潮汐能发电技术与前景_张斌

潮汐能发电技术与前景_张斌
潮汐能发电技术与前景_张斌

潮汐能发电论文

潮汐能发电 专业名称: 年级: 学号:1120207109 1120207111 姓名:田野刘思勤 专业:环科1111 完成日期:2013 年 12 月 21 日

潮汐能发电 【摘要】本文介绍了潮汐能发电的概念、特点及前景。潮汐能发电有其优点. 也有其发展的因素. 随着科技的不断进步和能源资源的日趋紧缺. 潮汐能发电在不远的将来将有飞速的发展. 【关键词】潮汐能;发电Key word:tide energy;generation

目录 摘要···························································关键词························································· 绪论····························································1 潮汐发电原理 1.1 潮汐现象················································· 1.2 潮汐能发点概述··········································· 1.3 潮汐能发电原理·········································· 2 潮汐能发电的优缺点及其发展情况 2.1 潮汐能发电优点············································ 2.2 潮汐能发电缺点············································ 2.3 潮汐能的利用前景··········································· 3 结论····························································参考文献

新能源发电技术研究现状和发展趋势)

1、引言 在传统能源方面,石油和煤碳的形成要几亿年的时间,而人类在地球出现的总长也不过200万年,而在过去的100年左右的时间里,人类却消费了差不多所有矿物能源的一半。可以说,我们今天的文明多半是建立在能源消耗的基础之上的。如果没有这些能源,我们今天的文明将不复存在。 据科学家估计,石油按目前的速度开采下去最多还有50年左右的时间就将枯竭,最多的煤碳,也不过100年左右。“后危机时代”的经济增长靠什么?当前,世界各国都在试图将经济复苏与经济转型结合起来,努力寻找经济复苏以后的新的经济增长点。在所有可能的选择中,世界各国将目光投向了新能源。这将意味着全球“新能源”改革的浪潮即将到来。 随着全球性的能源短缺、环境污染和气候变暖问题日益突出,积极推进能源革命,大力发展可再生能源,加快新能源推广应用,已成为各国各地区培育新的经济增长点和建设资源节约型、环境友好型社会的重大战略选择。不管是国际资本,还是国内企业,都瞄准了新能源产业这一“巨型蛋糕”。分析人士指出,各国政府在寻求新的经济增长点的过程中,都对新能源产业给予了高度关注和肯定,并将新能源利用和新能源产业的发展纳入国家战略考虑之中。这种战略层面的重视,必将促使新能源产业相关支持政策的出台,为全球新能源产业的发展营造更好的环境。 可以预见的是,新能源产业的发展和竞争,将成为新一轮科技竞争和产业竞争的重要“战场”。而中国作为经济大国和能源消费大国,必然要参与这一轮新能源产业的竞争。 2、国外新能源发电技术发展情况 (1)太阳能发电美国是世界上太阳能发电技术开发较早的国家,太阳能槽式发电系统已经积累了10多年联网营运的经验,1×104kW塔式和5~25kW盘式太阳能发电系统正处于示范阶段。法国、西班牙、日本、意大利等国太阳能发电的应用也有一定发展。太阳能光伏发电最早用于缺电地区,从80年{BANNED}始,联网问题得到很大重视。目前,在世界范围内已建成多个兆瓦级的联网光伏电站,光伏发电总装机容量约1×103MW。 (2)风力发电风力发电经历了从独立系统到并网系统的发展过程,大规模风力田的建设已成为发达国家风电发展的主要形式。目前,风力田建设投资已降至1000美元/kW,低于核电投资且建设时间可少于一年,其成本与煤电成本接近,因而具有很大的竞争潜力。世界上最大的风力田位于美国加利福尼亚州,年发电约221×108k W.h。全世界风电装机容量已达17706MW。美国将在俄勒冈州至华盛顿州沿线建立一个世界最大的风力发电基地,德国计划30年后用风力发电取代核电,风力发电在德国供电系统中的比重将占到25%。 (3)地热能发电地热发电的相关技术已经基本成熟,进入了商业化应用阶段。美国拥有世界上最大的盖塞斯地热发电站,装机容量达2080MW。菲律宾的地热发电装机容量也高达1050MW,占该国电力装机总容量的15%。目前全世界地热发电站约有300座,总装机容量接近1×104MW,分布在20多个国家,其中美国占40%。 (4)海洋能发电目前,世界各地已建成了许多潮汐电站,其中规模最大的是法国的郎斯电站,装机容量240MW。规模较大的还有加拿大的安那波利斯电站、中国的江厦电站和幸福洋电站、原苏联的基斯洛电站等。 (5)生物能发电城市垃圾发电是30年代发展起来的新技术,最先利用垃圾发电的是德国

