因式分解常用的六种方法详解

因式分解常用的六种方法详解
因式分解常用的六种方法详解

因式分解常用的六种方法详解

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;

(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;

(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]

=-2x n-1y n(x2n-y2)2

=-2x n-1y n(x n-y)2(x n+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.

解因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),

所以

说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.

分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解 (1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x 看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析先将两个括号内的多项式分解因式,然后再重新组合.

解原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

4.双十字相乘法

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式

(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).

再利用十字相乘法对关于x的二次三项式分解

所以

原式=[x+(2y-3)][2x+(-11y+1)]

=(x+2y-3)(2x-11y+1).

上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

它表示的是下面三个关系式:

(x+2y)(2x-11y)=2x2-7xy-22y2;

(x-3)(2x+1)=2x2-5x-3;

(2y-3)(-11y+1)=-22y2+35y-3.

这就是所谓的双十字相乘法.

用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:

(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);

(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

例1 分解因式:

(1)x2-3xy-10y2+x+9y-2;

(2)x2-y2+5x+3y+4;

(3)xy+y2+x-y-2;

(4)6x2-7xy-3y2-xz+7yz-2z2.

解 (1)

原式=(x-5y+2)(x+2y-1).

(2)

原式=(x+y+1)(x-y+4).

(3)原式中缺x2项,可把这一项的系数看成0来分解.

原式=(y+1)(x+y-2).

(4)

原式=(2x-3y+z)(3x+y-2z).

说明 (4)中有三个字母,解法仍与前面的类似.

初中数学因式分解的常用方法(精华例题详解)

初中阶段因式分解的常用方法(例题详解) 因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。 1.因式分解的对象是多项式; 2.因式分解的结果一定是整式乘积的形式; 3.分解因式,必须进行到每一个因式都不能再分解为止; 4.公式中的字母可以表示单项式,也可以表示多项式; 5.结果如有相同因式,应写成幂的形式; 6.题目中没有指定数的范围,一般指在有理数范围内分解; 7.因式分解的一般步骤是: (1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法. 因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 一、提公因式法. 如多项式am+bm+cm=m(a+b+c), 其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用 a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2, a3±b3=(a±b)(a2ab+b2) 写出结果. 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:am+an+bm+bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑 两组之间的联系。 解:原式=(am+an)+(bm+bn) =a(m+n)+b(m+n)每组之间还有公因式! =(m+n)(a+b) 思考:此题还可以怎样分组? 此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。 例2、分解因式:2ax-10ay+5by-bx 解法一:第一、二项为一组;解法二:第一、四项为一组; 第三、四项为一组。第二、三项为一组。 解:原式=(2ax-10ay)+(5by-bx)原式=(2ax-bx)+(-10ay+5by) =2a(x-5y)-b(x-5y)=x(2a-b)-5y(2a-b) =(x-5y)(2a-b)=(2a-b)(x-5y) 练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1

《-整式乘除与因式分解》知识点归纳总结精编版

《整式乘除与因式分解》知识点归纳总结 一、幕的运算: 1、同底数幕的乘法法则:a m?a n=a mn( m, n都是正整数) 同底数幕相乘,底数不变,指数相加。注意底数可以是多项式或单项式。 女口:(a b)2 *(a b)3二(a b)5 2、幕的乘方法则:(a m)n“mn(m,n都是正整数) 幕的乘方,底数不变,指数相乘。口:(一35)2=310 幕的乘方法则可以逆用:即a mn =(a m)n =(a n)m女如: 4^(42)^(43)2 3、积的乘方法则:(ab)n=a n b n( n是正整数)。积的乘方,等于各因数乘方的积。 女口:( -2x3y2z)5=(-2)5?(x3)5?(y2)5?z5 =-32x15y10z5 4、同底数幕的除法法则:a m-'a n=a m』(a = 0, m,n都是正整数,且m「n) 同底数幕相除,底数不 变,指数相减。 女口:(ab)4亠(ab)二(ab)3二a3b3 5、零指数;a0 =1 ,即任何不等于零的数的零次方等于1。 r / n为偶数r迪T n为偶数 I —屮11次奇数1一@—b乜为奇数 二、单项式、多项式的乘法运算: 6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含 有的字母,贝S连同它的指数作为积的一个因式。口:- 2x2y3z?3xy二_____________ 7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即m(a b c^ ma mb mc ( m, a, b, c 都是单项式)。女口 : 2x(2x ~'3y) -'3y(x ' y) = 。 8多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

