光学探测技术

光学探测技术
光学探测技术

光学探测技术

为了更好的理解之后的学习内容,我们将回顾一下光在光电检测中的基本概念。最基本的考虑因素是光电探测器,它可以将光转变为电流。通过使用雷达和通讯系统在有频谱和红外光频谱中有各种各样的检测技术显示了高性能。由于体积小、性能的原因,大多数应用依靠现代半导体器件的基于光电效应,产生光电流检出率。还有,光电流是包含光生的初级电子和孔的损耗区域的检测器。温和上涨10-100可以通过雪崩过程取得许多检测器,如光电倍增管(PMT)和雪崩光电二极管(APD).有设备通常具有一个多余的乘法和雪崩过程中,在接收器设计时必然考虑到所产生的噪音。使用APD设备远远超过了雪崩击穿的偏见,使探测器在盖革模式下,工作,使造成非常高的增益(10~6),超快速的上升时间(皮秒),单光子事件的敏感性,仍然可以实现高增益。它已经被所有情况证明,主要的光电子统计数据是相同冲击碰撞光子流的。泊松统计的,而需要更复杂的统计模型来描述雪崩过程。

光接收机使用光探测器可以用两种方法来完成检测,即直接检测和相干检测。直接检测可以看作是一个简单的能量收集过程,只需要在镜焦平面上放置一个光电探测器,然后产生的信号电流被一个电子放大器放大。相比之下,相干检测则要求光电探测器表面存在能与信号光束混合的本地光学信号谐振器。相干混合过程对信号光和本地振荡器的调试方式规定了严格的要求,以便两个从根本上不同的方法都能有效地执行。如果信号光和本地振荡器频率不同或不相关,这个过

程成为外差检波;如果他们的频率是相同的或相关的,就是零差检测。图3-3显示了一般光外差器结构,有单独的激光器非别产生不相关的、不同频的信号光和本地振荡光。将它们用一个光波分复用器合成为一个反射率很高、信号损耗很低、可以提供足够能量的本地振荡光。图3-4显示了一个可能的同频安排,其中一小部分传输光用于本地振荡器,从而达到相关频率的要求。

在零差激光雷达应用中,信号与本地振荡信号的频率之间的相干性关于往返运动的时间参数τR ,经常用一个具有比τR 更长的相干时间的激光发射器来维持。另外,激光发射器和本地振荡器的频率可以是相同的,也可以是不同的,它取决于(在这个)光学系统中是否采用变频器。单模激光频移系统,有的也被称为失调零差系统,多普勒频频量Vo1远离基带的信号也可以发生频移,其中Vo1=±2|V|/λ为多普勒频率。这个相反的轨迹与远离信号源的运动一致,以至于多普勒频率在零带重叠产生出一个确定的频率Vo1,用于发射和接收频率之间的固有相干性,这些过程仍旧可以被看做零差。

零差检测被证明在量子学领域有一些独特的特殊功能,它展示了实现光子噪声水平低于量子的可能性。这种噪音水平被体积为海森堡的不确定原理的相干性的挤压状态,然而这种幅度或相位的变化并不能同时进行。相干态是一个在不确定性原理上的最底线,即众人所知的激光灯,这些状态是与聚合束和反聚合束统计的光子密切相关的,在4.8.2节中将提到APD检测统计。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