潮汐发电技术的应用及前景

潮汐发电技术的应用及前景 摘要:本文介绍了潮汐能发电的概念、特点、基本原理及我国潮汐能发电的现状和发展前景。潮汐能发电有其优点. 也有其发展的因素. 随着科技的不断进步和能源资源的日趋紧缺. 潮汐能发电在不远的将来将有飞速的发展. 关键字:潮汐能、发电、潮汐电站、发展现状、技术、前景、能源 前言: 海洋占地球面积的71%,它接受来自太阳的辐射能比陆地上要大得多.根据联合国科教文组织提供材料表明,全世界海洋能的可再生量从理论上说近800亿千瓦,浩瀚的大海蕴藏着巨大的可再生能源,包括波浪能、海流能、潮汐能、温差能、盐差能等。在诸多形式的海洋能中,其中海洋潮汐能量含量巨大,且目前开发技术比较成熟、开发历史较长和开发规模较大者,也当属潮汐能。它是最具有开发潜力的新能源之一。 海洋潮汐能是由于太阳、月球和地球相对位置不断改变及地球自转在一昼夜中地表各处受太阳、月球引力的合力不断改变,导致海水周期性地涨落的现象。海水潮汐能的大小随潮差而变化,潮差越大潮汐能也越大.像加拿大的芬迪湾、法国的塞纳河口、印度和孟加拉国的恒河口以及我国的钱塘江都是世界上潮差较大的地区。 现代潮汐能的利用,主要是潮汐能发电。潮汐能发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水力发电厂房,通过水轮发电机组进行发电。 一、潮汐发电的基本原理 潮汐能是月球和太阳等天体的引力使海洋水位发生潮汐变化而产生的能量。潮汐能利用的主要方式是发电。潮汐发电的工作原理与常规水力发电的原理类似,它是利用潮水的涨、落产生的水位差所具有的势能来发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机的结构要适合低水头、大流量的特点。具体地说,就是在有条件的海湾或感潮河口建筑堤坝、闸门和厂房,将海湾(或河口)与外海隔开围成水库,并在闸坝内或发电站厂房内安装水轮发电机组。海洋潮位周期性的涨落过程曲线类似于正弦波。对水闸适当地进行启闭调节,使水库内水位的变化滞后于海面的变化,水库水位与外海潮位就会形成一定的高度差(即工作水头),从而驱动水轮发电机组发电。从能量的角度来看,就是将海水的势能和动能,通过水轮发电机组转化为电能的过程。 利用潮汐能发电必须具备两个条件首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水。由于潮水的流动与河水的流动不同,它是不断变换方向的,因此就使得潮汐能发电出现了不同的型式,例如:①单库单向型,只能在落潮时发电。②单库双向型,在涨、落潮时都能发电。③双库双向型,可以连续发电,但经济上不合算,未见实际应用。在单向方式中水头变化范围较小,平均工作水头略高,这样可以减少水轮机的数量和尺寸,从而减少潮汐电站的投资;而在潮差较小、海湾条件允许的电站,采用双向工作比较有利。 二、潮汐电站的技术关键 潮汐能属于可再生资源,蕴藏量大,运行成本低。对于环境影响小,发电不排放废气废渣度水,属于洁净能源。 潮汐电站由7 个基本部分组成:潮汐水库;堤坝;闸门和泄水道建筑;发电机组和厂房;输电、交通和控制设施;航道、鱼道等。潮汐发电的关键技术主要包括低水头、大流量、变工况水轮机组设计制造;电站的运行控制;电站与海洋环境的相互作用,包括电站对环境的影响和海洋环境对电站的影响,特别是泥沙冲淤问题;电站的系统优化,协调发电量、间断发电以及设备造价和可靠性等之间的关系;电站设备在海水中的防腐等。

全球海洋能发电发展现况与展望

全球海洋能发电发展现况与展望 一、前言 在福岛核电厂事故之后,各国纷纷检讨核电政策。日前德国宣布将于2022年关闭所有核电厂,以其它电力来源替代,未来再生能源发电势必扮演更重要的角色。 在各种再生能源技术当中,海洋能是发展较为迟缓的技术之一,目前各国对于海洋能的利用,仍处于相当初始的阶段。不过地球有百分之七十一的面积是海洋,海洋能蕴藏量亦相当丰沛,在技术发展日益成熟的情况下,未来海洋能发电可望逐步成为人类重要的能源来源。本篇将介绍海洋能的技术种类、目前的发展现况、以及未来的展望。 二、海洋能技术发展现况 海洋能的利用以发电为主,技术种类繁多,现阶段发展较多的四种技术,分别为:(1)利用海洋中的洋流推动水轮机发电之海流发电(Marine Current Power);(2)利用每天潮流涨落的位能差产生电力之潮汐发电(Tidal Power);(3)利用波浪运动的位能差、往复力或浮力产生动力之波浪发电(Wave Power);(4)利用深层海水与表层海水之温差汽化工作流体带动涡轮机发电之海洋温差发电(Ocean Thermal Energy Conversion;OTEC)。以下分别介绍各种发电技术。 (1) 海流发电 海流发电系利用海洋中海流的流动动力推动水轮机发电,一般乃于海流流经处设置截流涵洞之沉箱,并于其内设置水轮发电机,并可视发电需要增加多个机组,来进行发电;惟于机组间需预留适当之间隔,以避免紊流互相干扰。目前国外已经有小规模试运转的案例,然而要达到大规模商用化仍需要一段日。 (2) 潮汐发电 潮汐发电便是利用海潮满潮、退潮所形成的水位落差,来从事发电,在海湾围建堤防和水路,在涨潮时引水入储水池,退潮时将储水放出,每日可发电四次,但当潮汐满潮与退潮高度相差较小,则发电效益较低。理想具经济效益的潮差至少需要5公尺。潮汐发电为商用化进展较快的技术,目前已有商用化运转的发电站。

