施工坐标_A_B_与大地测量坐标_X_Y_之间的几种换算方法

施工坐标_A_B_与大地测量坐标_X_Y_之间的几种换算方法
施工坐标_A_B_与大地测量坐标_X_Y_之间的几种换算方法

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

大地坐标系转换

从大地水准面起算的陆地高度,称为绝对高度或海拔。 大地水准面就是由静止海水面并向大陆延伸 与平均海水面相吻合的称为大地水准面 所形成的不规则的封闭曲面。它就是重力等位面,即物体沿该面运动时,重力不做功(如水在这个面上就是不会流动的)。 地心直角坐标系又称为空间直角坐标系。如图2、1所示,她以地球的地心O为坐标原点,XOY平面在赤道面上,OX正向指向格林尼治子午线与赤道的交点,OZ轴指向地球北极与地球的极轴重合。该坐标系与地球紧 密结合在一起,随着地球的旋转而旋转。 图2、1 地心直角坐标系 2、1、2 大地坐标系

从微观上来说,地球并非就是一个圆球体,而就是近似椭圆体,其极半径约为6 357km,赤道半径约为6 378km,相差约21km,地球表面凹凸不平。 为了得到高的定位精度,在定位时必须用与地球最吻合的椭球体来代替地球。这个椭球体就是指所取得椭球面与大地水准面之间高度差的平方与最小。这个椭球称为参考椭球或基准椭球。大地水准面就是指假想的无潮汐、无温差、无风、无盐的海面。基准椭球面、大地水准面与实际的地形的关系如图2、2所示。在地球任意一点G的大地水准面高度就是指该点大地水准面与基准椭球面之间的距离。G点的海拔高度就是指该点实际地形与大地水准面之间的距离。 图2、2 基准椭球面与大地水准面 地球上某点,常用大地坐标或称地理坐标表示,即用经度、纬度与高度表示。大地坐标的基准圈就是赤道。通过英国伦敦的格林尼治天文台的地球子午线称为0经度线,它与赤道的交点就是大地坐标的起算点。地球上一点的经度,就就是以格林尼治子午线与该点子午线间所截的赤道短弧所对的圆心角,常用λ表示。经度的计算就是以格林尼治子午线算起,向东与向西都就是0o~180o。向东称为东经,用E表示;向西称为西经,用W 表示。地球上一点的纬度,就是以赤道为基准,子午线在该点的法线与赤道面的交角为该点的纬度,用φ表示。纬线从赤道算起,向北向南都就是0o~90o。向赤道以北称为北纬,用N表示;向赤道以南称为南纬,用S表示。 地面上一点的高度H就是指该点的实际地形与基准椭球面之间的距离,即: H = N + h N为大地水准面高度;h为海拔高度。 2、2 坐标转换

大地坐标转换成施工坐标公式修订稿

大地坐标转换成施工坐 标公式 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

大地(高斯平面)坐标系工程坐标系转换 大地坐标系--->工程坐标系? ======================== 待转换点为P,大地坐标为:Xp、Yp? 工程坐标系原点o:大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:adX=Xp-XodY=Yp-YoP点转换后之工程坐标为xp、yp:xp=dX*COS(a)+dY*SIN(a)+xoyp=- dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o:大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:adx=xp-xody=yp-yoP点转换后之工程坐标为xp、yp:xp=Xo+dx*COS(a)- dy*SIN(a)yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX?ZY 后视点坐标:HXHY 方位角:W 两点间距离:S Lb10← {A,B,C,D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto?0← CASIO?fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1?A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2Lb12 L3{L}:L“LX” L4M“X(Z)”=X+(L-S)cosA▲ L5?N“Y(Z)”=Y+(L-S)sinA▲ L6{ B}:B“B(L)”:Q“Q” L7?O“X(L)”=M+Bcos(A+Q+180)▲ L8?P“Y(L)”=N+Bsin(A+Q+180)▲ L9{ C}:C“B(R)” L10?U“X(R)”=M+Ccos(A+Q)▲ L11?V“Y(R)”=N+Csin(A+Q)▲

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标 系的转换 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。

大地坐标转换成施工坐标公式

大地(高斯平面)坐标系工程坐标系转换大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dX=Xp-Xo dY=Yp-Yo P点转换后之工程坐标为xp、yp: xp=dX*COS(a)+dY*SIN(a)+xo yp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系 ======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dx=xp-xo dy=yp-yo P点转换后之工程坐标为xp、yp: xp=Xo+dx*COS(a)-dy*SIN(a)

yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX ZY 后视点坐标:HX HY 方位角:W 两点间距离: S Lb1 0← {A, B, C, D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D 〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto 0← CASIO fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1 A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX”