自动光学检测与自动X光检测

AXI/ICT组合测试是否会成为SMT测试的主流技术? 由于市场竞争日趋激烈,电子产品制造商对如何提高产品成品率和产量格外关注。而在SMT生产线中采用何种测试技术对以上两点的影响举足轻重。 目前线路板越来越复杂,传统的ICT测试受到了极大限制。随着线路板的密度不断增大,ICT测试必须不断增加测试接点数,这会有两个弊端:一、将导致测试编程和针床夹具的成本呈指数倍上升。开发测试程序和夹具通常需要几个星期的时间,更复杂的线路板则要一个多月。二、将导致ICT测试出错和重测次数的增多。对ICT构成挑战的还有不断减小的引脚距离。目前高引脚数的封装包括PGA、 QFP、 BGA等,它们的封装密度可达到每平方厘米有几百只引脚。这种引脚密度使测试探针难以插入,也无法增加专用测试焊盘。因此,ICT测试已不能满足未来线路板的测试要求,电子制造商们需要寻找新的测试手段。 自动光学检测系统(AOI)是近几年发展起来的以光学系统为主的检测系统。AOI系统的优点是测试速度快、缺陷捕捉率高。AOI不但可对焊接质量进行检验,还可对光板、焊膏印刷质量、贴片质量等进行检查。因此,采用AOI系统,不仅可以提高生产效率,也能提高产品质量。目前,已有越来越多的厂商采用了AOI系统。但AOI系统的缺点是不能检测电路错误,同时对不可见焊点及双面焊PCB的检测也无能为力。 自动化X射线检测技术(AXI)是目前最新型的测试技术。AXI技术自诞生以来发展迅速,已由2D检验法发展到目前的3D检验法。3D检验法采用分层技术,即将光束聚焦到任何一层并将相应图像投射到一高速旋转的接收面上,由于接收面高速旋转使位于焦点处的图像非常清晰,而其它层上的图像则被消除,故3D检验法可对线路板两面的焊点独立成像。3D检验法还可对那些不可见焊点如BGA等进行多层图像“切片”检测,即对BGA焊接连接处的顶部、中部和底部进行彻底检验。AXI技术对工艺缺陷的覆盖率很高,通常达97%,而工艺缺陷一般要占总缺陷的80%到90%。但AXI技术不能测试电路电气性能方面的缺陷和故障。将AXI检测技术和传统的ICT在线测试方法相结合,则可以取长补短,使SMT检测技术达到完美的结合。目前一种被称为“AwareTest”的技术使AXI系统和ICT系统可以“互相对话”,能消除两者之间的重复测试部分。通过减小ICT/AXI多余的测试覆盖面可减少70%的ICT接点数量,因而可加快ICT编程并降低ICT夹具和编程费用。 由于AXI/ICT组合测试具有较多的优点,在过去的两三年里,应用AXI/ICT组合测试线路板的情况出现了惊人的增长。很多公司如朗讯、思科和北电等都采用了AXI/ICT组合测试。但昂贵的价格是阻碍厂商采用AXI技术的一个主要因素。目前,AXI检测设备的价格是AOI纯光学检测系统的3到4倍。不过这种情况正在得到改善。AXI技术需要的数字相机的成本正在迅速降低,业界已开始从512×512像素AXI系统转向1024×1024甚至2048×2048像素系统。处理器和存储器芯片价格的降低,使AXI系统已开始采用PC上的处理器进行图形处理,大大增强了它的计算能力。 随着AXI系统成本的降低和性能的提高,AXI/ICT组合测试检测技术是否会取代目前的ICT检测技术,成为未来主流的检测技术?敬请发表高见! 王义美格电子设备制造有限公司 我认为不同的测试方法是各有千秋的,对于中国的电子制造商来说,由于各自的生产规模、产品种类的不同,因此不会有某一种测试方法特别适合于中国的厂家。下面是我了解的一些情况,拿出来供大家参考。

应用光学实验报告

(操作性实验) 课程名称:应用光学 实验题目:薄透镜焦距测量和光学系统基点测量 指导教师: 班级:学号:学生姓名: 一、实验目的 1.学会调节光学系统共轴。 2.掌握薄透镜焦距的常用测定方法。 3.研究透镜成像的规律。 4.学习测定光具组基点和焦距的方法 二、仪器用具 1、光源(包括LED,毛玻璃等) 2、干板架 3、目标板 4、待测透镜(Φ50.0,f75.0mm) 5、反射镜 6、二维调节透镜/反射镜支架 7、白屏 8、节点器(含两Φ40透镜,f 200和f 350) 三、基本原理

1.自准直法测焦距 如下图所示,若物体AB 正好处在透镜L 的前焦面处,那么物体上各点发出的光经过透镜后,变成不同方向的平行光,经透镜后方的反射镜M 把平行光反射回来,反射光经过透镜后,成一倒立的与原物大小相同的实象B A '',像B A ''位于原物平面处。即成像于该透镜的前焦面上。此时物与透镜之间的距离就是透镜的焦距f ,它的大小可用刻度尺直接测量出来。 图1.2 自准直法测会聚透镜焦距原理图 2. 二次成像法测焦距 由透镜两次成像求焦距方法如下: 图1.3 透镜两次成像原理图 当物体与白屏的距离f l 4>时,保持其相对位置不变,则会聚透镜置于物体与白屏之间,可以找到两个位置,在白屏上都能看到清晰的像.如上图所示,透镜两位置之间的距离的绝对值为d ,运用物像的共扼对称性质,容易证明: l d l f 42 2-=' 上式表明:只要测出d 和l ,就可以算出f '.由于是通过透镜两次成像而求得的f ',这种方法称为二次成像法或贝塞尔法.这种方法中不须考虑透镜本身的厚度,因此用这种方法测出的焦距一般较为准确. 3.主面和主点 若将物体垂直于系统的光轴,放置在第一主点H 处,则必成一个与物体同样 L M

仪器科学与测试技术专业(InstrumentScienceandtesting[001]