潮汐能发电的发展状况与前景

潮汐能发电的发展状况与前景 摘要:近年来,能源和环境问题一直制约着我国经济的发展。潮汐能作为一种洁净、无污染且可再生的能源,对其进行有效开发利用不失为一良策。本文主要针对潮汐能发电的发展状况与前景进行了探讨。 关键词:潮汐能发电;发展状况;前景 一、潮汐能发电的概念及优点 潮汐能是海水在行星引潮力和地球自转作用下发生周期性运动所产生的能源。涨潮时,潮水汹涌而来,水位迅速上升,这是海水动能向势能转变的过程;退潮时,水位下降,海水迅速退去,这是海水由势能向动能转变的过程;相互转换的动能和势能的总和就是潮汐能。潮汐能发电顾名思义就是将潮汐能转化为电能,通过海水落差推动水轮机转动,从而带动发电机组发电。 早在20世纪初,欧美一些国家就开始研究潮汐发电并取得了一定的成果,如曾经排名第一的法国朗斯潮汐电站。后来,亚洲的国家也加大的重视,目前世界最大的潮汐电站是位于韩国京畿道安山市的始华湖潮汐电站。我国虽然起步较晚,但却一直重视这方面的发展,我国的江夏潮汐实验电站曾经是亚洲最大、世界第三大规模的潮汐海洋能电站,装机容量可达3900KW。 潮汐能除了具有一般绿色能源所具有的无污染,可再生的优点外,还具有可靠性高、相对稳定、不易受外界因素影响等优点。 二、潮汐能发电技术 潮汐发电要求:潮汐的幅度要大,需在几米以上;海岸的地形应能够储蓄大量海水,并允许较大规模的土建工程。涨潮时,将海水储存在水库内,此时海水包含较大的势能。落潮时,放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。潮汐发电与普通水利发电原理基本类似,差别在于蓄积的海水落差不大,但流量较大,呈间歇性,并且潮水的流动时不断变换方向的,从而潮汐发电的水轮机结构要适合水头低、流量大和双流向的特点。 2.1 水库式潮汐能发电技术 水库式潮汐发电,即在海潮河口或海湾建筑堤坝、闸门和厂房,将河口或海湾与外海隔开围建水库,并安装潮汐发电机组。水库式潮汐电站主要有双池双向发电、单池双向发电和单池单向发电三种形式。 2.2 无水库式新型潮汐能发电技术 无库式潮汐能发电技术突破了常规发电的概念:借鉴风能发电的相关原理,兼顾风和海流的密度等条件的不同而开发设计的,因而这种发电技术所用水轮机

世界海洋波浪能发电技术的发展现状与前景

2011 年第1 期2011 N um ber 1 水电与新能源 H YDR OPOW ER AND N EW EN ERGY 总第93期 T otal N o. 93 文章编号: 1671 - 3354( 2011) 01 - 0067 - 03 世界海洋波浪能发电技术的发展现状与前景 肖惠民, 于波, 蔡维由 (武汉大学动力与机械学院, 湖北武汉430072; 水力机械过渡过程教育部重点实验室, 湖北武汉430072) 摘要:对海洋波浪能发电技术的基本原理和特点进行了综述和评价, 介绍了国内外波浪能发电技术的进展及主要发电装置, 并分析了波浪能研究与利用的发展方向。 关键词:波浪能; 波能转换; 发展现状; 前景 中图分类号: P743 文献标志码: A The D eve lopm en t Status and P rospects of O ceanW ave P ow er G enera tion T echnology in the W or ld X IAO H u im in, YU Bo, CA IW e iyou ( S choo l of Pow e r andM echan ica l Eng ineer ing, W uhan U n iversity, W uhan 430072, Ch ina) A bstrac t: T he deve lopm ent o f the ocean w ave pow er generat ion techno logy hom e and ab road, its basic princ iples and charac ter istics are com prehensive ly d iscussed, the m ain g enerating dev ices are rev iew ed, and the trends and pro spects o f w ave energy u tilizat ion are a lso descr ibed. K ey w ord s: w av e energy; w av e energy conversion; deve lopm en t status; prospects 着世界经济的发展、人口的激增和社会的进步, 人类对能源的需求日益增长。而占地球表面积70% 的 1 波浪转换技术的进展 海洋, 集中了97% 的水量, 蕴藏着大量的能源, 包括波 浪能、潮汐能、海流能、温差能、盐差能等。其中, 波浪能由于开发过程中对环境影响小且以机械能形式存在, 是品位最高的海洋能。利用波浪能发电可为边远海岛 和海上设施等提供清洁能源, 还可利用波浪能提供的 动力进行海水淡化, 从深海提取低温海水进行空调制 波浪能发电是通过波浪能装置将波浪能首先转换为往复机械能, 然后再通过动力摄取系统转换成所需的动力或电能。 目前已经研究开发了多种波量能技术, 实现波浪能转换。根据国际上最新的分类方式, 波浪能技术分为振荡水柱技术、振荡浮子技术和越浪技术三种。 冷以及制氢等。 1. 1 振荡水柱式 随着相关技术的发展以及世界各国科技工作者的努力, 近年来, 海洋波浪能发电技术取得了长足的进步, 陆续有试验电站投入商业运行。可以预见, 不远的将来, 随着海洋波浪能发电技术日益成熟, 将会有越来越多的海洋波浪能发电系统接入电网运行。 本文对海洋波浪能发电系统的主要技术原理、特点和发展现状作了综述和评价, 最后分析了波浪能研究与利用的前景及发展方向。 振荡水柱技术是利用一个水下开口的气室吸收波 能的技术。波浪驱动气室内水柱往复运动, 再通过水柱驱动气室内的空气, 进而由空气驱动叶轮, 得到旋转机 械能, 或进一步驱动发电装置, 得到电能(见图1)。其 优点是转换装置不与海水接触, 可靠性较高; 工作于水面, 便于研究, 容易实施; 缺点是效率低。 目前已建成的振荡水柱装置有挪威的500 kW 岸 式装置、英国的500 kW 岸式装置L IM PET、澳大利亚 收稿日期: 2010 - 11 - 01 作者简介: 肖惠民, 男, 博士研究生, 从事水力机械内部流动数值模拟及稳定性研究、可再生能源发电技术研究。

