微流红外气体传感器

微流红外气体传感器
微流红外气体传感器

微流红外气体分析仪器在CEMS应用中的关键难点及检定方法探讨前言:节能减排是世界范围内的主旋律,更是我国的基本国策。近三十年来经济得到快速发展,而由此带来的空气污染问题也是非常严重,为防止空气质量恶化、维护国民的身体健康、改善生活环境及提高生活质量,国家颁布了《中华人民共和国大气污染防治法》,国家、地方也制定了相应的大气污染物排放标准,并要求固定污染源必须安装CEMS,实施大气污染源排放污染物总量监测与控制。因此,安装稳定、可靠的CEMS至关重要。根据《固定污染源烟气排放连续监测技术规范HJ75-2007》和《固定污染源烟气排放连续监测系统技术要求及监测方法HJ76-2007》的要求,气态污染物CEMS主要有完全抽取法、稀释抽取法、直接测量法,从准确性、经济性、运行稳定性、维护便捷性等方面考虑,目前国内绝大部分CEMS采用完全抽取法,分析主机采用微流方法的红外气体分析仪器。目前对于CEMS配套的仪器主要来自于ABB\SIMENSE\FUJI\HORIBA等企业,国内的主要分析仪器厂家依然使用80年代的微音器技术。对于不同的红外气体监测方法和仪器,怎样在原理上确保仪器的精度和稳定性,以及现场的适应性,我国没有系统的研究。本文试图对红外气体分析仪器的技术关键以及检定方法做一探讨。1.概述目前国际上气态污染物成分测量方法主要有非分光红外(NDIR)、紫外(UV)、化学发光(CLD)等,国内外CEMS运行情况表明,非分光红外方法是CEMS应用的主流。下图是日本1997年CEMS所用仪器测量方法的分配比例图。

图1 日本1997年统计的CEMS所用仪器测量方法比例图

1.1分析方法比较表1 不同气态污染物分析方法比较一览表

比较项目NDIR CLD UV 工作原理根据不同气体成分对于特定波长的红外线有吸收特性,来确定相应组分的浓度,满足朗伯-比尔定律。根据化学发光反应在某一时刻的发光强度或反应的发光总量来确定反应中相应组分含量的分析方法。根据不同气体成分对于特定波长的紫外线有吸收特性,来确定相应组分的浓度,满足朗伯-比尔定律。测量成分SO2/NOxNOx SO2/NOx价格水平适中昂贵适中使用寿命长中短维修难易程度容易复杂复杂由上表所示,CLD测试方法只能测试NOx,若需要测试SO2还需配备其他仪表,而且价格水平较高;UV紫外吸收方法能够满足低浓度SO2测试的需要,但是用于测试NOx等气体效果不是很好,另外由于紫外光源寿命一般不高于6个月,存在寿命短的问题。NDIR非分光红外在国际上仍然是SO2、NOx的首选测试方法,如西门子的Ultramat 23、Ultramat 6系列,ABB的AO2000、AO3000系列,以及富士的ZRE、ZRJ系列等。1.2 NDIR非分光红外分类比较NDIR非分光红外方法一般分为单光源双光束(Single source Dual beam)、单光源单光束(Single source Single beam);按照检测传感器分类,可以分为热电堆、微音电容(Condenser Micro-Phone)、微流传感器(Mass Flow)三种,其性能特点如表2所示:表2 NDIR非分光红外方法分类比较

比较项目半导体传感器类微音电容微流传感器(传统)微流传感器(改进)测量精度一般高高高分辨率低中高高测量成分SO2/NOx SO2/NOx SO2/NOx SO2/NOx受水分影响有有有无HC化合物影响有有有无抗振性能好差好好

半导体类红外气体传感器(水泥生产过程的CO监测、TOC 分析)

微音器类红外气体传感器(深圳某公司使用,国内北分、川仪等)

微流红外气体传感器(某公司基于SIMENSE平台改装烟气分析仪)

具备调水功能的微流红外气体传感器(FUJI ZRJ\SIMENSE U23) 1.3 NDIR非分光微流红外烟气分析仪存在的问题综合国内外多年的CEMS运行经验来看,CEMS配套的NDIR红外气体分