仪器科学与测试技术专业(Instrument Science and testing technology)学术型硕士研究生培养方案 (学科专业代码:99J1 授予工学硕士学位) 一、学科专业简介 仪器科学与测试技术是综合应用传感技术、光电技术、精密机械、信号与信息处理技术、现代电子技术、计算机技术、自动控制技术等,研究和探索仪器科学与测试领域的新技术、新方法,推动仪器科学与测试系统的智能化、网络化、集成化。主要研究获取、存储、处理、传输和利用信息的现代科学技术及仪器,包括测控技术及仪器、现代传感技术、精密计量理论与应用、虚拟仪器、微系统理论与应用、微小型机电系统、智能结构系统与技术、信号分析与数据处理、矿用仪器仪表等,是机、电、光、计算机、材料科学、物理、化学、生物学等先进技术的高度综合,它既是知识创新和技术创新的前提,也是创新研究的主体内容之一。 二、培养目标 1、重点培养具有良好的职业素养、坚实的仪器科学与测试技术基础理论的高层次光电产业、能源、电力行业专门技术人才; 2、培养掌握仪器科学测试理论和技术专业知识,运用先进现代测试技术、方法解决煤炭、电力、光电等行业关键理论和技术的专门人才; 3、培养严谨求实的科学态度和作风,具有创新求实精神和良好的科研道德,具备从事仪器科学与测试技术学科相关的研究开发能力;能胜任研究机构、高等院校和产业部门等有关方面的研究、工程、开发及管理工作; 4、较为熟练的掌握一门外国语,具有熟练地进行专业阅读和初步写作的技术人才 四、学习年限 全日制硕士研究生学制为三年;半脱产硕士研究生经申请批准,其学习年限可延长半年至一年。 五、培养环节 1、导师的确定 研究生导师的确定实行双向选择,研究生根据公布的导师名单填写双向选择表,然后由导师根据填表选择所要指导的研究生。第一志愿未落实的硕士研究生,根据学生其他志愿和实际情况,在进一步征求师生双方意见的基础上进行协调落实。 2、培养计划的确定

光学探测技术

光学探测技术 为了更好的理解之后的学习内容,我们将回顾一下光在光电检测中的基本概念。最基本的考虑因素是光电探测器,它可以将光转变为电流。通过使用雷达和通讯系统在有频谱和红外光频谱中有各种各样的检测技术显示了高性能。由于体积小、性能的原因,大多数应用依靠现代半导体器件的基于光电效应,产生光电流检出率。还有,光电流是包含光生的初级电子和孔的损耗区域的检测器。温和上涨10-100可以通过雪崩过程取得许多检测器,如光电倍增管(PMT)和雪崩光电二极管(APD).有设备通常具有一个多余的乘法和雪崩过程中,在接收器设计时必然考虑到所产生的噪音。使用APD设备远远超过了雪崩击穿的偏见,使探测器在盖革模式下,工作,使造成非常高的增益(10~6),超快速的上升时间(皮秒),单光子事件的敏感性,仍然可以实现高增益。它已经被所有情况证明,主要的光电子统计数据是相同冲击碰撞光子流的。泊松统计的,而需要更复杂的统计模型来描述雪崩过程。 光接收机使用光探测器可以用两种方法来完成检测,即直接检测和相干检测。直接检测可以看作是一个简单的能量收集过程,只需要在镜焦平面上放置一个光电探测器,然后产生的信号电流被一个电子放大器放大。相比之下,相干检测则要求光电探测器表面存在能与信号光束混合的本地光学信号谐振器。相干混合过程对信号光和本地振荡器的调试方式规定了严格的要求,以便两个从根本上不同的方法都能有效地执行。如果信号光和本地振荡器频率不同或不相关,这个过

程成为外差检波;如果他们的频率是相同的或相关的,就是零差检测。图3-3显示了一般光外差器结构,有单独的激光器非别产生不相关的、不同频的信号光和本地振荡光。将它们用一个光波分复用器合成为一个反射率很高、信号损耗很低、可以提供足够能量的本地振荡光。图3-4显示了一个可能的同频安排,其中一小部分传输光用于本地振荡器,从而达到相关频率的要求。 在零差激光雷达应用中,信号与本地振荡信号的频率之间的相干性关于往返运动的时间参数τR ,经常用一个具有比τR 更长的相干时间的激光发射器来维持。另外,激光发射器和本地振荡器的频率可以是相同的,也可以是不同的,它取决于(在这个)光学系统中是否采用变频器。单模激光频移系统,有的也被称为失调零差系统,多普勒频频量Vo1远离基带的信号也可以发生频移,其中Vo1=±2|V|/λ为多普勒频率。这个相反的轨迹与远离信号源的运动一致,以至于多普勒频率在零带重叠产生出一个确定的频率Vo1,用于发射和接收频率之间的固有相干性,这些过程仍旧可以被看做零差。 零差检测被证明在量子学领域有一些独特的特殊功能,它展示了实现光子噪声水平低于量子的可能性。这种噪音水平被体积为海森堡的不确定原理的相干性的挤压状态,然而这种幅度或相位的变化并不能同时进行。相干态是一个在不确定性原理上的最底线,即众人所知的激光灯,这些状态是与聚合束和反聚合束统计的光子密切相关的,在4.8.2节中将提到APD检测统计。