关于中国潮汐能的未来发展前景

关于中国潮汐能的发展和利用前景 摘要: 浩瀚无边的海洋,约占地球表面的71%,它汇集了97%的水量,蕴藏着丰富的能源。但是随着陆地资源的不断消耗而逐渐减少,人类赖以生存与发展的能源,将越来越依赖于海洋。中国大陆的海岸线长达1.8万千米,海域面积470多万平方千米,潮汐能资源非常丰富。 关键词:潮汐能,能源,发电 (一) 潮汐能定义: 因月球引力的变化引起潮汐现象,抄袭导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量成为潮汐能。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。 海洋的潮汐中蕴藏着巨大的能量。在涨潮的过程中,汹涌而来的海水具有很大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能;在落潮的过程中,海水奔腾而去,水位逐渐降低,势能又转化为动能。潮汐能的能量与潮量和潮差成正比。就这样各种能量进行转换反复进行。或者说,与潮差的平方和水库的面积成正比。和水利发电相比,潮汐能的能量密度低,相当于微水头发电的水平。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能是因地而异的,不同的地区常常有不同的潮汐系统,他们都是从深海潮波获取能量,但具有各自独特的特征。景观抄袭很复杂,但对于任何地方的潮汐都可以进行准确预报。(二)潮汐能的利用方式主要是发电。潮汐发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水利发电厂房,通过水轮的地方发电机组进行发电。只有出现大潮,能量集中时,并且在地理条件适于建造潮汐电站,从潮汐中提取能量才有可能。虽然这样的场所并不是到处都有,但世界各国都已选定了相当数量的适宜开发潮汐电站的站址。 CO含量的增加速度减慢。潮发展像潮汐能这样的新能源,可以间接使大气中的 2 汐是一种世界性的海平面周期性变化的现象,由于受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落。潮汐作为一种自然现象,为人类的航海、捕捞和晒盐提供了方便,更值得指出的是,它还可以转变成电能,给人带来光明和动力。(三)我国的潮汐能发展 在亚洲,菲律宾和印度尼西亚的各岛屿,以及我国和日本海岸流动的海流,都具有巨大的潜力。在欧洲,潮汐电站的场址达上百个。在美洲,墨西哥政府计划在未来几年将投资数十亿比索在该国西部潮汐较大的加利福尼亚湾沿海造上百座潮汐电站。 在1958年,我们国家“土法上马”建了40多座“土潮汐电站”,又在20世纪70年代再建十多座潮汐电站。后来,由于种种原因,许多潮汐电站废弃了。 目前,我国正在运行发电的潮汐电站共有8座:浙江乐清湾的江厦潮汐试验电站、海山潮汐电站、沙山潮汐电站、山东乳山县的白沙口潮汐电站、浙江象山县岳浦潮汐电站、江苏太仓县浏河潮汐电站、广西饮州湾果子山潮汐电站、福建平潭县幸福洋潮汐电站。这8座潮汐电站总装机容量为6000千瓦,年发电量1000万余度。 我国潮汐发电量仅次于法国、加拿大,位居世界第三。 江厦潮汐试验电站是我国最大的潮汐能电站,是潮汐发电的试验基地。电站位于浙江省温岭市西南的江厦港上,离城区16公里。电站于1972年经国家计委批准建设,电站工程列为“水利电力潮汐电站项目”,研究重点包括潮汐能特点研究、潮汐机组研制、海工建筑物技术问题、综合利用。电站安装了5台双向灯泡贯流式机组,1号机组1980年5月4日投

潮汐能发电设计

开题报告: 1.选题的背景和意义 1.1 选题的背景 目前陆地上资源日益枯竭,世界各国正逐渐将目光转向海洋。海洋资源开发必然成为本世纪最重要的经济活动。开发海洋能发电装置,可以增强我国在海上持续作业的能力,可以实现海上电力的自给自足。 1.2 选题的意义 发展像潮汐能这样的新能源,可以间接使大气中的CO2含量的增加速度减慢。潮汐是一种世界性的海平面周期性变化的现象,由于受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落。潮汐作为一种自然现象,为人类的航海、捕捞和晒盐提供了方便,更值得指出的是,它还可以转变成电能,给人带来光明和动力。 2.设计内容 2.1 1kW 潮汐能发电装置总体设计 1kW 潮汐能发电装置总体方案可描述为漂浮式双转子水平轴可变桨式潮汐能发电水轮机。1kW 潮汐能发电装置总体方案,如图 2.1 所示。发电装置由“中”型漂浮式载体(1 个)、锚泊系统(1 套)、水平轴变桨式潮汐能发电水轮机(2 套)、提升锁紧装置(2 套)、电能变换等子系统组成,潮汐能发电水轮机发出的电力经海底电缆送上岸至直流母线并入独立电网。

漂浮载体锚泊于潮流水道中,离岸距离约500m,载体纵向沿流向布置。两台水平轴潮汐能发电水轮机分别由两个呈流线型的塔架悬挂支撑于漂浮式载体上,塔架通过载体结构的两个细长矩形月池并由载体上甲板的提升锁紧装置固定。两套提升锁紧装置分别布置于载体月池中央,用于发电装置的吊装维护。载体设有控制舱,布置电能转换和发电控制柜。电站系统由载体、载体定位系统、电能变换、并网输电系统、电站控制与管理系统等 6 个子系统组成。潮汐能发电水轮机及配套的控制设备安装于载体上,其它设备如电能综合控制装置、逆变器等设备安装在发电机组邻近海域的海岛上。 潮汐能发电水轮机安装于漂浮式载体上,漂浮式载体上装有齿条提升锁紧装置,用于水平轴潮汐能发电水轮机的维护吊装。载体上还设有控制舱,用于电能转换和发电装置的控制。水平轴潮汐能发电水轮机通过塔架与载体相连接。当潮流的流速、流向改变时,水平轴潮汐能发电水轮机可自动调整叶片桨距角。电站安装时,先将 整个水轮机组安装在漂浮式载体上,然后将载体用拖船拖至指定位置,载体再由首尾端共四根锚链呈放射状固定,机舱内设置必要的监测与保护设备。潮汐能发电水轮机表面进行防海水腐蚀和防海生物技术处理,保证机组长寿命高效率运行。