析仪仍然存在诸多问题,有些问题已经很明显,有些问题可能还比较隐性,本文将根据笔者多年现场工作中所遇到的关键、核心问题逐一列写,与大家共同分享和探讨。1)温度对传感器信号的影响;

环境温度的变化对于红外测量结果存在较大的影响,尤其是对于北方昼夜温差较大的区域,环境温度的变化直接影响SO2、NOx的测量结果,即使设备房安装了空调,也会存在一定的温差。图2表明:30度的温差将造成仪器原始信号80%的漂移。已往的污染物红外气体分析仪大多数采用温度修正的方法来解决因环境温度变化导致测量结果变化的问题;但是,这种方法只能解决部分问题,由温度所带来的误差不能完全消除。主要原因是,温度修正曲线只能针对使用N2或者空气条件下(零气)的温度变化信号,对于其他气体浓度(如20%,50%,100%FS)的气体修正公式不可能做全面的试验。因此即使零点温度修正效果很好,在不同浓度下的计算也会带来很大的误差。

图2:不同温度以及浓度下微流传感器的响应(四个点对应的温度分别为10,25,30 ,40度)2)H2O(气)对SO2、NO测量结果的干扰影响如图3:气态水与排放污染物气体成分中的SO2、NO对于红外线的吸收峰存在交叉重叠,黄色曲线为SO2红外吸收光谱、红色曲线代表H2O(气)的红外吸收光谱、蓝色曲线代表NO的红外吸收光谱。从图上可以看出,SO2选择的吸收峰波段为7.28~7.62μm,NO选择的吸收峰波段为5.1~5.3μm。在这两个波段都存在H2O(气)的吸收峰,如果不作任何处理,H2O(气)对于烟气成分中SO2、NOx 的测量结果会带来很大影响。

微流红外气体传感器(某公司基于SIMENSE平台改装烟气分析仪)

具备调水功能的微流红外气体传感器(FUJI ZRJ\SIMENSE U23) 1.3 NDIR非分光微流红外烟气分析仪存在的问题综合国内外多年的CEMS运行经验来看,CEMS配套的NDIR红外气体分析仪仍然存在诸多问题,有些问题已经很明显,有些问题可能还比较隐性,本文将根据笔者多年现场工作中所遇到的关键、核心问题逐一列写,与大家共同分享和探讨。1)温度对传感器信号的影响;

环境温度的变化对于红外测量结果存在较大的影响,尤其是对于北方昼夜温差较大的区域,环境温度的变化直接影响SO2、NOx的测量结果,即使设备房安装了空调,也会存在一定的温差。图2表明:30度的温差将造成仪器原始信号80%的漂移。已往的污染物红外气体分析仪大多数采用温度修正的方法来解决因环境温度变化导致测量结果变化的问题;但是,这种方法只能解决部分问题,由温度所带来的误差不能完全消除。主要原因是,温度修正曲线只能针对使用N2或者空气条件下(零气)的温度变化信号,对于其他气体浓度(如20%,50%,100%FS)的气体修正公式不可能做全面的试验。因此即使零点温度修正效果很好,在不同浓度下的计算也会带来很大的误差。

图2:不同温度以及浓度下微流传感器的响应(四个点对应的温度分别为10,25,30 ,40度)2)H2O(气)对SO2、NO测量结果的干扰影响如图3:气态水与排放污染物气体成分中的SO2、NO对于红外线的吸收峰存在交叉重叠,黄色曲线为SO2红外吸收光谱、红色曲线代表H2O(气)的红外吸收光谱、蓝色曲线代表NO的红外吸收光谱。从图上可以看出,SO2选择的吸收峰波段为7.28~7.62μm,NO选择的吸收峰波段为5.1~5.3μm。在这两个波段都存在H2O(气)的吸收峰,如果不作任何处理,H2O(气)对于烟气成分中SO2、NOx 的测量结果会带来很大影响。

