨左右。 二、冷却塔的工作原理 冷却塔是指在塔内将热水喷洒到淋水填料上形成水滴或水膜,自上而下地与从下向上流动的具有吸热能力的冷空气进行对流传热,并利用水的蒸发扩散作用带走水中热量的冷却设备。这种冷却设备主要为湿式冷却塔。湿式冷却塔又以抽风式逆流冷却塔型式为主。在设计冷却塔时,为了减少水量损失,一般设有节水装置收水器。它是由一排或多排倾斜的板条或弧形叶板组成,布置在整个塔断面上,作用是阻拦热水与填料碰撞形成散溅的小水滴。小水滴夹杂在上升的湿热空气中,因突然改变方向,被截留下来。这种节水装置对湿热空气中的水蒸汽基本不起作用。冷却塔的设计是根据水的蒸发原理进行的,是以蒸发扩散带出热量为前提。蒸发损失是为完成水的冷却而必须蒸发的水量。因此,根据冷却塔理论,为达到一定的冷却效果,应尽可能增大蒸发量。 三、冷却塔蒸发水损耗

冷却塔的节能潜力分析

冷却塔的节能潜力分析 随着经济意识的增强,节能降耗已经越来越引起人们的高度重视。发电 厂的热力系统及设备的节能给电厂运行和经营带来明显的经济效益。目前,节 能降耗主要集中于三大主要设备和复杂系统,经过理论研究和广泛应用,已经 取得很大经济效益。但是长期以来我们对循环水系统中冷却塔缺乏足够的重视。一方面,认为凝结器循环水入口温度为环境因素的单值函数;另一方面,它的 维护比较繁重复杂,由于缺乏对冷却塔节能潜力的认识,甚至许多电厂忽略本文针对自然通风冷却塔的节能潜力和热力性能影响因素进行分析讨论, 以其对发电厂优化运行和检修维护有所帮助和参考。 1 冷水塔节能潜力分析 循环水1oC温差并存在的节能潜力 冷却塔的工作过程是循环水从凝结器中吸收排气热量,以温度t1送入冷水塔经由压力管道分流至配水槽,热水通过喷溅装置散成细小均匀的水珠洒落到 淋水填料上,沿填料层高度和深度与冷空气以蒸发,传导和对流等方式完成热 交换。空气吸收热量和水分,其温度和湿度逐渐增加接近饱和状态由塔顶逸出,冷却后的循环水以温度t2返回凝结器。由此可见,冷却塔的出塔水温直接影响汽轮机的排气压力和循环热效率。运行的电厂中,冷水塔经常在偏离设计条件 的环境下工作,出塔水温高于设计值导致真空下降,机组经济性降低。表2给 出6种型号机组因为塔的冷却能力降低造成出塔水温升高1oC对机组经济性能 影响。 由此可见,运行电厂凝结器循环水进口温度升高1oC伴随的节能潜力。目 前大多数冷水塔缺少性能检测,因热负荷增加或检修维护不当致使冷却塔出力 不足,出口温度偏高是普遍现象。例如我公司135MW机组循环水淤泥浑浊,淋 水填料严重结垢,出塔水温比相同条件下设计温度升高4oC,这台机组每年因 此而损失的标准煤约达2706t,仅此一项经济损失约达55万元(煤价按200元 /t)。 因此选择性能优良的淋水填料能降低出塔水温且有较小的通风阻力。据文 献介绍,无论顺流还是逆流的冷却塔该换高性能的薄膜填料能导致冷却水降低 5~8 oC,对于现存的冷却塔等于提高50%的冷却能力或者增加的更多。重视淋 水填料运行维护,减少冷却塔结冰和填料损坏,是提高冷却塔热力性能的重要 手段。 1.3 淋水密度潜在的节能效益 淋水密度是指单位面积淋水填料所通过的冷却水量,它也是影响冷却塔出 力的主要因素之一。由于运行方式不当,维护不及时造成喷嘴堵塞、填料破损 及生长藻类,致使换热面积减少、淋水密度增加。附图为淋水面积相对减少 1%~25%的出塔水温变化情况。