大地坐标转换为施工坐标

****大桥关于大地坐标 转化为施工坐标的报告 ****监理公司: ****大桥为特大型桥梁,对测量精度要求高、施工难度大。在实际施工测量当中,例如承台等结构尺寸比较简单的结构,在模板的安装的时候需要不断的测量、调整,直到满足要求。在上述过程中需要用放样模式来确定设计位置,待模板调整后又要切换到测量模式检查坐标的偏差,如果没有满足要求,又需要切换到放样模式来确定设计位置。如此反复,给我们施工放样带来了不必要的时间浪费,根据特大跨径桥梁施工的特点方便大桥测量定位,我项目部拟大地坐标系转化为独立的施工坐标系。 转化方法及过程 从国家坐标系转换到施工坐标系,具体转换公式: ()()θθsin cos 11?-+?-=Y Y X X E ()()θθsin cos 11?-+?--=X X Y Y F (做了修改) 施工坐标系以桥轴线为E 轴,且以桩号增加方向为正向;以垂直于E 轴为F 轴,水平向右为正向。高程采用设计提供的85黄海高程,式中E 、F 为转换后的施工坐标系坐标;X 、Y 为国家坐标系下坐标,1X 、1Y 为施工坐标原点在国家坐标系下坐标;θ表示桥轴正向在国家坐标系下的方位角。 本桥梁起点桩号为K119+375.781,大地坐标为X: 5034.6566,Y: 5380.6574,方位角为289°2′58″=289.289.0494444° 具体转化过程如下: 以DQ06为例 DQ06大地坐标为X: 5157.7791,Y: 4351.265。 ()()θθsin cos 11?-+?--=X X Y Y F ()()0494444 .289sin 5034.65665157.77910494444.289cos 5380.65744351.265?--?-= 2052.1013=(做了修改)

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

施工坐标系与测量坐标系之间的相互转换关系

施工坐标系与测量坐标系之间的相互转换 一、用Microsoft Excel 编辑转换 如图(1-1)所示:设Y O X -- 为测量坐标系,y o x -'- 为施工坐标,如果知道了施工坐标系的原点o '的测量坐标为('0X ,'0Y )、定向点I 的测量坐标为(XI,YI ),定向坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由施工坐标P (p p y x ,)换算成为测量坐标P (p p Y X ,)的公式则为: α αsin *cos *0p p p y x X X -+=' ααcos *sin *0p p p y x Y Y ++=' 上面两式在Excel 中编辑公式为: [][]180/()*sin *180/()*cos *0Pi y Pi x X X p p p αα-+=' [][]180/()*cos *180/()*sin *0Pi y Pi x Y Y p p p αα++=' 而如果知道了施工坐标系(第二坐标系)的原点的测量坐标 o '为

('0X 、'0Y )、坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由测量坐标P (p p Y X ,)转换算为施工坐标P (p p y x ,)其公式为: ααsin *)(cos *)(00''-+-=Y Y X X x p p p ααcos *)(sin *)(00''-+--=Y Y X X y p p p 上面两式在Excel 中编辑公式为: [][]180/()*sin *)(180/()*cos *)(00Pi Y Y Pi X X x p p p αα''-+-= [][]180/()*cos *)(180/()*sin *)(00Pi Y Y Pi X X y p p p αα''-+--= 以上各式中施工坐标系原点o ' 的测量坐标('0X ,'0Y )与方位角α ,可在设计资料中查找或用图解法得出。 附: 如(图1-2)直线AB 的坐标方位角 ? ?? ? ??--=-A B A B AB x x y y 1tan α B ( x ,y ) β B B C ( x ,y ) C C A ( x ,y ) A A α A B α A C 图(1-2) 如(图1-2)直线AB 与直线AC 的夹角 β ???? ??---???? ??--=-=--A B A B A C A C A B A C x x y y x x y y 11tan tan ααβ