海洋能发电技术研究

海洋能发电技术研究 【摘要】海洋能是取之不尽、用之不竭的清洁能源。海洋能多种多样,主要包括波浪能、潮流能、潮汐能和温差能等。利用海洋能发电能够改善能源结构和环境,有利于海洋资源开发,受到许多国家的重视。文中对各种海洋能发电系统的主要技术原理、特点和国内外技术现状作了综述,最后指出海洋能利用的意义和前景。 【关键词】海洋能;海洋能发电;可再生能源 Abstract:This paper presents the elements and the characteristic of the Ocean Energy Generation Technology,and recommend the actuality of the Ocean Energy Generation Equipment. Key word:Ocean Energy;Ocean Energy Generation Technology;reproducible Energy 1.引言 2008年全球一次能源消费量为143851TWh,其中81.2%来自化石燃料。随着矿物燃料的日趋枯竭,世界主要海洋国家纷纷将目标转向蕴藏丰富能源的海洋,不断加大科技和资金投入,以期在海洋可再生能源开发利用的“争夺战”中抢得先机。海洋能主要指波浪能、潮流能(海流能)、潮汐能、温差能和盐差能等可再生能源。海洋能总量是巨大的,据估计与全球一次能源消费能源的50%相当,其中,全球海浪发电的理论储量为29500TWh/年左右,全球潮汐(含潮流)发电的理论储量为7800TWh/年左右,全球海洋热发电转换的理论储量为44000TWh/年左右,全球盐差能的理论储量估计为1650TWh/年左右。虽然海洋能源分布不均匀,但在每一个海岸,往往不止一种形式可以供应当地的电力需求。我国重视海洋可再生能源的开发利用,将包括海洋能在内的新能源产业视为引领我国未来经济社会可持续发展的七大新兴战略性产业之一。近年来,我国先后设立了“908专项(我国近海海洋可再生能源调查与研究项目)”和“海洋可再生能源专项资金”支持计划等,支持海洋能的海岛独立发电系统与并网示范工程、关键技术产业化、新技术研究试验以及公共支撑服务体系建设等,并拟在海洋能资源丰富地区建设海洋能示范电站,开展万千瓦级潮汐电站建设工作。 2.国外海洋能发电技术现状 2.1 波浪能发电技术 现阶段,波浪能发电技术的基本原理是:利用物体在波浪作用下的升沉和摇摆运动将波浪能转换为机械能,或利用波浪的爬升将波浪能转换成水的势能。波浪能转换系统一般包括三级能量转换机构:一级能量转换机构将波浪能转换成某个载体的机械能;二级能量转换机构将一级能量转换所得到的能量转换成旋转机

潮汐能的发展与前景

《海洋能源开发利用》作业题目:潮汐能的现状与发展 班级:机械设计制造及自动化3班 姓名:唐雯娟 学号:1222305 2015年12 月

潮汐能的现状与发展 摘要:海洋占地球面积的3/4左右,蕴藏着丰富的无污染可再生能源,其可开发部分远远超出地球能源总消耗量。在我国漫长的海岸向上,蕴藏着丰富的潮汐能,其理论蕴藏量为1.1亿KW。在当前全球能源极度短缺的严峻形势下,合理开发利用潮汐能,可以替代大量的煤炭、石油、天然气等化石能源;并能有效避免燃烧矿物燃料而产生的对人类生存环境的污染,并可以实现对水资源的综合利用——兴水利、除水害,兼而取得防洪、航运、农灌。供水、养殖、旅游等经济和社会效益,同时带动当地的交通运输、工业及至文化、教育、卫生事业的发展,成为振兴地区经济的前导;电能运输方便,可减少交通运输的负荷。 关键词:潮汐能、电站、水资源、开发利用 引言:世界经济的现代化,得益于化石能源,如石油、天然气煤炭与核裂变能的广泛的投入应用,因而它是建筑在化石能源基础之上的一种经济。然而由于化石能源属于不可再生资源随着其量的减少,能源供应的链条将会出现中断,这必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。化石燃料的使用对环境的破环效应日益受到人们的关注。? 我国作为一个能源消耗大国近年来一直努力减少对化石燃料的依赖。寻求可替代性能源,同时积极改变经济增长模式降低环境污染,走可续发展道路。潮汐能作为一种洁净的,可再生资源对其进行开发利用可以有效的缓解我国能源紧缺问题和环境污染问题。针对该种情况,本文通过对潮汐发电现状的总结,结合我国自身开发潮汐能的可行性现状,指出我国拥有巨大的潮汐能开发利用潜力为我国今后的潮汐能开发利用研究提供合理参考。?