冷却塔简介

冷却塔 本词条由“科普中国”科学百科词条编写与应用工作项目审核。 冷却塔 [1] (The cooling tower)是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置; 其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。 中文名 冷却塔 外文名 The cooling tower 作用 降低水温 涉及学科 热力学、流体学 目录 .1简介 .2原理 .3结构 .4分类 .5同类对比 .6产品特点 .7应用 .8常用术语 .?漂移 .?井喷 .?烟羽

.?饱和空气 .?吹式 .?噪音 .?危害 .9特点 .?逆流塔 .?横流塔 .?无填料冷却塔 .?封闭式冷却塔 .?无填料喷雾冷却塔 .10控制分析 .11计算说明 .12注意事项 .?运转时 .?其它 .13选择 .?热力计算 .?冷却塔配件 .14清洗 .15方法要求 .16分析保护 简介 编辑 冷却塔是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程 [2]。 原理 编辑 1.冷却塔循环水系统中必须存在一定的富余能量(20%-25%),在运行时就把这些能量聚集在某个阀门处,久而久 之这些能量就白白地流失掉。外置式水轮机就是利用这些“富余能量”转换为高效机械能,从而100%取代冷却塔风机电机达到节电目的。 2.外置式水轮机如何能达到电机驱动效率的关键是:了解冷却塔循环水系统设计中的富余能量,同时水轮机的叶 轮设计也是关键,富余能量的组成主要由以下6个部分: 1)循环水系统设计时必须考虑的余量值; 2)换热设备的势能利用;

循环水冷却塔风机改造方案(车间

改电驱风机为水轮驱动风机方案的可行性分析 一、概述 1.说明六大循环水系统设备装机容量和目前运行的用电负荷,日月年用电量。 2.六大循环水系统水泵一般均有5-10%的扬程富裕、利用富裕扬带动水冷风机,可以大幅度 节省耗电。为此做改电驱风机为水轮驱动风机方案的可行性分析是非常必要的 二、改电驱风机为水轮驱动风机方案的可行性分析是非常必要的 1.统计各循环水系统水泵流量、扬程、轴功率参数,计算装机用量和运行负荷。 ①综合循环水系统 热水泵参数:扬程26-24-21.5m,流量864-1116-1296m3/h,功率:110kw 冷却塔参数:风机转速193转/分,叶片角8.5°,全压11.5毫米水柱,流量60万立方米/小时 ②汽机循环水系统 水泵参数:流量3170m3/h,扬程32m,功率400kw 冷却塔参数:叶片角9,流量2730000m3/h 风机转速149r/min 全压158.82Pa ③分解循环水 水泵参数:流量1250m3/h,扬程125m,4台 冷却塔参数:风量1750000m3/h,轴功率92kw,功率110kw,水量2000m3/h,2台 ④蒸发循环水 水泵参数:流量1746m3/h,扬程27m,4台 冷却塔参数:风量273×104m3/h,电机功率160KW,全压:158.82Pa ⑤精液热交换循环水 泵参数:288m3/h,62.5,4台 冷却塔参数:风量600000m3/h,水量540m3/h,30kw,2台 2.统计循环水泵房与冷却塔标高、管路长度和管路实际所需压力,计算各系统水泵扬程富裕 情况。 ①综合循环水系统 泵中心标高:-3.265m 冷却塔塔顶标高:6.6m 泵中心与冷却塔顶的高度差为9.865m