坐标转换模型

坐标转换模型 1.空间直角坐标系间的转换模型(七参数模型) ①公式(布尔莎模型): ②分析: (1)将O-XYZ中的长度单位缩放l+m倍,使其与O'-X'Y'Z'的长度单位一致; (2)从X反向看向原点O,以O为旋转点,让O-XYZ绕X轴顺时针旋转Wx角,使经过旋转后的Y轴与O'-X'Y'Z’平面平行; (3)从Y反向看向原点O,以O为旋转点,让O-XYZ绕Y轴顺时针旋转Wy角,使经过旋转后的X轴与O'-X'Y'Z'平面平行。显然,此时Z轴也与Z'轴平行; (4)从Z反向看向原点O,以O点为旋转点,O-XYZ绕Z轴顺时针旋转Wz角,使经过旋转后的X轴与X’轴平行。显然,此时O-XYZ的三个坐标轴己与O'-X'Y'Z’中相应的坐标轴平行; 原坐标为O-XYZ,转换到新坐标O-X’Y’Z’.(两坐标系都为空间直角坐标系)其中(dX dY dZ)为坐标原点的平移参数,即将坐标O-XYZ的原点分别沿三个坐标轴平移-dX,-dY,-dZ,使原坐标轴与O-X’Y’Z’的点重合。m为尺度参数,(w1 w2 w3)分别为坐标轴的旋转参量(角度),构成的旋转矩阵分别为: 分别将R1 R2 R3代入上式,可得:

当旋转角度w1 w2 w3很小时(<=10),cos(w)=1,sin(w)=0;在误差允许范围内可以将模型简化为:(同样七参数模型) 四参数模型是在七参数模型的特例,没有考虑坐标轴的旋转量,只考虑坐标轴的平移。 总结: 类似布尔莎模型(以坐标原点为参考点),还有莫洛金斯基坐标模型(以目标点为变换中心)、武测转换模型和范士转换模型(以控制网参考点的站心地平坐标系的三个坐标轴为旋转轴),这些坐标转换模型很容易实现相关坐标在不同坐标系的转换,但是参考位置的偏移向量的相关参数,在实际运用中这些参量是很难测定的,并且受地球重力等物理因素的影响,两个坐标系统即使经过相似变换,仍可能存在较大的残差,所以这些模型适用于简单且规则模型中。 ④程序: clc clear all dX=input('please input value of dX=');

坐标转换之计算公式

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度 L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数

a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式:

将CAD图形转换成大地坐标系

将某建筑或小区电子图转换层大地坐标方法 条件: 1、电脑中首先要装有CAD软件和天正软件。 2、必须要有该小区的电子图纸 3、知道该图纸两个任意点的坐标。 步骤: 1、打开CAD软件—选择直线命令“line”绘制以原点“0,0”为起点绘制直线:电脑中的X轴和Y轴和图纸中的刚好相反,电脑中的X轴表示东西向坐标,Y轴表示南北向坐标;而总平面图中X轴表示南北向,Y轴表示东西向,因此在输入直线时首先输入图纸中的Y轴坐标,再输入X轴坐标,中间用“,”分开,完成一个点的坐标输入后回车,进入下一个点的输入状态。输入时以毫米为单位,不要输入图纸中坐标点的小数点。 如我要找“X=192744.501,Y=505605.019”的点,按照如下方法操作:选择“line”命令,输入第一个点的坐标:输入“0”,敲“,”键,再输入“0”敲回车键,输入第二个点的坐标:输入“505605019”,敲“,”键,输入“192744501”,此时就完成一条由原点“0,0”到“X=192744.501,Y=505605.019”点的直线。用同样的方法输入图纸中的另一个点到原点“0,0”的直线。(关键点:先输入Y轴坐标,再输入X轴的坐标,用“,”分开;还有不要输入小数点。) 2、将图纸对齐到大地坐标系中: 选择CAD菜单栏中“修改”下“三维操作”—“对齐”命令,

选择对象(选择需要对齐到坐标系中的图形)—选择好对象后敲右键—指定第一个源点(选取图形中原先选定有坐标点的点)—指定第一个目标点(点击原先按照该点坐标绘制直线的端点)—指定第二个源点(选取图形中原先选定第二个有坐标点的点)—指定第二个目标点(点击原先按照该点坐标绘制直线的第二条直线的端点)—敲鼠标右键——弹出“是否基于第二点缩放对象?”——选择否,完成图形对齐到坐标系的工作。