潮汐能发电的发展现状与前景

潮汐能发电的发展现状与前景 姓名:樊书朋 学号:B10040411 班级:B100404 专业:电气工程及其自动化 时间:2013/10/28

潮汐能发电的发展现状与前景 潮汐能发电是利用海水的规律涨落拥有的能量来转换成电能的一种发电形式。其绿色无污染、储量巨大、不消耗燃料、不受洪水或枯水影响、适于沿海及远海发电需求等诸多好处将使得其在战略、民生等方面突出其应用的价值。国内外对潮汐能发电都有了近半个世纪的技术开拓,基本的技术障碍已经突破。海南是一个拥有广阔海洋面积和众多岛屿的省,拥有丰富的潮汐能资源。在建设国际旅游岛的同时,发展绿色能源会给海南省的未来带来更多的机会与实力。 国内现状:中国利用潮汐能的历史可追溯到距今约1000多年前,当时就有了潮汐磨而潮汐发电则是最近才慢慢发展起来的。我国在潮汐能发电开发利用过程中既有挫折也有喜悦。有半个多世纪的建设经验的我国今天的潮汐能发电量居世界第三。以下是我国潮汐发电发展大致的三个阶段: 一初始阶段 我国潮汐能的开发始于20世纪50年代,1957年在山东建成了第一座潮汐发电站。1956年,中国在福州市建成第1座小型潮汐电站。据1958年10月召开的全国第1次潮汐发电会议统计,全国建成了41座潮汐电站,总装机容量仅583kW的发潮汐电站。当时正在兴建的还有80多处,总装机容量7055kW。由于当时我国科学技术水平的限制,绝大多数的潮汐发电站总体质量低、装机容量小、设备维护欠缺故而基本废弃。 二继承改进阶段 20世纪70年代到80年代是我国开发利用潮汐能的第2个阶段。这个阶段,人们吸取了初始阶段潮汐发电的经验教训,注重科学和施工质量,建成了一批较高质量的潮汐电站(有的至今仍在运行)。1978年8月1日山东乳山县白沙口潮汐电站建成发电,年发电量230万千瓦时;20世纪80年代,建成江厦潮汐电站和幸福洋电站,并对以前建设的潮汐电站及其设备进行了治

世界三大著名潮汐发电站

世界三大著名潮汐发电站 【字体:小大】 潮汐发电原理及概况在海湾或感潮河口,可见到海水或江水每天有两次的涨落现象,早上的称为潮,晚上的称为汐。这种现象主要是由月球、太阳的引潮力以及地球自转效应所造成的。潮汐是一种蕴藏量极大、取之不尽、用之不竭、不需开采和运输、洁净无污染的可再生能源。建设潮汐电站,不需要移民,不淹没土地,没有环境污染问题,还可以结合潮汐发电发展围垦、水生养殖和海洋化工等综合利用项目。潮汐发电是水力发电的一种。在有条件的海湾或感潮口建筑堤坝、闸门和厂房,围成水库,水库水位与外海潮位之间形成一定的潮差(即工作水头),从而可驱动水轮发电机组发电。 近年来,与潮汐发电相关的技术进步极为迅速,现已开发出多种将潮汐能转变为机械能的机械设备,如螺旋浆式水轮机、轴流式水轮机、开敞环流式水轮机等,日本甚至开始利用人造卫星提供潮流信息资料。利用潮汐发电日趋成熟,已进人实用阶段。国外已投运或设计中的潮汐发电站见表3。 潮汐发电在国内外发展很快。欧洲各国拥有浩瀚的海洋和漫长的海岸线,因而有大量、稳定、廉价的潮汐资源,在开发利用潮汐方面一直走在世界的前列。1967年,世界上第一座潮汐发电试验电站在法国朗斯建成,装机24台,总容量240兆瓦,利用潮

差8米,至今为止,仍是世界上最大的潮汐电站。我国从60年代至今,已建成潮汐电站9座,装机总容量为1120千瓦。我国潮汐资源相当丰富,据统计,我国可开发的潮汐发电装机容量达21580兆瓦(2158万千瓦),年发电量约为619亿千瓦小时。世界三大著名潮汐电站简介1、加拿大安纳波利斯潮汐电站加拿大安纳波利斯潮汐电站座落在芬地湾口安纳波利斯-罗亚尔。该地潮差为4、2~8、5米。电站采用全贯流水轮发电机组。全贯流式水轮机安装在水平的水流通道中,发电机转子固定在水轮机桨叶周边组成旋转体,定子安装在水轮机转轮外边,构成没有传动轴的直接耦合机组。由于发电机的尺度不受限制,可以采用最优的转子直径,得到较高的转子转动惯量,以改进电网发生意外事故的动力稳定性,较易解决通风,检查、维修也方便。这些都是优于灯泡式机组之处。全贯流机组由于其结构紧凑,可以比采用灯泡式机组,工程造价低。但其难点在能经受推力和转子飞逸时保持稳定和转子轴承的安全运行,以及转子轮缘和壳体中间的密封。 该电站所采用的受力轴承是常规的水动力套筒式。密封由特殊的合成材料弯曲压贴在构件上,用水作润滑。该电站安装机组一台,额定功率为2万千瓦。转子直径7、6米,4个叶轮叶片,18个导叶,定子直径13米,设计水头5、5米,流量378米3/秒,额定转速50转/分,年发电量5000万千瓦小时。机组由对河川小型全贯流机组有经验的瑞士设计、加拿大制造。该电站利用现成控制洪水的堤坝,包括一条长225米的堆石坝,一个人工

海洋能发电技术的发展现状与前景

海洋能发电技术的发展现状与前景 摘要: 海洋能是取之不尽、用之不竭的清洁能源。海洋能多种多样, 主要包括波浪能、潮流能、潮汐能和温差能等。利用海洋能发电能够改善能源结构和环境, 有利于海洋资源开发, 受到许多国家的重视。文中对各种海洋能发电系统的主要技术原理、特点和技术现状作了综述和评价, 最后指出海洋能利用的意义和前景。 关键词: 海洋能波浪能潮流能潮汐能环境保护 海洋能是指依附在海水中的能源。海洋通过各种物理过程或化学过程接收、存储和散发能量, 这些能量以波浪、海流、潮汐、温差等形式存在于海洋之中。海洋面积占地球总面积的71%, 到达地球的各种来自宇宙的能量, 大部分落在海洋上空和海水中,部分转化为各种形式的海洋能。海洋能的大部分来自于太阳的辐射和月球的引力。例如: 太阳辐射到地球表面的太阳能大部分被海水吸收, 使海洋表层水温升高, 形成深部海水与表层海水之间的温差, 因而形成由高温到低温的温差能;太阳能的不均匀分布导致地球上空气流运动, 进而在海面产生波浪运动, 形成波浪能;由地球之外其他星球( 主要由月球)的引力导致的海面升高形成位能, 称为潮汐能;由上述引力导致的海水流动( 其特征是在一日内发生的、有规则的双向流动) 的动能称为潮流能;非潮流的海流( 其特征是一日内不发生双向的流动) 的成因有受风驱动或海水自身密度差驱动等, 归根结蒂是由太阳能造成的, 其动能称为海流能。海洋能是清洁的可再生能源, 开发和利用海洋能对缓解能源危机和环境污染问题具有重要的意义, 许多国家特别是海洋能资源丰富的国家, 大力鼓励海洋能发电技术的发展。由于海洋能发电系统的运行环境恶劣, 与其他可再生能源发电系统, 如风电、光伏发电相比, 发展相对滞后, 但是随着相关技术的发展, 以及各国科技工作者的努力, 近年来, 海洋能发电技术取得了长足的进步, 陆续有试验电站进入商业化运行。可以预见, 不远的将来, 随着海洋能发电技术日益成熟, 将会有越来越多的海洋能发电系统接入电网运行。由于海洋蕴涵量巨大, 海洋能必将成为能源供给的重要组成部分。