无电机冷却塔技术说明

无电机冷却塔技术说明

一、关于无电机冷却塔 无电机冷却塔又称:100%免电能冷却塔,水动风机冷却塔。 无电机冷却塔核心技术—冷却塔专用水轮机 吉尤日升冷却塔专用水轮机,使用法国Guillot(吉尤)涡轮增压水轮技术,应用于冷却塔,利用冷却设备循环水的余压推动风机散热,废除在传统的冷却塔制造上用电机驱动风机的方式,节省电机及减速装置,100%节省风机电能,开创冷却塔行业环保、节能、省成本的新篇章。 自2006年投入商业性制造,至今拥有S及C两系列冷却塔专用水轮机,适用于单台流量100-5000T的冷却塔,为国内外客户生产配套近300多个项目,取得良好的、稳定的运行效果,并已获得国家专利局颁发的技术专利(专利号ZL 2008 2 0045732.2)我们利用这项技术先后为国内众多企事业单位新装和改造冷却塔,获得了使用单位的一致好评,被用户称为名副其实的真正节能产品,为用户既节约了电费,也节约了冷却塔送电线路的物料人工、电机、减速器的维修和更新费用,而且环保效果也极佳,水不外溢、低噪音,取得了良好的社会效益。我们也希望通过我们的技术和努力为贵单位的冷却塔节能创新提供一款完善的产品。 二、关于吉尤日升冷却塔专用水轮机 (一)冷却塔水动风机技术的动力来源及工作原理 冷却塔散热系统的循环水是由冷却泵根据系统要求以特定的水压、水流量送至冷却塔内进行热交换的,因此进塔后的水流及余压,可以充分利用。完成送达冷却塔的冷却循环水按照一定的压力、流量流过水轮机组,从而使其获得输出功率,并驱动风机散热,完全省去风机电机,达到100%免除风机电能的目的。 在安装水轮机时,可保留原有冷却塔外型结构、尺寸不改变,水轮机冷却塔的冷效、风机风速、气水比、噪声均比原有电机驱动风机冷却塔有不同程度的改善,各种技术指标均能达到冷却塔设计要求。 (二)水轮机的应用范围 水轮机可应用于旧冷却塔改造,也可用于生产全新冷却塔。 1.应用于旧塔节能改造,冷却塔型式上,适用于圆

循环水冷却塔节能改造可行性方案

二化循环水冷却塔技改可行性计算 1、系统各单元实际运行参数及工作状况 1.1 循环水泵型号:RDL700-820A; 向外供水实际压力: 0.48MPa 出口阀门开度:全开;额定电压:10KV 额定电流:96.8A;实际电流:86-89A 1.2 风机部分 电机额定功率:200KW;额定电压:380V 电机额定电流:362A;电机实际电流:260A 1.3 冷却塔部分 海鸥方形逆流塔:7台;设计流量4500m3/h;实际流量3800-4000m3/h;实际温差8-9℃;上塔管径:900;上塔阀门开度40o;系统回水压力0.25-0.26MPa;布水器高度:11米。 2、风机轴功率及系统富余能量核算 2.1 风机轴功率计算 P电机=3× U × I×coSφ=1.732 × 380 × 260× 0.85=145.45KW 受电机效率、传动轴效率、减速机效率等影响风机实际功率为: P风机=P电机×η电机×η减速机×η传动轴=145.45 × 0.92 ×0.91× 0.98=119.33KW (说明:根据机械设计手册第二、四卷电机效率为0.92、传动轴效率为0.98、减速机效率为0.91) 2.2 系统富余压头计算

目前上塔阀门没有完全打开,开度为400,阀门消耗的压头可由下列公式计算 流速:V=Q/S 压头:H=§V2/2g 其中:H-----系统中阀门所消耗的扬程 §----- 阻力系数;查《水工业工程设计手册》水力计算表; 取为400阀门开度时,§= 81 V-----循环水系统水的流速 g-----重力加速度9.81m2/s Q-----实际流量:按实际3850m2/h计算 S-----管道横截面积 计算:V=Q / s =1.68m/s。 H=§V2/2g =81×1.682/2 ×9.81=11.65m。 目前系统回水压力按0.25MPa计,克服阀门阻力和布水高程11m阻力,布水阻力按3m损失计算到达布水喷头余压为:25-11.65-11-2=0.35m 理论计算与实际基本相差不大。 从上计算可以看出,改造后将阀门全开,水轮机可利用的系统富余压头为:回水管阀前压力-布水管高程-布水管至塔顶高程-布水阻力 =25-11-2=12m 2.3 系统实际富余能量计算 P=η水轮机×g×Q×H÷3600 η水轮机:贯流式水轮机效率93 P水轮机=0.93×9.81×3850×12÷3600=117.08KW

相关文档
最新文档