大地坐标转换成施工坐标公式

大地坐标转换成施工坐标 公式 The final revision was on November 23, 2020

大地(高斯平面)坐标系工程坐标系转换 大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o:大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:adX=Xp-XodY=Yp-YoP点转换后之工程坐标为xp、 yp: xp=dX*COS(a)+dY*SIN(a)+xoyp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o:大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:adx=xp-xody=yp-yoP点转换后之工程坐标为xp、yp:xp=Xo+dx*COS(a)-dy*SIN(a)yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX?ZY 后视点坐标:HXHY 方位角:W 两点间距离:S Lb10← {A,B,C,D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto?0← CASIO?fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX” L4 M“X(Z)”=X+(L-S)cosA▲ L5 N“Y(Z)”=Y+(L-S)sinA▲ L6 {B}:B“B(L)”:Q“Q” L7 O“X(L)”=M+Bcos(A+Q+180)▲ L8 P“Y(L)”=N+Bsin(A+Q+180)▲ L9 {C}:C“B(R)” L10 U“X(R)”=M+Ccos(A+Q)▲ L11 V“Y(R)”=N+Csin(A+Q)▲ L12 Goto 2 园曲线段坐标计算 L1 S“S(0)-Km”:X“X(0)”:Y“Y(0)”:A“ALF”:R“R”:K“K(L=1,R=2)”

不同坐标系之间的变换

不同坐标系之间的变换 SANY GROUP system office room 【SANYUA16H-

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10)

????? ?????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11) ???? ? ?????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10- 13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简

大地坐标转换为施工坐标

****大桥关于大地坐标 转化为施工坐标的报告 ****监理公司: ****大桥为特大型桥梁,对测量精度要求高、施工难度大。在实际施工测量当中,例如承台等结构尺寸比较简单的结构,在模板的安装的时候需要不断的测量、调整,直到满足要求。在上述过程中需要用放样模式来确定设计位置,待模板调整后又要切换到测量模式检查坐标的偏差,如果没有满足要求,又需要切换到放样模式来确定设计位置。如此反复,给我们施工放样带来了不必要的时间浪费,根据特大跨径桥梁施工的特点方便大桥测量定位,我项目部拟大地坐标系转化为独立的施工坐标系。 转化方法及过程 从国家坐标系转换到施工坐标系,具体转换公式: ()()θθsin cos 11?-+?-=Y Y X X E ()()θθsin cos 11?-+?--=X X Y Y F (做了修改) 施工坐标系以桥轴线为E 轴,且以桩号增加方向为正向;以垂直于E 轴为F 轴,水平向右为正向。高程采用设计提供的85黄海高程,式中E 、F 为转换后的施工坐标系坐标;X 、Y 为国家坐标系下坐标, 1X 、1Y 为施工坐标原点在国家坐标系下坐标;θ表示桥轴正向在国家 坐标系下的方位角。 本桥梁起点桩号为K119+375.781,大地坐标为X: 5034.6566,Y: 5380.6574,方位角为289°2′58″=289.289.0494444°

具体转化过程如下: 以DQ06为例 DQ06大地坐标为X: 5157.7791,Y: 4351.265。 ()()θθsin cos 11?-+?--=X X Y Y F ()()0494444 .289sin 5034.65665157.77910494444.289cos 5380.65744351.265?--?-= 2052.1013=(做了修改) ()()θθsin cos 11?-+?-=Y Y X X E ()()0494444 .289sin 5380.65744351.2650494444.289cos 5034.65665157.7791?-+?-= 1972.219-= 见下图: (0,0) 由上可知,DQ06的施工坐标为(X:1013.205,Y:-219.197)。 用以上公式同样可以求出控制点施工坐标,列表如下:

推导坐标旋转公式

推导坐标旋转公式 数学知识2010-09-12 21:03:53 阅读151 评论0 字号:大中小订阅 在《Flash actionScript 3.0 动画教程》一书中有一个旋转公式: x1=cos(angle)*x-sin(angle)*y; y1=cos(angle)*y+sin(angle)*x; 其中x,y表示物体相对于旋转点旋转angle的角度之前的坐标,x1,y1表示物体旋转angle 后相对于旋转点的坐标 从数学上来说,此公式可以用来计算某个点绕另外一点旋转一定角度后的坐标,例如:A(x,y)绕B(a,b)旋转β度后的位置为C(c,d),则x,y,a,b,β,c,d有如下关系式: 1。设A点旋转前的角度为δ,则旋转(逆时针)到C点后角度为δ+β 2。求A,B两点的距离:dist1=|AB|=y/sin(δ)=x/cos(δ) 3。求C,B两点的距离:dist2=|CB|=d/sin(δ+β)=c/cos(δ+β) 4。显然dist1=dist2,设dist1=r所以: r=x/cos(δ)=y/sin(δ)=d/sin(δ+β)=c/cos(δ+β) 5。由三角函数两角和差公式知: sin(δ+β)=sin(δ)cos(β)+cos(δ)sin(β) cos(δ+β)=cos(δ)cos(β)-sin(δ)sin(β) 所以得出:

c=r*cos(δ+β)=r*cos(δ)cos(β)-r*sin(δ)sin(β)=xcos(β)-ysin(β) d=r*sin(δ+β)=r*sin(δ)cos(β)+r*cos(δ)sin(β)=ycos(β)+xsin(β) 即旋转后的坐标c,d只与旋转前的坐标x,y及旋转的角度β有关 从图中可以很容易理解出A点旋转后的C点总是在圆周上运动,圆周的半径为|AB|,利用这点就可以使物体绕圆周运动,即旋转物体。 上面公式是相对于B点坐标来的,也就是假如B点位(0,0)可以这么做。现在给出可以适合任意情况的公式: x0 = dx * cos(a) - dy * sin(a) y0 = dy * cos(a) + dx * sin(a) 参数解释: x0,y0是旋转后相对于中心点的坐标,也就是原点的坐标,但不是之前点旋转后的实际坐标,还要计算一步,a旋转角度,可以是顺时针或者逆时针。 dx是旋转前的x坐标-旋转后的x坐标 dy是旋转前的y坐标-旋转后的y坐标 x1=b+x0; y1=c+y0; 上面才是旋转后的实际坐标,其中b,c是原点坐标 下面是上面图的公式解答: x0=(x-b)*cos(a)-(y-c)*sin(a); y0=(y-c)*cos(a)+(x-b)*sin(a); x1=x0+b; y1=y0+c;

坐标换算公式

关于A u t o C A D在变电所工程测量定位中的一些应用在变电所土建总平面图上,所内各建(构)筑物的平面位置系用施工坐标系和测量坐 标系分别表示的。变电所的施工坐标系的原点一般虚设在变电所围墙的西南角上,从而使 所内所有建(构)筑物的坐标皆为正值;而整个变电所的整体平面位置则用测量坐标系来 表示,测量坐标系统系平面直角坐标,一般有国家坐标系统、城市坐标系统等。所以在我 们进行变电所工程定位及所内施工控制网的布设时就需要将施工坐标系统与测量坐标系统 进行转换计算。 在我们以往的工程施工中,较为常用的是采用施工坐标系统与测量坐标系统的转换公 式进行换算,但是这种较为繁琐的公式计算,包括距离计算、角度计算,工作量大,且很 容易出现计算错误或计算精度达不到施工要求的问题。现在我向大家介绍一种无需进行公 式计算,仅使用Auto CAD进行变电所两种坐标系统自由转换的方法,我们以110kV宁阳变 电所工程的测量定位为例,分别采用上述两种方法进行计算、比较。 根据《总平面布置图》宁阳变电所的测量坐标系统是1954年的北京坐标系。所区建(构)筑物采用施工坐标系统,取变电所西南角围墙轴线交点为施工坐标系的原点(A=0.00 B=0.00),其中A=0.00相当于X0=3386346.750m,B=0.00相当于Y0=496024.938m,A轴与指 北针的夹角为北偏西18°。设计院交桩记录中给出的三个城市测量坐标控制点分别为:A1(X1=3386375.145m Y1=496019.325m)、A2(X2=3386418.782m Y2=496011.617m)、A3(X3=3386462.756m Y3=495977.459m)。在实际工程施工中需要根据施工场地的面积、建(构)筑物的位置及实际施工需要,布设四个控制桩点作为施工控制网:K1(A=48.00 B=10.00)、K2(A=48.00 B=38.00)、K3(A=77.00 B=10.00)、K4(A=77.00 B=38.00)。 为了测定上述四个主控网控制桩点,则需要根据设计院提供的测量控制桩点进行坐标 换算,从而在同一坐标系中进行距离及角度计算。由于两个坐标系的旋向不同,则施工坐 标系与测量坐标系之间的换算关系式为: X=X0+A*COSθ-B*SINθ Y=Y0+A*SINθ+B*COSθ 式中:θ=-18° 代入坐标数据 K1: X1=3386346.750+48.00×COS(-18°)-10.00×SIN(-18°)=3386395.491 Y1=496024.938+48.00×SIN(-18°)+10.00×COS(-18°)=496019.616