我国潮汐能开发利用前景展望_石洪源

第31卷第1期海 岸 工 程2012年3月 文章编号:1002-3682(2012)01-0072-09 我国潮汐能开发利用前景展望* 石洪源,郭佩芳 (中国海洋大学海洋环境学院,山东青岛266100) 摘 要:近年来,能源和环境问题一直制约着我国经济的发展。潮汐能作为一种洁净、无污染 且可再生的能源,对其进行有效开发利用不失为一良策。文章总结了国内外潮汐能利用状况 并简要介绍我国潮汐能开发利用的意义及其开发可行性情况。同时,指出我国潮汐能大规模 开发利用所面临的问题,在此基础上,提出未来研究的方向并给出相应建议。 关键词:潮汐能;潮汐发电;潮汐能利用 中图分类号:P743.3 文献标识码:A 世界经济的现代化,得益于化石能源,如石油、天然气、煤炭与核裂变能的广泛的投入应用,因而它是建筑在化石能源基础之上的一种经济。然而,由于化石能源属于不可再生资源,随着其量的减少,能源供应的链条将会出现中断,这必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。事实上,近10年来,中东及海湾地区与非洲的战争都是由化石能源的重新配置与分配而引发。现今全球变暖、臭氧层空洞等环境问题日益突出,化石燃料的使用对环境的破环效应也日益受到人们的关注,同时世界各国为解决环境问题,大力倡导绿色经济、可持续发展经济。我国作为一个能源消耗大国,近年来一直努力减少对化石燃料的依赖,寻求可替代性能源,同时积极改变经济增长模式,降低环境污染,走可续发展道路。 潮汐能作为一种洁净的、可再生资源,对其进行开发利用可以有效的缓解我国能源紧缺问题和环境污染问题。针对该种情况,本研究通过对潮汐发电现状的总结,结合我国自身开发潮汐能的可行性现状,指出我国拥有巨大的潮汐能开发利用潜力,为我国今后的潮汐能开发利用研究提供合理参考。 1 潮汐能概述 潮汐有多种用途,其主要利用为潮汐发电。潮汐发电就是利用潮水的涨、落产生水位差所具有的势能来发电。由于蓄积的海水流量较大,但落差不大,并且呈间歇性,因此潮汐发电的水轮机的结构要适合低水头、大流量的的特点。 开发潮汐能,具体的说,就是在有条件的海湾或河口建筑堤坝、闸门和厂房,将海湾(或河口)与外海隔开围成水库,并在闸坝内或发电站厂房内安装水轮发电机组。对水闸 *收稿日期:2011-10-10 作者简介:石洪源(1986-),男,硕士研究生,主要从事海洋管理方面研究.E-mail:shihongyuan1234@163.com (杜素兰 编辑)

世界潮汐发电发展前景展望_I_N_尤萨切夫

新能源开发 文章编号:1006-0081(2009)10-0037-05 世界潮汐发电发展前景展望 [俄] I .N .尤萨切夫 摘要:近几年,潮汐电站土建工程中漂浮沉箱的应用和新发电设备的开发,使潮汐能源工程的建设费用大大降低。对潮汐发电的发展现状和漂浮沉箱技术的应用情况进行了综述。以俄罗斯基斯拉雅潮汐电站为例,说明了潮汐电站在系统保障、结构安全、环境安全等方面取得的进展。简要介绍了潮汐发电设备革新、潮汐发电经济论证和潮汐能备选用途等方面的情况。 关键词:潮汐电站;土建工程;漂浮沉箱;世界中图分类号:TV 744 文献标识码:A 在过去10a ,世界各国对可再生的和环境上安全的潮汐能(其蕴藏量可以与常规的水电蕴藏量相比)的开发兴趣显著增加。在俄罗斯,基斯拉雅潮汐电站漂浮沉箱(不用围堰)的概念,以及使建设费用大为降低的新型正交水轮机的制造,重新唤起了人们对潮汐电站的关注。 2006年,开发了俄罗斯潮汐电站所特有的漂浮沉箱设备,正交水轮机的直径为5m 。基于这一概念,目前,图古尔、梅津和科尔斯克3座潮汐工程正在进行中。 1 潮汐发电发展现状 目前,世界上有几座商业运行的潮汐电站:法国 朗斯电站(1966年投运)、俄罗斯基斯拉雅试验电站(1968年投运)、加拿大安纳波利斯电站(1984年投运)以及中国的8座微型潮汐电站。韩国的始华 (Sihw a )潮汐工程正在施工中,英国和加拿大已经开展了大型潮汐电站的设计工作。印度、澳大利亚和俄罗斯也在设计潮汐电站。俄罗斯的潮汐工程有:白海的梅津电站、鄂霍茨克海南部的图古尔电站和巴伦支海的科尔斯克电站。表1示出了世界上部分已建、在建和拟建的潮汐电站。 世界潮汐能的理论蕴藏量估计为4000GW ,与可利用的水电蕴藏量相当。当前研究的139座沿海潮汐电站的总装机容量估计为810GW ,可能发电量为2000TW ·h ,其中俄罗斯分别占115GW 和260TW ·h 。 表1 世界部分已建、在建和拟建潮汐电站 国家电站装机容量/GW 年发电量/TW ·h 水轮机类型转轮直径/m 状态法国朗斯0.2400.50灯泡式5.301966年投运俄罗斯基斯拉雅0.4000.01灯泡式3.301968年投运加拿大安纳波利斯 0.0190.03全贯流式8.601984年投运 韩国始华0.2540.55灯泡式5.82在建英国塞文8.64017.00灯泡式9.101989年设计报告英国默西0.7001.40轴流式8.001992年设计报告俄罗斯图古尔8.00019.50轴流式10.001994年可行性报告5.18016.00正交式5.002006年可行性报告俄罗斯 梅津 11.400 38.90 正交式10.001999年可行性研究正交式 5.00 2006年可行性报告 收稿日期:2009-05-28  2009年10月 水利水电快报 EWRHI 第30卷第10期  DOI :10.15974/j .cn ki .slsd kb .2009.10.009