AOI自动光学检测

AOI的全称是Automatic Optic Inspection(自动光学检测),是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是近几年才兴起的一种新型测试技术,但发展迅速,目前很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。 编辑摘要 目录 1 什么是AOI 2 什么是AOI测试技术 3 AOI的主要目标 4 针对AOI检查的PCB优化设计 5 新一代自动光学检测技术(AOI):内嵌式检测技术 自动光学检查(AOI, Automated Optical Inspection) 一、定义 运用高速高精度视觉处理技术自动检测PCB板上各种不同帖装错误及焊接缺陷.PCB板的范围可从细间距高密 度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量 . 通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制.早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板. 二、主要特点 1)高速检测系统 与PCB板帖装密度无关 2)快速便捷的编程系统 - 图形界面下进行 -运用帖装数据自动进行数据检测 -运用元件数据库进行检测数据的快速编辑 3)运用丰富的专用多功能检测算法和二元或灰度水 平光学成像处理技术进行检测 4)根据被检测元件位置的瞬间变化进行检测窗口的 自动化校正,达到高精度检测 5)通过用墨水直接标记于PCB板上或在操作显示器 上用图形错误表示来进行检测电的核对 三、AOI 检查与人工检查的比较 人工检查AOI检查 pcb<18*20及千个pad以下 人重要辅助检查 时间正常正常 持续性因人而异好 可靠性因人而异较好 准确性因人而异误点率高

自动光学检测仪

用在多层板的内外层或高密度双面板表面质量的检查。但是在其它方面的应用也比较多,特别是对高密度互连结构(HDI)微通孔和表面的检查。而且还应用在IC封装和装配中的印制板的检查。AOI很有效地应用诸多方面,为提高印制板的表面质量,发挥了重要的作用。 一.底片的检查 自动光学系统的设计是根据底片检查工艺特性,采用透射的模式即将需要检查的底片放置在玻璃桌台上,而不采用抽真空台面,而是通过玻璃桌面的下的光束透过玻璃进行对底片的扫描来检查底片相应位置上的缺陷。使用这种方法对底片进行表面质量的检查,为更加清晰的将印制板表面缺陷呈现出来,对该系统的放大装置作了很大的改进,达到了既是印制板表面的很小的缺陷都能检查出来。当在印制板生产过程中使用该系统时,就能将印制板面的5μm和5μm以下的缺陷检查出来,并且能够适当的区别错误的真假,就是采用高级的识别系统大大的减少故障缺陷的发生。 在反射模式将白色的纸放置在光具(底片)之下,介于光具透明和不透明范围之间,以提高其对比度。经过交替的变换达到或接近所使用的标准的AOI系统。这种方法不是通用的的,更多的倾向是由于微小的划伤,才会出现假的缺陷报告。另外,容易产生错误的是由于光具表面银粒子无光泽,再通过AOI的反射模式,特别是焦点不是在光具银乳胶膜上,就很容易出现假的读出。而表面无光泽的粒子致使真空度下降。这些粒子是甲基丙烯酸树脂,直径大约7微米,它能够使光发出散光。 如果AOI是开始并记录应该发现的缺陷,唯一的其缺陷的尺寸应比10微米要大,这样用它来检查就能解决所存在的质量问题,而且还有可能解决对精细导线(S/L=30/50微米)的检查。对于有阻抗要求的导线宽度公差控制不会比±5-10微米变化更大是可能的。而AOI的灵敏度不会记录这样的线宽变化。检查光具(即底片)通常应该在清洁的、黄光室内进行,不建议到AOI作业区进行检查,应此区域清洁度不够。因此,实际上AOI机不是检查内层或外层的光具膜的机器。. AOI实际上也可以检验玻璃底版的图像质量,即玻璃上镀铬膜。这些底版通常制作和检验是通过转包公司再送交PWB制造厂的。典型的要求就是底版上的缺陷的尺寸在5微米或更大些。许多使用玻璃底版的用户也使用检查玻璃的工具进行检查,以延长使用的寿命。但使用玻璃底版也很贵。 玻璃底版至少要曝光百次以上,最典型的次数为200-500次,就必须使用AOI对玻璃底版图像进行质量检查,还可以通过曝光试验,如底版的图像好就可以接着使用,或者进行修整。 二.覆盖有光敏抗蚀剂的板在进行显影前的潜像质量的检查 这一步最基本的想法就是在湿处理前,对板的图像与孔对准度进行检查,及早发现如有质量缺陷就很容

应用光学复习-1

第五章 1.光阑的基本概念 光学系统中限制成像光束的元件称为光阑 2.视场光阑 决定物平面上或物空间中成像范围大小的光阑 3.入窗、出窗及其求解方法 入窗:视场光阑经它前面的光学元件在系统的物空间所成的像,称为系统的入射窗,简称为入窗。入窗限制了物方空间的成像范围,即物方视场 出窗:视场光阑通过它后面的光学元件在系统的像空间所成的像,称为系统的出射窗,简称为出窗。出窗限制了像方空间的成像范围,即像方视场 孔径光阑为无限小时: 将系统除孔径光阑外的所有光阑都经前面的光学元件成像到系统的物空间去,其中对入瞳中心张角最小的那个光阑的像即为系统的入窗,与之共轭的即为视场光阑。 将系统中除孔径光阑外的所有光阑都经它后面的光学元件成像到系统的像空间去,对出瞳中心张角最小的那个即为出窗,与之共轭的即为视场光阑。 4.孔径光阑-------P89 孔径光阑:限制轴上物点成像光束立体角。 孔径光阑决定了轴上点发出的平面光束的立体角,所以又叫做有效光阑。 5.入瞳 入瞳:又称入射光瞳,是系统的孔径光阑通过在它前面的光学系统在物空间的像。 入瞳限制了轴上点物方孔径角的大小。即它决定了能进入系统的最大光束孔径,它也是物面上各点发出的成像光束进入系统的公共入口。 6.出瞳 出瞳:也称出射光瞳,是系统的孔径光阑经它后面的光学元件在像空间成的像。 出瞳决定了轴上像点的像方孔径角的大小。即它决定了成像光束在像空间的最大孔径,它是系统成像光束的公共出口。