因式分解常用的六种方法详解

因式分解常用的六种方法详解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总 因式分解 1. 因式分解的概念: 把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。 2. 因式分解与整式乘法的关系 因式分解与整式乘法都是整式变形,两者互为逆变形。因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。 注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。 3. 公因式 多项式的各项都含有的公共因式叫做这个多项式各项的公因式。 系数——取各项系数的最大公约数; 字母——取各项都含有的字母; 指数——取相同字母的最低次幂。 例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。 因式分解九大方法: (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项

因式分解知识点归纳总结word版本

因式分解知识点归纳总结概述 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。 分解因式与整式乘法互为逆变形。 因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1)) 分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 例如:-am+bm+cm= a(x-y)+b(y-x)= ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2-b2=(a+b)(a-b); 完全平方公式:a2±2ab+b2=(a±b) 2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 例如:a2 +4ab+4b2 = ⑶分组分解法 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y) 同样,这道题也可以这样做。 ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)

初一数学因式分解的常用方法(最新整理)

因式分解的常用方法 第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多 数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b); (2) (a±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:  (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;  (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 例.已知是的三边,且, 则的形状是( )a b c ,,ABC ?2 2 2 a b c ab bc ca ++=++ABC ?A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:2 2 2 2 2 2 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?==三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=) ()(bn bm an am +++ = 每组之间还有公因式! )()(n m b n m a +++ = ))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。 第二、三项为一组。 解:原式= 原式=)5()102(bx by ay ax -+-) 510()2(by ay bx ax +-+- = =)5()5(2y x b y x a ---)2(5)2(b a y b a x --- = =)2)(5(b a y x --) 5)(2(y x b a --练习:分解因式1、 2、bc ac ab a -+-2 1 +--y x xy

初中因式分解的常用方法

初中因式分解的常见方法 因式分解的概念与原则 1、定义:把一个多项式化为几个最简整式的乘积的形式,这种恒等变换叫做因式分解,也叫作分解因式。 2、原则: (1)分解必须要彻底(即分解之后的因式均不能再做分解); (2)结果最后只留下小括号; (3)结果的多项式是首项为正,为负时提出负号; (4)结果个因式的多项式为最简整式,还可以化简的要化简; (5)如有单项式和多项式相乘,应把单项式提到多项式前; (6)相同因式的乘积写成幂的形式; (7)如无特殊要求,一般在有理数范围内分解。如另有要求,在要求的范围内分解。 因式分解的一般步骤 (1)如果多项式的各项有公因式,那么先提公因式; (2)如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; (3)如果用上述方法不能分解,那么可以尝试用分组、拆项法来分解; (4)检查各因式是否进行到每一个因式的多项式都不能再分解。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。” 因式分解的常用方法 因式分解与整式乘法是互逆的运算,是学好代数的基础之一,希望同学给以足够的重视。因式分解的每一步都必须是恒等变形,必须进行到每一个多项式因式都不能再分解为止。常见的方法有:①提取公因式法;②公式法;③提公因式法与公式法的综合运用。在对一个多项式因式分解时,首先应考虑提取公因式法,然后考虑公式法,对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等。下面通过例题一一介绍。 一.提取公因式法 (一)公因式是单项式的因式分解 1.分解因式 确定公因式的方法 ①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式); ③指数:取相同字母(或多项式)的最低次幂. 注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项. 解:原式=一4m2n(m2一4m+7). (二)公因式是多项式的因式分解 2.因式分解

初中常用因式分解公式

初中常用因式分解公式 2013.6.6 一.因式分解概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。 二.因式分解方法: 1、提公因法 如果一个多项式的各项都含有相同因式,那么就可以把这个相 同因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x2-2x 解:x2-2x =x(x -2) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 +4ab+4b 解:a2 +4ab+4b =(a+2b)(a+2b)完全平方公式 最常用的公式: (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 注意该方法的核心是分组后能提取公因式! 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2 -19x-6 分析: 1 -3 7 2 交差相乘再相加2-21=-19 解:7x2 -19x-6=(7x+2)(x-3) 5、配凑法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解。

因式分解的9种方法

因式分解的多种方法——--知识延伸,向竞赛过度 1. 提取公因式:这种方法比较常规、简单,必须掌握.常用的公式:完全平方公式、平方差公式 例一:0322 =-x x 解:x(2x-3)=0, x1=0,x2=3/2这是一类利用因式分解的方程. 总结:要发现一个规律:当一个方程有一个解x=a 时,该式分解后必有一个(x —a )因式,这对我们后面的学习有帮助。 2. 公式法 常用的公式:完全平方公式、平方差公式。注意:使用公式法前,部分题目先提取公因式。 例二:42-x 分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a —b) 2解:原式=(x+2)(x —2) 3. 十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数a1,a2的积a1?a2,把常数项c 分解成两个因数c1,c2的积c1?c2,并使a1c2+a2c1正好是一次项b ,那么可以直接写成结果 例三: 把3722+-x x 分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(—3). 用画十字交叉线方法表示下列四种情况: 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x —3)(2x —1). 总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=a1a2,常数项c 可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c 的一次项系数b,即a1c2+a2c1=b ,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即