图3 H2O(气)、SO2、NOx的吸收光谱对照图通常国内外CEMS普遍采用降低烟气露点温度的方法,因此降低烟气成分中的含湿量(即气态水的浓度)。而事实上烟气中的水分不可能完全除尽,如附件所示,即使露点温度达到4摄氏度,此时烟气中的绝对含适量仍然在0.33%左右,通过试验表明该浓度的气态水将对传统的红外气体分析仪器造成50-100ppm的

干扰。为了减少H2O对红外测量影响,有些厂家将4度的冷却空气作为仪器的零点测量,这又带来了两方面的问题:其一、如果烟气的温度变化,即使制冷器温度稳定,也很难保证制冷器出口烟气的温度一致,相差一度将造成0.1%的水分,增加对SO2,NO的影响在10-20ppm;其二,低浓度(如0-50ppm)无法测量准确,测量结果根本不好判定是SO2的实际浓度还是由于H2O(气)所造成的影响。3)HC化合物对SO2测量结果的干扰除了水分干扰以外,碳氢化合物如焦化厂排放的气态污染物中存在未燃尽的CH4\C2H6\C2H4等对于SO2的测量结果带来很大干扰。通过对其原理上进行分析,CH4、C2H2、C2H4、C2H6、C3H8等HC化合物对SO2的测量结果的确会造成相当大的影响

微流红外气体传感器

微流红外气体分析仪器在CEMS应用中的关键难点及检定方法探讨前言:节能减排是世界范围内的主旋律,更是我国的基本国策。近三十年来经济得到快速发展,而由此带来的空气污染问题也是非常严重,为防止空气质量恶化、维护国民的身体健康、改善生活环境及提高生活质量,国家颁布了《中华人民共和国大气污染防治法》,国家、地方也制定了相应的大气污染物排放标准,并要求固定污染源必须安装CEMS,实施大气污染源排放污染物总量监测与控制。因此,安装稳定、可靠的CEMS至关重要。根据《固定污染源烟气排放连续监测技术规范HJ75-2007》和《固定污染源烟气排放连续监测系统技术要求及监测方法HJ76-2007》的要求,气态污染物CEMS主要有完全抽取法、稀释抽取法、直接测量法,从准确性、经济性、运行稳定性、维护便捷性等方面考虑,目前国内绝大部分CEMS采用完全抽取法,分析主机采用微流方法的红外气体分析仪器。目前对于CEMS配套的仪器主要来自于ABB\SIMENSE\FUJI\HORIBA等企业,国内的主要分析仪器厂家依然使用80年代的微音器技术。对于不同的红外气体监测方法和仪器,怎样在原理上确保仪器的精度和稳定性,以及现场的适应性,我国没有系统的研究。本文试图对红外气体分析仪器的技术关键以及检定方法做一探讨。1.概述目前国际上气态污染物成分测量方法主要有非分光红外(NDIR)、紫外(UV)、化学发光(CLD)等,国内外CEMS运行情况表明,非分光红外方法是CEMS应用的主流。下图是日本1997年CEMS所用仪器测量方法的分配比例图。 图1 日本1997年统计的CEMS所用仪器测量方法比例图 1.1分析方法比较表1 不同气态污染物分析方法比较一览表 比较项目NDIR CLD UV 工作原理根据不同气体成分对于特定波长的红外线有吸收特性,来确定相应组分的浓度,满足朗伯-比尔定律。根据化学发光反应在某一时刻的发光强度或反应的发光总量来确定反应中相应组分含量的分析方法。根据不同气体成分对于特定波长的紫外线有吸收特性,来确定相应组分的浓度,满足朗伯-比尔定律。测量成分SO2/NOxNOx SO2/NOx价格水平适中昂贵适中使用寿命长中短维修难易程度容易复杂复杂由上表所示,CLD测试方法只能测试NOx,若需要测试SO2还需配备其他仪表,而且价格水平较高;UV紫外吸收方法能够满足低浓度SO2测试的需要,但是用于测试NOx等气体效果不是很好,另外由于紫外光源寿命一般不高于6个月,存在寿命短的问题。NDIR非分光红外在国际上仍然是SO2、NOx的首选测试方法,如西门子的Ultramat 23、Ultramat 6系列,ABB的AO2000、AO3000系列,以及富士的ZRE、ZRJ系列等。1.2 NDIR非分光红外分类比较NDIR非分光红外方法一般分为单光源双光束(Single source Dual beam)、单光源单光束(Single source Single beam);按照检测传感器分类,可以分为热电堆、微音电容(Condenser Micro-Phone)、微流传感器(Mass Flow)三种,其性能特点如表2所示:表2 NDIR非分光红外方法分类比较 比较项目半导体传感器类微音电容微流传感器(传统)微流传感器(改进)测量精度一般高高高分辨率低中高高测量成分SO2/NOx SO2/NOx SO2/NOx SO2/NOx受水分影响有有有无HC化合物影响有有有无抗振性能好差好好 半导体类红外气体传感器(水泥生产过程的CO监测、TOC 分析) 微音器类红外气体传感器(深圳某公司使用,国内北分、川仪等) 微流红外气体传感器(某公司基于SIMENSE平台改装烟气分析仪) 具备调水功能的微流红外气体传感器(FUJI ZRJ\SIMENSE U23) 1.3 NDIR非分光微流红外烟气分析仪存在的问题综合国内外多年的CEMS运行经验来看,CEMS配套的NDIR红外气体分