7.三种经典光学系统的光阑 (1)照相系统的光阑 孔径光阑的位置对选择光束的作用 就限制轴上点的光束宽度而言,孔径光阑位于A或者A'的 位置,情况并无差别。 对轴外点的成像光束来说,孔径光阑的位置不同,参与成像 的轴外光束不一样,轴外光束通过透镜L的部位也不一样, 需要透过全部成像光束的透镜口径大小也就不一样。 光阑位置的变动可以影响轴外点的像质。从这个意义上来说,孔径光阑的位置是由轴外光束的要求决定的。 实际光学系统中 为了缩小光学零件的外形尺寸,实际光学系统的视场边缘一 般都有一定的渐晕。 有渐晕时,斜光束的宽度不单由孔径光阑的口径确定,而且 还与其余光学零件或光阑的口径有关 (2)望远系统 a)双目望远镜 为了保证斜光束的通过,它所要求的各个光学零件的尺 寸不仅和光束口径有关,而且和所选取的成像光束的位 置有关。 分划镜框就起到了照相机中底片框的作用,限制了系统 的视场,它就是系统的“视场光阑” 无论是轴上像点或者是轴外像点,成像光束的口径都是 由物镜框确定的。 物镜框就是系统的“孔径光阑”。 b)周视瞄准镜 为了确定系统中其它光学零件的尺寸,必须选择轴外点 成像光束的位置,也就是确定入瞳或孔径光阑的位置。 取道威棱镜的通光口径等于轴向光束的口径,则道威棱 镜就起着孔径光阑的作用。 孔径光阑像的位置不确定的情形下,可以直接根据光束 位置来确定出瞳位置。 周视瞄准镜,斜光束宽度小于轴向光束口径,存在渐晕。 系统的出瞳距离就等于出射主光线和光轴交点到系统最

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

《应用光学》课程导学

《应用光学》课程导学 一、课程构成及学分要求 《应用光学》课程主要由三部分构成:48(64)学时的理论教学(3或4学分)、16学时的实验教学(0.5学分)、为期二周的课程设计(2学分)。 二、学生应具备的前期基本知识 在学习本门课程之前学生应具备前期基本知识:物理光学、大学物理、高等数学、平面几何、立体几何等课程的相关知识。 三、学习方法 1.课前预习、课后复习; 2.独立认真完成课后作业; 3.课堂注意听讲,及时记录课堂笔记; 4.在教材基础上,参看多本辅助教材及习题集。 四、课程学习的主要目标 1.掌握经典的几何光学的理论内容; 2.了解部分像差理论的基本思想; 3.掌握典型的光学系统的基本原理及设计方法。 五、授课对象 课程适用于光电信息工程专业、测控技术与仪器专业、生物医学工程专业、信息对抗技术专业、探测制导与控制技术专业及其相近专业等,课程面向大学本科学生第五学期开设。 六、教学内容及组织形式 1、理论课程教学内容 《应用光学》课程理论教学内容共计48学时,其内容主要由三部分构成:几何光学、像差理论、光学系统。 (1)几何光学 应用光学既是一门理论学科又是一门应用性学科,其研究对像是光。从本质上讲光是电磁波,光的传播就是波面的传播。但仅用波面的观点来讨论光经透镜或光学系统时的传播规律和成像问题将会造成计算和处理上的很大困难。但如果把光源或物体看成是由许多点构成,并把这种点发出的光抽象成像几何线一样的光线,则只要按照光线的传播来研究点经光学系统的成像问题就会变得简单而实用。我们将这种撇开光的波动本质,仅以光的粒子性为基础来研究光的传播和成像问题的光学学科分支称为几何光学。几何光学仅仅是一种对真实情况的近似处理方法,尽管如此,按此方法所解决的有关光学系统的成像、计算、设计等方面