因式分解的多种方法(初中版)

因式分解的方法(初中版) 因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些基本的因式分解的方法。下面列举了九种方法,希望对大家的学习能有所帮助。 1】提取公因式 这种方法比较常规、简单,必须掌握。 常用的公式有:完全平方公式、平方差公式等 例一:2 2x -3x=0 解:x(2x-3)=0 1x =0,2x =3/2 这是一类利用因式分解的方程。 总结:要发现一个规律就是:当一个方程有一个解x=a 时,该式分解后必有一个(x-a)因式 这对我们后面的学习有帮助。 2】公式法 将式子利用公式来分解,也是比较简单的方法。 常用的公式有:完全平方公式、平方差公式等 注意:使用公式法前,建议先提取公因式。 例二:2x -4分解因式 分析:此题较为简单,可以看出4=2 2,适用平方差公式a 2 -b 2 =(a+b)(a-b) 2 解:原式=(x+2)(x-2) 3】十字相乘法 是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。 这种方法的关键是把二次项系数a 分解成两个因数21.a a 的积21.a a ,把常数项c 分解成两个因数21.c c 的积21.c c ,并使1221c a c a 正好是一次项b ,那么可以直接写成结果 例三: 把2 2x -7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项:

3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x-3)(2x-1). 总结:对于二次三项式2 ax +bx+c(a≠0),如果二次项系数a 可以分解成两个因数之积,即a=21.a a ,常数项c 可以分解成两个因数之积,即c=21.c c ,把2121,,,c c a a ,排列如下: 1a 1c ╳ 2a 2c 1221c a c a

因式分解公式大全

公式及方法大全 待定系数法(因式分解) 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 常用的因式分解公式:

例1 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是 x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn,

比较两边对应项的系数,则有 解之得m=3,n=1.所以 原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7. 分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为 (x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有 由bd=7,先考虑b=1,d=7有 所以 原式=(x2-7x+1)(x2+5x+7).

《因式分解-提公因式法》知识点归纳

《因式分解-提公因式法》知识点归纳★★ 知识体系梳理 ◆ 因式分解------把一个多项式变成几个整式的积的形式;(化和为积) 注意: 、因式分解对象是多项式; 2、因式分解必须进行到每一个多项式因式不能再分解为止; 3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性; ◆ 分解因式的作用 分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。 ◆ 分解因式的一些原则 (1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。 (2)分解彻底的原则.即分解因式必须进行到每一个

多项式因式都再不能分解为止。 (3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。 ◆ 因式分解的首要方法—提公因式法 、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的 因式提出以分解因式的方法,叫做提公因式法。 3、使用提取公因式法应注意几点: (1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。 (2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。 ◆ 提公因式法分解因式的关键: 、确定最高公因式;(各项系数的最大公约数与相同因

因式分解常用方法总结

因式分解常用方法总结 【知识回顾】 分式方程的解法及注意(增根问题) 例1、已知关于x 的分式方程a x a =++1 12无解,试求a 的值(提示:先把x 求出来,即用a 来表示x ) 【新知识讲解】 一、分解因式与整式乘法的关系. 因式分解的特点:它与整式乘法在整式变形过程中的相反关系. 例: 由(a +b )(a -b )=a 2-b 2可知,左边是整式乘法,右边是一个多项式; 由a 2-b 2=(a +b )(a -b )来看,左边是一个多项式,右边是整式的乘积形式,所以这 两个过 程正好相反. 二、分解因式常用的方法. 1、找公因式的一般步骤. (1)若各项系数是整系数,取系数的最大公约数; (2)取相同的字母,字母的指数取较低的; (3)取相同的多项式,多项式的指数取较低的. (4)所有这些因式的乘积即为公因式. 例2:993-99能被100整除吗?还能被那些数整除? 2、公式法: (1)平方差:a 2—b 2=(a +b )(a —b ) 例3:1)25-16x 2; 2)9a 2-4 1b 2. 3)9(m +n )2-(m -n )2 4)2x 3 -8x . (2)完全平方和:(a +b )2=a 2+2ab +b 2 (3)完全平方差:(a —b )2=a 2—2ab +b 2