潮汐能利用现状及发展前景

潮汐能的利用现状及发展前景 摘要:当今世界,能源问题已成为全世界的焦点,节约能源,开发利用可再生、无污染的新能源已成为人类亟待解决的问题。潮汐能作为其一种清洁的 新能源得到了广泛的重视。本文总结了国内外潮汐能利用利用状况,并 简要介绍我国潮汐能开发利用的意义及其开发可行性情况,同时指出我 国潮汐能大规模开发利用所面临的问题在此基础上提出未来研究的方 向并给出相应建议。 关键词:潮汐能;潮汐发电:潮汐能利用 世界经济的现代化,得益于化石能源,如石油、天然气煤炭与核裂变能的广泛的投入应用,因而它是建筑在化石能源基础之上的一种经济。然而由于化石能源属于不可再生资源随着其量的减少,能源供应的链条将会出现中断,这必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。化石燃料的使用对环境的破环效应日益受到人们的关注。 我国作为一个能源消耗大国近年来一直努力减少对化石燃料的依赖。寻求可替代性能源,同时积极改变经济增长模式降低环境污染,走可续发展道路。潮汐能作为一种洁净的,可再生资源对其进行开发利用可以有效的缓解我国能源紧缺问题和环境污染问题。针对该种情况,本文通过对潮汐发电现状的总结,结合我国自身开发潮汐能的可行性现状,指出我国拥有巨大的潮汐能开发利用潜力为我国今后的潮汐能开发利用研究提供合理参考。 1. 潮汐能概述 潮汐能是月球和太阳等天体的引力使海洋水位发生潮汐变化而产生的能量。潮汐能利用的主要方式是发电。潮汐发电的工作原理与常规水力发电的原理类似,它是利用潮水的涨落产生的水位差所具有的势能来发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机的结构是适合低水头、大流量的特点。具体的说,就是在有条件的海湾或感

潮汐能发电技术与前景研究

潮汐能发电技术与前景研究 传统的发电方式越来越跟不上日益增多的用电需求,全球环境恶化也逐年严重,所以我们急需一种新的发电形式,既可以满足人们的需要又不会加重环境负担。在这种情况下利用潮汐发电的技术应运而生,为这个难题提供了一个较好的解决方案。 标签:潮汐发电;技术;前景 海洋面积在地球上十分宽阔,其具有的能源十分庞大,潮汐能作为一种新型可再生资源,可以有效协调发电、环境及资源之间的关系。我国拥有比较长的海岸线,潮汐能十分丰富,我们要重视开发利用这种能源进行发电。 1 潮汐发电 1.1 发电原理 太阳和月亮对海洋的引力造成了海洋平面的潮起潮落现象,也就是所谓的潮汐。潮汐发电的原理就是利用海水在涨潮,退潮的过程中的巨大推动力进行发电。在涨潮时,海平面逐渐上升,海水由低处逐渐往高处上升,在海水中的水轮在大量海水的作用力下进行转动,从而带动与其相连的发电机发电;在海水退潮时,高处的海水逐渐降低,形成一种落差,利用大量海水产生的落差作用力推动水轮进行反方向的转动,也可以带动发电机进行发电。海水在升降过程中形成的正向推动力及方向落差力都会作用于水轮进行发电。 1.2 潮汐发电形式 利用潮汐能进行发电因为建设范围和作用力的不同主要可分为三种形式。 第一种是单库单向式。这种形式的发电站主要在海边建设一个发电水库,在面临海水的一方设置一个闸门,当海水开始上升时,将闸门开启,让水逐渐进入水库中,在海水上升到最高点时,将闸门关闭,从而将水库中的海水困在发电站里,在海水下降时开启闸门,让水库中的水与海平面形成一个落差,进而让海水推动水轮进行发电。因为只有一个水库进行单方向的放水发电,所以称为单库单向式潮汐发电站。这种发电站的优点是建设投入低,设施少,缺点是能量利用少,发电不连贯。 第二种是单库双向式。这种形式的发电站也是修建一个水库,但是水轮设备有单独的两套。在海水上升进入水库时,将水引入第一套设备,海水在经过第一套设备时推动水轮开始转动发电,在海水升到最高点,即水库内外的水平面基本持平时,关闭第一套设备,让海水随着潮落通过第二套设备流出水库,利用流出的力量发电。因为在一个水库中可以利用海水的流进及流出双向发电,所以称为单库双向式。它的优点是对潮汐能量的利用率比第一种高,缺点是设备比较复杂,

相关文档
最新文档