图像测量技术论文

图像测量技术读书笔记 摘要:图像测量技术是以现代光学为基础,融光电子学、计算机图形学、信息处理、计算机视觉等现代科学技术为一体的综合测量技术,是将图像处理技术应用于测量领域的一种新的测量方法。图像测量该技术把图像作为信息传递的载体,依据视觉的原理和数字图像处理技术对物体的成像图像进行分析研究,得到需要测量的信息,目前已经成功应用于很多领域。图像测量方法具有非接触、高速度、动态范围大、信息丰富等优点,受到国内外测量领域的重视。本文介绍了图像测量技术的历史背景,总结了图像测量系统的发展现状及其应用领域,并指出了图像测量技术存在的问题及今后发展的趋势。 0.引言 图像测量技术是近年来在测量领域中新兴的一种高性能测量技术。它以光学技术为基础,将光电子学、计算机技术、激光技术、图像处理技术等多种现代科学技术融合为一体,构成光、机、电、算综合体的测量系统。图像测量,就是把测量对象——图像当作检测和传递信息的手段或载体加以利用的精确测量技术。其目的是从图像中提取有用的信号,通过对获得的二维图像进行处理和分析,得到需要的三维场景的信息,最终实现测量的目的。 图像(包括视频)测量技术广泛应用于工业产品质量检测、智能交通、安防、工程变形监测、医学等各个领域,并且随着计算机技术和信息技术的发展,其实现方法和手段也日新月异。 1.研究背景 科学技术和生产活动的大规模开展及一系列重大突破催生并发展了测量学科。同时,测量器具、技术和理论的发展又促进了生产技术的发展。近代科学和工业化的发展要求测量学科一方面需要进行专业化分工;同时也要求其突破经典的测量方法,寻求新的测试原理与手段,如求助于电学、光学、计算机等,从单一学科发展为多学科间的相互借鉴和渗透,形成综合各学科研究成果的新型测量系统。 传统的几何测量方法根据测量头与被测件是否接触可分为接触式与非接触

PCB自动光学检测技术共4页

PCB自动光学检测技术 一、PCB检测技术发展历程 在PCB的生产工艺流程中,蚀刻是重要环节之一,即用化学药剂腐蚀掉设计线路以外多余的铜。该工艺流程中,药剂量、温度、流速和腐蚀时间等因素直接影响生产的质量,控制不好将会产生诸如短路、开路、线宽缺损、残留铜和针孔等缺陷。 PCB通常用目视、电测试和AOI方法检测。 20世纪70年代以前,PCB检测主要依靠人眼加放大镜,检测速度慢,漏检率高,同时,还会导致检验人员视力下降,影响人体健康。 电测试的原理是根据PCB线路图的计算机数据设计一副针床夹具和相应的网点测试程序。测试时,探针压在PCB表面的待测点,然后通电测试每个网点的通断,并报告存在的短路和断路缺陷。其局限在于○1只能检测短路和断路两种缺陷,缺口、针孔和残留铜等其他缺陷都无法检测。○2针床夹具的成本过高,小批量生产不合适。 电测试受到PCB向高密度、小型化方向发展的限制。随着线路板的密度不断增大,电测试需不断增加测试接点数,导致测试编程和针床夹具成本上升,开发测试程序和夹具通常需要数星期乃至一个多月时间,同时将导致电测试出错和重测次数增多。对电测试构成挑战的还有不断减少的引脚距离。因此,电测试已不能满足未来线路板的测试要求。 二、PCB自动光学测试技术 (2)自动光学检测的工作原理 AOI是检测PCB表面图形品质(如表面缺陷、断路和短路)的设备,

用于生产过程中半成品品质检测,是高精密单层印制板,尤其是多层印制板加工的关键技术。测试系统集光学、精密机械、识别诊断算法和计算机技术于一体,功能或激光自动扫描PCB,采集图像后送与计算机处理,再与数据库中的标准数据比较,查出PCB上缺陷,用显示器或自动标识系统显示或标识缺陷,供维修人员修理。 2.PCB自动光学检测图像处理技术 (3)图像采集 获取图像是AOI的关键,所获取图像的质量好坏直接影响最终的检测效果。从使用的图像采集器件来看,目前AOI分为两类,一类是使用高精度线扫描CCD成像;另一类是利用激光作为光源,用光电倍增管(PMT)作为光电转换器件来获取图像。 图像的处理是将光电器件(CCD或PMT)输出的有关PCB信息的电信号转换为计算机可识别的二进制信号。首先进行模/数转换,将模拟信号转换为灰阶数字信号,利用PCB基材和铜的灰阶值不同的特性,形成二维灰度图像,然后利用阈值法,将大于指定阈值的像素转换成黑(铜)像素,等于或小于指定阈值的像素转换成白(基材)像素。阈值根据材质来选取,一般在灰阶数值的60~110之间,最后得到关于PCB信息的二值(0,1)图像。 (2)图像处理技术 (A)图像特征提取 对转换后的二值图像进行分析并与标准图像比较以发现PCB上存在的缺陷。常用的分析方法有两种。其中矢量分析法是一种图形位置搜索技术,