三、十字相乘法分解因式:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。 例4、在多项式232++x x 分解时,也可以借助画十字交叉线来分解。2x 分解为x x ?,常数项2分解12?,把它们用交叉线来表示: 所以)2)(1(232++=++x x x x 同样:q px x ++2=))(()(2b x a x ab x b a x ++=+++可以用交叉线来表示: 其中ab q =,b a p += 例5:用十字相乘法分解因式: (1)1272+-x x (2)1242--x x (3)1282++x x (4)12112--x x 四、用分组分解法分解因式 (1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利 用分式法分解, 但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。例如: 22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++, 这种利用分组来分解因式的方法叫分组分解法。 (2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。 (3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。 例6 把下列各式分解因式 (1)bc ac ab a -+-2 (2)bx by ay ax -+-5102 (3)n mn m m 552+-- (4)bx ay by ax 3443+++ x x +2 +1 x x +a +b

因式分解知识点归纳总结一

因式分解知识点归纳总结一 (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)?(a +b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数.

高中数学因式分解方法大全(十二种)

因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、分解因式x -2x -x x -2x –x =x(x -2x-1) 2、应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b 解:a +4ab+4b =(a+2b) 3、分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3)

5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、求根法

因式分解知识点总结复习过程

因式分解知识点总结

第一讲因式分解 一,知识梳理 1. 因式分解 定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解 即:多项式几个整式的积 1 1 例:- ax bx 3 3 因式分解, 应注意以下几点。 1. 因式分解的对象是多项式; 2. 因式分解的结果一定是整式乘积的形式; 3. 分解因式,必须进行到每一个因式都不能再分解为止; 4. 公式中的字母可以表示单项式,也可以表示多项式; 5. 结果如有相同因式,应写成幕的形式; 6. 题目中没有指定数的范围,一般指在有理数范围内分解; 因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程 2. 因式分解的方法: (1)提公因式法: ①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。 公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式或多项式 系数一一取各项系数的最大公约数

字母一一取各项都含有的字母 指数---- 取相同字母的最低次幕 例:12a3b3c 8a3b2c3 6a4b2c2的公因式是________________________ . 解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分a'b3c,a3b2c3, af2都含有因式a3b2c,故多项式的公因 式是2a3b2c. ②提公因式的步骤 第一步:找出公因式; 第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因 式,所得商即是提公因式后剩下的另一个因式。 注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多 项式中第一项有负号的,要先提取符号。 例1:把12a2b 18ab2 24a3b3分解因式. 解析:本题的各项系数的最大公约数是6,相同字母的最低次幕是ab,故公因式为 6ab。 解:12a2b 18ab224a'b3 2 2 6ab(2a 3b 4a b ) 例2:把多项式3(x 4) x(4 x)分解因式 解析:由于4 x (x 4),多项式3(x 4) x(4 x)可以变形为 3(x 4) x(x 4),我们可以发现多项式各项都含有公因式(x 4 ),所以我们可以提取公因式(x 4 )后,再将多项式写成积的形式. 解:3(x 4) x(4 x)

初二数学因式分解讲解

十字相乘法 一、导入 二、前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。 因此,我们得到x2+(p+q)x+pq=(x+p)(x+q). 课前练习:下列各式因式分解 1.- x2+2 x+15 2.(x+y)2-8(x+y)+48; 3.x4-7x2+18;4.x2-5xy+6y2。 答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4); 3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。 我们已经学习了把形如x2+px+q的某些二次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。 对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。 二、新课 例1 把2x2-7x+3因式分解。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 ×1 2 ×-3 2 ×-1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1)1×(-1)+2×(-3) =5 =7 = -5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下: a1c1 a2×c2 a1c2 + a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2)。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其

(完整)初中因式分解的常用方法—特色专题详解

初中因式分解的常用方法—特色专题详解 一、提公因式法. 如多项式),(c b a m cm bm am ++=++ 其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用 ) )((, )(2), )((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-μ 写出结果. 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 例2、分解因式:bx by ay ax -+-5102

对应练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy (二)分组后能直接运用公式 例3、分解因式:ay ax y x ++-22 例4、分解因式:2222c b ab a -+-

对应练习:分解因式3、y y x x 3922--- 4、yz z y x 2222--- 综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22 (3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++- (5)92234-+-a a a (6)y b x b y a x a 222244+--

(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+ (11)abc b a c c a b c b a 2)()()(222++++++ (12)abc c b a 3333-++ 四、十字相乘法. (一)二次项系数为1的二次三项式 直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。 特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。 例5、分解因式:652++x x

相关文档
最新文档