坐标系转换步骤以及公式

一、各坐标系下椭球参数 二、WGS84转北京54一般步骤(转80一样,只是椭球参数不同) 前期工作:收集测区高等级控制点资料。 在应用手持GPS 接收机观测的区域内找出三个以上分布均匀的等级点(精度越高越好)或GPS “ B ”级网网点,点位最好是周围无电磁波干扰,视野开阔,卫星信号强。并到测绘管理部门抄取这些点的54北京坐标系的高斯平面直角坐标(x 、y),大地经纬度(B 、L ),高程h ,高程异常值ξ和WGS-84坐标系的大 地经纬度(B 、L ),大地高H 。 如果没有收集到WGS-84下的大地坐标,则直接用手持GPS 测定已知点B 、L 、H 值 。 转换步骤: 1、把从GPS 中接收到84坐标系下的大地坐标(经纬度高程B 、L, H ,其中B 为纬度,L 为经度,H 为高程),使用84坐标系的椭球参数转换为84坐标系下的地心直角坐标(空间坐标): 式中,N 为法线长度, 为椭球长半径,b 为椭球短半径, 为第一偏心率。 2、使用七参数转换为54坐标系下的地心直角坐标(x ,y ,z ): x = △x + k*X- β*Z + γ*Y+ X y = △y + k*Y + α*Z - γ*X + Y z = △z + k*Z - α*Y + β*X + Z

其中,△x,△y,△z为三个坐标方向的平移参数;α,β,γ为三个方向的旋转角参数;k为尺度参数。(采用收集到的控制点计算转换参数,并需要验证参数) 在小范围内可使用七参数的特殊形式即三参数,即k、α、β、γ都等于0,变成: x = △x+ X y = △y+ Y z = △z + Z 3、根据54下的椭球参数,将第二步得到的地心坐标转换为大地坐标(B54,L54,H54) 计算B时要采用迭代,推荐迭代算法为: 4、根据工程需要以及各种投影(如高斯克吕格)规则进行投影得到对应的投影坐标,即平面直角坐标。(投影正算) 三、北京54转WGS84一般步骤(80转84一样,只是椭球参数不同) 1、将所有点的BJ54高斯平面直角坐标(x,y)化算为大地坐标(B,L )。(投影 反算) 2、顾及水准高h后将三维大地坐标(B,L,h),按54椭球参数化算为地心直 角坐标(X,Y,Z )。(公式同上面第一步) 3、根据公共点求转换七参数或多项式拟合系数并将54下的(X,Y,Z)转为84 下的(X,Y,Z)。(公式同上面第二步). 4、将转换后的三维直角坐标WGS-84XYZ化算为大地坐标WGS-84(BLH) 。(公式同上面第三步) 5 、引入基于WGS-84椭球的高程异常值由水准高求得基于WGS-84椭球的大 地高H 。

工程施工(铁路曲线)放样详细教案(切线支距法转换坐标)

工程施工(铁路曲线)放样详细教案任务描述: 使用非编程计算器计算铁路缓和曲线常数、曲线要素、曲线主点坐标及里程、指定放样点坐标。然后根据已知测站点、定向点和检核点,使用全站仪放样功能进行指定中桩点放样。放样完成后,须在测站点重新安置仪器,后视检核点,实测放样点位坐标与理论坐标进行比较。 一、计算数据 已知条件: QD坐标:(N QD,E QD)、JD坐标:(N JD,E JD)、ZD坐标:(N ZD,E ZD),偏角(转角):α,曲线半径:R,缓和曲线长:l0,起点里程:QD里程。

待求项目: 1.缓和曲线常数:缓和曲线切线角β、切垂距m、内移距p; 2.曲线要素:切线长T、曲线长L、外矢距E0、切曲差Q; 3.曲线主点里程和坐标:直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ; 4.放样点坐标:第一缓和曲线和圆曲线上指定中桩点各1个。 计算过程: 1.缓和曲线常数 (1)缓和曲线切线角β——即HY(或YH)点的切线角与ZH(或HZ)点切线的交角;亦即圆曲线一端延长部分所对应的圆心角。 注意:所有待求项目在计算得到结果的同时,用铅笔记入《工程施工放样成果表》。

(2)切垂距m——即ZH(或HZ)到圆心O向切线所作垂线垂足的距离。 注意:计算器的高次方输入方法为x^n。例如:R4,计算器中应输入R^4。另外,-1、1/2、1/3、2、3次方,计算器中均有专门按键。 (3)内移距p——为垂线长与圆曲线半径R之差。 2.曲线要素 (1)切线长: 注意:偏角(转角)α,不论右偏还是左偏,其数值均取正值。公式中,如果右偏、左偏有影响,会通过正负系数θ考虑。 (2)曲线长: (3)外矢距: (4)切曲差:

相关文档
最新文档