现代光学测试实验报告

现代光学测试技术实验报告 姓名:*** 学号:*** 专业:*** 班级:*** 课程名称:现代光学测试技术 指导教师:*** 完成日期:***

现代光学测试技术实验报告 一、实验目的 1、了解散斑的性质及特点 2、了解散斑干涉、剪切散斑干涉、DIC 、和条纹投影技术的具体应用 3、通过分析优劣更好地学习现代光学测试技术的相关内容 二、实验原理 ● 散斑 1、散斑的定义 当一束激光照射到物体的粗糙表面(例如铝板)时,在铝板前面的空间将布满无规律分布且明暗相间的颗粒状光斑,称为散斑。(如图1所示) 2、要形成散斑且质量较好必须具备的条件: (1)有能发生散射光的粗糙表面 (2)入射光线的相干度要足够高,如:激光 (3)如使用激光粗糙表面深度须大于入射光波长 3、散斑的分类 由粗糙表面的散射光干涉而直接形成的,称为直接散斑。(如图2所示) 经过一个光学系统,在它的像平面上形成的散斑,称为成像散斑,即主观散斑。(如图3所示) 图2 客观散斑原理图 图1 散斑图像

图3 主观散斑原理图 4、散斑的应用 散斑携带了散射面的丰富信息,可以通过散斑的性质来推测物体表面的性质,是实验应力分析方法的一种,用于测取物体的位移、应变。由于这种办法的无损、快速等诸多优点,它被广泛应用于工业控制的缺陷检测、医学的光活检等领域,且受到越来越多的关注。 ●三角法测量原理 图4 激光三角法测量原理图

如图所示,θsin z a a b M ??=???= z K z s i n M b ??=???=??θ 则K b z ?=?,其中θsin M K ?= 物体变形前和变形后的光强分布为: ()()()()x y x P x y x P f ,2,,2cos y x b y x a I f π π=?? ?????+=,, ()()()()()[]()()()[]y x z y x k -x ,2,y x z y x k -x ,2cos y x b y x a I c c ,,,,,,y x P y x P π π=???????+= ()() ()()() ()()y x K -y x z y x z y x K y x z y x P y x k 2-c f c f ,,,,,,,??= ∴=?= ??π ()y x K ,可以通过实验标定得到,由此,则可知物体的变形或位移 ● DIC 技术 图5 物体变形图像追踪 因为散斑分布是随机的,所以每一点和它周围的散斑是不一样的,我们在相关运算过程中,可以将变形前和变形后的散斑图像分割成很多网格,每一个网格就是一个相应的子集:这样,我们就可以以这个子集为载体,分析物体的相应的位移信息,将所有的子集进行计算,就可以得到相应的位移场: 在数字图像相关算法中,我们将变形前后的两幅散斑图分别设为F (x ,y )和G (x ,y ),劝、数字图像相关基本思想是在F (x ,y )中找到一个子区,通

光学测试技术复习资料

光学检测原理复习提纲 第一章 基本光学测量技术 一、光学测量中的对准与调焦技术 1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1 对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 2、常见的五种对准方式。 P2 压线对准,游标对准。。。。 3、常见的调焦方法 最简便的调焦方法是:清晰度法和消视差法。p2 二、光学测试装置的基本部件及其组合 1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。P14 作用:提供无限远的目标或给出一束平行光。 组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。 2、什么是自准直目镜(P15)(可否单独使用?),自准直法? 一种带有分划板及分划板照明装置的目镜。Zz 自准直:利用光学成像原理使物和像都在同一平面上。 3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。P15—p17(概念,填空或判断) 1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。 2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。 主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面 (a )"+"字或"+"字 刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板

激光散斑测量技术与应用研究

激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,选题较为合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 激光散斑测量技术与应用研究 1 前言 近些年来,激光散斑计量技术发展迅速,已在许多领域得到了广泛应用。迄今为止,散斑测量技术经历了两个发展阶段:第一阶段1965-1978年,这一发展阶段以纯光学的相干计量技术为主,形成了一系列纯光学的全息散斑计量方法。对计量机理的解释,主要是用传统的干涉计量理论。第二阶段70年代末开始,这一发展阶段是以光电结合的精密计量技术为主的,全息散斑计量技术向着高精度、高速度及自动化方向发展,同时,发展出了用统计学方法解释的新理论,该理论更适合描述空间随机分布光场。 激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,主要有:直接照相法,双曝光法,电子散斑干涉法,错位散斑干涉法和散斑相关测量技术等。它具有全场,非接触,高精度,高灵敏度和实时快速等优点。现已广泛应用于振动,位移,形变,断裂及粗糙度的测量等方面,成为无损计量领域的有效工具,是当前国际上的热门研究课题之一。 图1.1 激光散斑的技术和应用发展时间路线图 2 激光散斑测量基本理论 1)散斑的形成 一般地说,电磁波以至粒子束经受介质的无规散射后,其散射场常会呈现确定分布的斑纹结构,这就是所谓的散斑。散斑的形成必须具备两个基本条件: 1)必须有可能发生散射光的粗糙表面。为了使散射光较均匀,则粗糙表面的深度必须大于波长; 2)入射光线的相干度要足够高,例如使用激光 从可见光波长这个尺度看,粗糙的物体表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。相干光照射时,不同的面元对