红外线传感器工作原理和技术参数

红外线传感器工作原理和技术参数 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为~μm;紫光的波长范围为~μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。 人体热释电红外传感器和应用介绍 被动式热释电红外探头的工作原理及特性: 一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。 在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 红外线遥控鼠标器中的传感器 在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向 照相机中的红外线传感器――夜视功能 红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。举一个大家都见过的例子,在美国空袭伊拉克时,

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

红外感应原理知识

红外感应原理知识 所谓的红外感应开关,只是利用了人眼看不到的红外线来感应物体的,感应开关的核心元器件就是红外反射传感器了。红外反射传感器包括一个红外线发光二极管和一个红外线光敏二极管,它们两个都朝着一个方向,被封装在一个塑料外壳里。使用的时候,红外线发光二极管点亮,发出一道人眼看不见的红外光。如果传感器的前方没有物体,那么这道红外光就以每秒299792458 米的速度(光速)消散在宇宙空间。但如果传感器前方有不透明的物体时,红外光就会被反射回来,照在自己也照在旁边的红外线光敏二极管身上。红外线光敏二极管收到红外光时,其输出引脚的电阻值就会产生变化。判断红外线光敏二极管的阻值变化,就可以感应前方物体,控制电器开关了。红外线供应网 下图主要原理把红外线发光二极管以某一频率进行调制,即让它以一定的频率闪烁。在红外线光敏二极管一端则设计一个电路,让接收端可以筛选出这一频率的红外光源。因为环境里的红外光要么是没有频率的,要么就是有着自己固定的频率。像收音机一样,传感器只要以自己的频率发射,再以自己的频率接收就可以过滤其他频率光源的干扰了,而且由于接收管胶体也对可见光的波段光源进行过滤,所以在室内使用的情况下是没有问题的。 不过,当强光照进室内,感应开关受强光的影响而处在不稳定的状态,自行的开关,或是对反射物体没有反应。家里常用的电视机红外线遥控器也会让感应开关失灵。即使把它放在阴暗的角落也会出现一个讨厌的问题,当反射物体处在某一个临界距离时,感应开关就会不断的开关,继电器的吸合很快,好像一台电报机。这是因为反射物体正好处在了感应区的临界点上,也就是“感应到”和“感应不到”的分界线上,物体微微靠近或离开就会产生开关状态的改变。所以一般现都会通过单片机对光干扰进行软件上的处理,而且电路比用硬件来做简单得多。具体电路如下所示:

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用 这是温湿度传感器应用的另一个领域。档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。 二、在疫苗冷链中的运用 气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。而这当中以半导体气体传感器应用更为广泛。 半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。 气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。 原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。对于还原性气体,电阻值减小;对于氧化性气体,则电阻值增大。这样,根据电阻值的变化就能检测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/0b18121323.html,。