光学三维测量技术与应用

光学三维测量技术 1. 引言 人类观察到的世界是一个三维世界, 尽可能准确和完备地获取客观世界的三维信息才能尽可能准确和完备地刻画和再现客观世界。对三维信息的获取和处理技术体现了人类对客观世界的把握能力,因而从某种程度上来说它是体现人类智慧的一个重要标志。 近年来, 计算机技术的飞速发展推动了三维数字化技术的逐步成熟, 三维数字化信息获取与处理技术以各种不同的风貌与特色进入到各个不同领域之中 [1]:在工业界, 它已成为设计进程中的一环, 凡产品设计、模具开发等, 无一不与三维数字化测量有着紧密的结合; 虚拟现实技术需要大量景物的三维彩色模型数据, 以用于国防、模拟训练、科学试验; 大量应用的三坐标测量机和医学上广泛应用的 CT 机和 MRI 核磁共振仪器,也属于三维数字化技术的典型应用;文化艺术数字化保存(意大利的古代铜像数字化、中国的古代佛像数字化、古文物数字化保存、 3D 动画的模型建构(电影如侏罗纪公园、太空战士、医学研究中的牙齿、骨头扫描, 甚至人类学的考古研究等, 都可运用三维扫描仪快速地将模型扫描、建构; 而随着宽频与计算机速度的提升, Web 3D的网络虚拟世界将更为普及,更带动了三维数字化扫描技术推广到商品的电子商务、产品简报、电玩动画等, 这一切都表明未来的世界是三维的世界。 目前, 有很多种方法可用来获取目标物体的三维形状数据, 光学三维测量技术(Optiacl Three-dimensional Measurement Techniques因为其“非接触”与“全场”的特点,是目前工程应用中最有发展前途的三维数据采集方法。光学三维测量技术是二十世纪科学技术飞速发展所催生的丰富多彩的诸多实用技术之一, 它是以现代光学为基础, 融光电子学、计算机图像处理、图形学、信号处理等科学技术为一体的现代测量技术。它把光学图像当作检测和传递信息的手段或载体加以利用, 其目的是从图像中提取有用的信号, 完成三维实体模型的重构 [2]。随着激光技术、精密计量光栅制造技术、计算机技术以及图像处理等高新技术的发展, 以及不断推出的高

现代光学检测与图像处理

1概述 在气象预报和对太空其他星球研究方面,数字图像处理技术也发挥了相当大的作用。利用Matlab可以对遥感图像进行图像增强、滤波,融合等,可大大推动在遥感图像处理的深入研究和广泛应用。 2均值滤波、中值滤波和梯度倒数加权滤波 2.1均值滤波 数字图像的均值滤波是一种利用模板对图像进行模板操作(卷积运算)的平滑方法,是一种常用的图像滤波去噪方法,该方法运算简单,对高斯噪声具有良好的去噪能力。但均值滤波在本质上是一种低通滤波的方法,在消除噪声的同时也会对图像的高频细节成分造成破坏和损失,使图像模糊。 下面用图“lena.bmp”进行实验操作: 原图: 10%的椒盐噪声:10%的高斯噪声: 3*3均值滤波:

5*5均值滤波: 2.2中值滤波 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。取某种结构的二维滑动模板,对待处理的当前像素,将模板内像素按照像素值的大小进行排序,生成单调上升(或下降)的二维数据序列,取排在中间位置上的像素值代替原像素值。中值对异常值的敏感性比均值的小,所以,中值滤波器可以在不减小图像对比度的情况下剔除这些异常值。 3*3中值滤波: 5*5中值滤波: 2.3梯度倒数加权滤波 为了解决均值滤波算法存在的图像模糊问题,这里介绍一种新的滤波方法:梯度倒数加权平滑法,可以比较好的克服均值滤波带来的模糊图像的缺点。

在一离散图像中,相邻区域的变化大于区域内部的变化,在同一区域中中间像素的变化小于边缘像素的变化,梯度值正比于邻近像素灰度级差值,即在图像变化缓慢区域,梯度越小,反之则大。这样梯度倒数正好与梯度相反,以梯度倒数作权重因子,则区域内部的邻点权重就大于边缘近旁或区域外的邻点。即这种平滑其主要贡献主要来自区域内部的像素,平滑后图像边缘和细节不会受到明显损害。 3数据分析 由表中数据可知,对于椒盐噪声,相比于均值滤波,中值滤波的处理效果要更接近原图像,然而其边界保持的效果也交叉。梯度倒数加权可根据不同的要求调节权重,使得滤波图像达到我们的要求:若要求滤波效果尽可能与原图像接近,那么噪声图像的比重应大一些,若要求边界保持效果好一些,那么比重就应该小一些。总之,倒数加权滤波方法较前两种滤波方法的适应性要好一些。

光学测量原理和技术

第一章、 对准、调焦 ? 对准、调焦的定义、目的; 1. 对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横 移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl 后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ,所选对准扩展不确定度为δe , ? 对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ? 常用的对准方式; φ'==12111e e l l D αφ'=-= 2 2 21118e l l KD λ φ'=-= e b δφ'=

相关文档
最新文档