气体传感器—空气污染物检测基本方法

气体传感器—空气污染物检测 气体传感器常用于探测可燃、易燃、有害气体的浓度,以及检测其他空气中常见气体的浓度。气体传感器按照检测原理不同,分为半导体式、电化学式、气相色谱式、热学式、磁学式、光学式等。可检测的气体包括:一氧化碳、二氧化碳(CO 、CO ),二氧化硫(SO ),氮氧化物(NO 、NO ),甲醛,苯及总挥发性有机化合物(TVOC ),氧气(O ),氢气(H ),碳氢化合物等。 1)半导体式气体传感器 半导体式气体传感器是根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体 浓度测量的。 从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理)等。具有结构简22222

单、检测灵敏度高、反应速度快等诸多实用性优点,但其主要不足是测量线性范围较小,受背景气体干扰较大,易受环境温度影响等。 2)电化学式气体传感器 电化学式气体传感器是利用被测气体的电化学活性,将其电化学氧化或还原,从而分辨气体成分,检测气体浓度的。较常见的电化学传感器类型有原电池型、恒定电位电解池型等。 目前,电化学传感器是检测有毒、有害气体最常见和最成熟的传感器。其特点是体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。不足是易受干扰,灵敏度受温度变化影响较大。

3)气相色谱式分析仪 气相色谱式分析仪是基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析仪表。气相色谱仪的主要优点是灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。缺点是定期取样不能实现连续进样分析,系统较为复杂,多用于试验室分析用,不太适合工业现场气体监测。 4)热学式气体传感器 热学式气体传感器主要有热导式和热化学式两大类。 热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的,其仪表类型较多,能分析的气体也较广泛,包括H、CO、SO、NH、Ar等。 2223

几种气体传感器的检测原理

几种气体传感器的检测原理 新世联科技有限公司为你分享:几种气体传感器的检测原理 包含以下几种气体传感器: 金属氧化物半导体传感器\ 催化燃烧式气体传感器 \ 定电位电解式气体传感器\ 迦伐尼电池式氧气传感器\ 红外传感器\ PID光离子气体传感器 \ 检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器等,以下简单阐述各种传感器的原理及特点。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

气体传感器Word版

实验八气体传感器实验 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC 机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验要求】 1. 编程要求:编写气体传感器的驱动程序; 2. 实现功能:检测室内的有害气体并输出标志位; 3. 实验现象:将检测到的数据通过串口调试助手显示。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。 半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。原理如下图所示:

根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02 等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6 灵敏度特性 符号参数名称技术参数备注 Rs敏感体电 阻10KΩ-60KΩ探测范围: 100-1000ppm 检测目标:LPG、 丁烷、丙烷、LNG α (1000ppm/4000PPMLNG) 浓度斜率≤0.6 标准工作条件温度:20℃±2℃ Vc:5.0V ±0.1V 相对湿度:65﹪±5﹪ Vh: 5.0V±0.1V 预热时间不少于24 小时 【电路连接】 电路连接如图所示。

气体传感器实验

气体传感器实验 学院:计信专业:自动化 姜木北 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。如图 1.112所示: 根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6灵敏度特性灵敏度特性如下图:1.16所示。

气体传感器介绍

气体传感器介绍 1气体传感器简介 1、稳定性 2、灵敏度 3、选择性 4、抗腐蚀性 2气体传感器分类 1气体传感器简介 气体传感器是电子鼻系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体浓度转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、作干燥或制冷处理、样品抽吸、甚至对样品进行化学处理以便化学传感器进行更快速的测量。 采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。简单扩散是利用气体天然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体浓度的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是它将气体样本直接引入传感器而无需物理和化学变换。 样品吸入式探头通常用于采样位置接近处理仪器或排气管道的情况,这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计。但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某 SiH以及大多数生物溶剂,气体和汽化物样品量可能会因种目标气体和汽化物如 4 为它们的吸附作用甚至凝结在采样管壁上而减少。 在任何情况下,探头及其内部气体传感器都必须能够检测某给定值以上的气体浓度,并发出报警信号;或者说,当气体浓度低于给定值时,探头不允许发出警报。经常误警会使人对传感器的可靠性产生怀疑,而忽略正确发出的警报,最终可能造成严重的后果。 在介绍气体传感器之前,有必要先对气体传感器的一些特性作一介绍:

各类气体传感器的原理、结构及参数

各类气体传感器的原理、结构及参数 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类。 半导体气体传感器 半导体气体传感器可分为电阻型和非电阻型(结型、MOSFET型、电容型)。电阻型气敏器件的原理是气体分子引起敏感材料电阻的变化;非电阻型气敏器件主要有M()s二极管和结型二极管以及场效应管(M()SFET),它利用了敏感气体会改变MOSFET开启电压的原理,其原理结构与ISFET离子敏传感器件相同。 电阻型半导体气体传感器 作用原理 人们已经发现SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在气敏效应。用这些金属氧化物制成的气敏薄膜是一种阻抗器件,气体分子和敏感膜之间能交换离子,发生还原反应,引起敏感膜电阻的变化。作为传感器还要求这种反应必须是可逆的,即为了消除气体分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。SnO2薄

红外传感器原理

利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。 红外线传感器包括光学系统、检测元件和转换电路。光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。 红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。 https://www.360docs.net/doc/0b18121323.html,/view/495838.html 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。红外线遥控鼠标器中的传感器在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚

气体传感器的检测原理

气体传感器的检测原理 检测气体的浓度依赖于气体检测变送器,传感器是其核心部分,按照检测原理的不同,主要分为金属氧化物半导体式传感器、催化燃烧式传感器、定电位电解式气体传感器、迦伐尼电池式氧气传感器、红外式传感器、PID光离子化传感器、等以下简单概述各种传感器的原理及特点。 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器。 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。

三角法红外测距原理介绍

三角法红外测距原理介绍 工作原理: Sharp的红外传感器都是基于一个原理,三角测量原理。红外发射器按照一定的角度发射红外光束,当遇到物体以后,光束会反射回来,如图1所示。反射回来的红外光线被CCD检测器检测到以后,会获得一个偏移值L,利用三角关系,在知道了发射角度a,偏移距L,中心矩X,以及滤镜的焦距f以后,传感器到物体的距离D就可以通过几何关系计算出来了。 图1:三角测量原理

可以看到,当D的距离足够近的时候,L值会相当大,超过CCD的探测范围,这时,虽然物体很近,但是传感器反而看不到了。当物体距离D很大时,L值就会很小。这时CCD检测器能否分辨得出这个很小的L 值成为关键,也就是说CCD的分辨率决定能不能获得足够精确的L值。要检测越是远的物体,CCD的分辨率要求就越高。 非线性输出: Sharp GS2XX系列的传感器的输出是非线性的。没个型号的输出曲线都不同。所以,在实际使用前,最好能对所使用的传感器进行一下校正。对每个型号的传感器创建一张曲线图,以便在实际使用中获得真实有效的测量数据。下图是典型的Sharp GP2D12的输出曲线图。 图2:Sharp GP2D12输出曲线 从上图中,可以看到,当被探测物体的距离小于10cm的时候,输出电压急剧下降,也就是说从电压读数来看,物体的距离应该是越来越远了。但是实际上并不是这样的,想象一下,你的机器人本来正在慢慢的靠近障碍物,突然发现障碍物消失了,一般来说,你的控制程序会让你的机器人以全速移动,结果就是,"砰"的一声。当然了,解决这个方法也不是没有,这里有个小技巧。只需要改变一下传感器的安装位置,使它到机器人的外围的距离大于最小探测距离就可以了。如图3所示:

红外传感器的CO2气体检测

红外传感器的CO2气体检测设计 摘要 改革开放以来,中国的经济迅猛发展。人们的生活发生了翻天覆地的变化,物质需求的满足使人们把目光投向了精神的需求。人们的生活水平得到了迅速提高,工业生产规模也迅速扩大,但同时导致了二氧化碳的排放成倍增长,如温室效应,土地荒漠化程度加速等,严重影响并破坏着人类的生存环境。设计二氧化碳检测电路用来快速检测二氧化碳的含量,从而控制空气中二氧化碳的含量,改善大气质量。通过红外吸收型二氧化碳气体传感器,并设计检测电路来进行二氧化碳的含量。 关键字:生活,温室效应,二氧化碳,传感器

目录 摘要 (1) 绪论 (1) 1.检测电路工作原理 (2) 1.1红外吸收型二氧化碳气体传感器的工作原理 (1) 1.2检测电路的设计原理 (16) 1.2检测电路的设计 (16) 2.检测处理程序流程框图 (3) 3.结束语 (7)

绪论 随着人类社会的进步和科学技术的发展,人们的生活水平得到了迅速提高,工业生产规模也迅速扩大,但同时导致了二氧化碳的排放成倍增长,如温室效应,土地荒漠化程度加速等,严重影响并破坏着人类的生存环境。另外,二氧化碳是作物光合作用的主要原料,其含量合适与否直接影响作物的生长。近年来,随着人们环保意识的增强,科技进步的进步,如何快速检测二氧化碳的含量,削减二氧化碳的排放,已成为各级政府和广大有识之士特别关注的问题,因此研究并设计二氧化碳检测电路具有十分重要的意义。 目前检测二氧化碳的方法主要有化学法、电化学法、气相色谱法、容量滴定法等,这些方法普遍存在着价格贵,普适性差等问题,且测量精度还较低。而传感器法具有安全可靠、快速直读、可连续监测等优点。目前各种检测用的二氧化碳传感器主要有固体电解式式、钛酸钡复合氧化物电容式、电导变化型厚膜式等,这些传感器存在对气体的选择性差、易出现误报、需要频繁校准、使用寿命较短等不足。而红外吸收型二氧化碳传感器具有测量范围宽、灵敏度高、响应时间快、选择性好、抗干扰能力强等特点。为此本设计采用红外吸收型二氧化碳传感器,整个电路设计力求简单易用,快速直读,价格低廉。

微悬臂梁气体传感器研究

微悬臂梁气体传感器研究 摘要:气体检测在人们生产生活中的应用十分广泛,特别是在安全生产方面, 气体传感器作为一大类对各种气体敏感的器件,能检测各种气体的成分和浓度,所以被广泛应用于诸多领域,微悬臂梁拥有其特有的优点,而且用它做成的传感器灵敏度非常高,使得微悬臂梁在制作微传感器方面得到了广泛的运用。本文将就微悬臂梁气体传感器的目前发展状况、原理、制作工艺、弯曲测量方式和应用等几个方面进行分析。 关键词:悬臂梁气体传感器MEMS 压电谐振 引言: 气体检测在人们生产生活中的应用十分广泛,特别是在安全生产方面, 气体传感器作为一大类对各种气体敏感的器件,能检测各种气体的成分和浓度,所以被广泛应用于探测各种有毒有害气体,各种可燃性气体,温室效应气体和污染环境气体;检测和监控汽车尾气、工业废气探测与分析食品的气味和人的呼气以了解食品的新鲜度及人体的健康状况。气体传感器直接关系到人们的生命财产安全。目前MEMS气敏传感器分为硅微结构气敏传感器和硅基微结构气敏传感器两大类,包括MOSFET型、固体电解质型、金属氧化物型和谐振型等。其中谐振式微梁传感器属于质量敏感传感器,其灵敏度极高,理论上最小检测质量可以达到1.4xlo一229[‘2〕,成为研究热点之一。本文将就微悬臂梁气体传感器的墓前发展状况、原理、制作工艺、弯曲测量方式等几个方面进行分析。 正文: 一、微悬臂梁气体传感器的发展 1858年,人们最早发现在对薄片金属基底进行镀膜时,基底本身会被发生弯曲变形。尽管这种由于分子在界面上的吸附而导致的基底变形现象很早就被发现,但在当时并为引起太多的注意。直到1943年Norton在他申请的一份专利中提出:利用氢气在金属把表面的吸附效应来制造一种把/白金的双金属片氢传感器。1969年Shaver用一根长100mm,宽5mm,厚125μm 的钯/银双金属悬臂梁进行了实验,证实了Norton的想法。1979年美国橡树岭国家实验室的Taylor等人用这一方法对更多的气体进行了实验:他们用一根长100mm,单面镀有80nm金的镍材料悬臂梁研究了He,HZ,NH3,和HZS的吸附现象。虽然陆续有实验对这种传感方法进行研究,但始终没有取得比较大的进展。其主要原因在于:用来传感的悬臂梁尺寸受限于当时

在线式碳氢化合物气体检测仪,碳氢化合物气体报警器,碳氢化合物气体探测器,碳氢化合物气体传感器

碳氢化合物气体检测仪 SGA-500B-HC 一、产品简介 SGA-500B-HC碳氢化合物气体检测仪是深国安电子运用十多年技术经验,独立研发设计的一款固定式、液晶显示型气体检测仪;大屏幕液晶显示、实时显示检测气体名称、气体单位、监测浓度值等信息;工作指示灯、报警指示灯、故障指示灯、一目了然;85dB以上本地声光报警,还有开关量信号,可与风机、切断阀等设备进行联动、自动处置险情;标准的4-20mA 电流信号输出,可与所有厂家的控制主机、PLC等系统兼容;红外远程遥控,无需开盖,即可对现场气体报警器进行归零、报警点、目标点设置等工作、方便后续维护;深国安独有三防设计、安全系数可与国外气体检测仪相媲美:防高浓度过载(带自我保护功能)、防止人员误操作(内置按键+可还原出厂设置)、防雷击(三级标准)。本质安全型电路设计,配备铝合金防爆外壳,再恶劣环境,也能安全使用。(防爆证号:CNEx14.1674) SGA-500B-HC碳氢化合物气体检测仪为气体扩散式。检测原理为当目标气体进入气体探头部分后,内部的传感器会第一时间发出感应。传感器根据气体浓度的高低会产生一定电量信号。该信号经过电路放大处理后,由CPU经过AD采样、温度补偿、智能计算后,输出精准的4-20mA电流信号、RS485通讯信号、0-5V电压信号、ZIGBEE、NRF、WIFI、GPRS无线信号等。客户可通过采集这些信号,与深国安公司的SGA-800A、SGA-800B、SGA-800C气体报警控制主机、PLC、DCS、上位机等系统配套使用,进行报警、数据再处理。另外,产品内部配

有2组继电器(开关量信号),可与风机、电磁阀的控制设备进行联动,最大限度地保障您的生命和财产安全。 别名: 碳氢化合物气体检测仪、碳氢化合物气体分析仪、碳氢化合物气体探测器、碳氢化合物气体传感器、HC气体检测仪、HC气体传感器等 二、产品特点 ●本质安全型电路设计、安全可靠; ●可检测500多种可燃、有毒、VOC等气体浓度; ●大屏幕液晶显示,可24小时在线监测,实时显示气体浓度; ●三指示灯设计,监测状态一目了然:工作灯、报警灯、故障灯 ●国外原装进口气体传感器,反应速度快、误差率低、抗干扰能力强; ●32位微处理器+24位采集芯片,可在00.000-99999数值之间任意检测; ●多种信号输出可选:4-20mA、RS485、RS232、0.4-2V、0-5V等; ●多种量程单位可选:%LEL、%VOL、PPM、PPB、ug/m3; ●强大的声光报警功能:85dB以上声音+持续灯光闪烁; ●客户可通过内置按键或红外遥控器,自行设定报警点、归零等功能; ●全量程温湿度补偿和数据修正,大大提高了产品的精度度和稳定性; ●2组继电器(开关量信号)信号输出,方便与风机或电磁阀的控制设备联动使用; ●铝合金铸体防爆外壳+深国安独创三防设计,安全有保障; ●独特的结构设计,安装、布线简单方便,节约成本; ●内置按键+恢复出厂设置功能,避免人员误操作; ●防爆证等级:ExdIICT6 Gb ●防爆证编号:CNEx14.1674 ●防护等级:IP65 三、产品参数

相关文档
最新文档