间歇精馏技术及其模拟优化进展

间歇精馏技术及其模拟优化进展
间歇精馏技术及其模拟优化进展

2012年第15期广东化工

第39卷总第239期https://www.360docs.net/doc/0e8636975.html, · 5 · 间歇精馏技术及其模拟优化研究进展

周年忠1,田文广2,顾宇昕1,李雁2*,陶红秀2,解新安2

(1.中国电器科学研究院,广东广州 510000;2.华南农业大学,广东广州 510642)

[摘要]间歇精馏技术是一种重要的化工分离手段。文章综述了国内外间歇精馏技术及其常用的数学模型,其中主要阐述了严格模型和简捷模型,简要讨论了降价模型、半严格模型,同时探讨了间歇精馏优化的发展及其应用,并展望了间歇精馏系统的发展趋势。

[关键词]间歇精馏;操作方式;数学模型;优化

[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)15-0005-02 Development in Batch Distillation Technology and it’s Simulation and Optimization

Zhou Nianzhong1, Tian Wenguang2, Gu Yuxin1, LI Yan2*, Tao Hongxiu2, Xie Xinan2

(1. China National Electric Apparatus Research Institute, Guangzhou 510000;2. South China Agricultural University, Guangzhou 510642, China)

Abstract: Batch distillation is an important unit operation. The research progress on operation model of batch distillation at home and abroad was particularly introduced. Several kinds of mathematical models that are usually used, such as rigorous model and short-cut model, price reduction model, semi-rigorous model were reviewed. And development of batch distillation optimization and its application were discussed; the computer simulation and multi-objective optimization will become a trend.

Keyword: batch distillation;operation model;mathematical model;optimization

在石油和化工行业生产中,间歇精馏也是较重要的化工分离手段之一[1]。间歇精馏也叫分批反应精馏,一般用于小规模生产。与连续精馏相比,间歇精馏是一个动态的过程,其单个塔就可以完成多个组分的分离,能够适应进料组分浓度在较大范围的变化,设计和操作过程非常灵活[2]。但同时也存在两大问题,一是由于处理原料量较小,使得生产的周期较长;二是操作过程中各参数变化较大,使操作过程的控制比较困难,很难实现自动化管理[3]。

目前,间歇精馏的研究主要集中在两个方面,一方面是关于间歇精馏的数学模型及其计算方法的研究。由于间歇精馏是一个动态的过程,数学模型中含有复杂的微分方程组,求解比较困难,因此,模拟难度大[4]。另一方面是关于操作过程的优化研究。从不同的目标出发,采用不同的方法,得到优化方案和新的操作模式和新的塔结构,虽然缩短了操作时间,但操作起来比较困难,在实际生产中很难得到广泛应用。因此,对间歇精馏的综合优化问题的研究势在必行[5]。

1 间歇精馏技术的发展

1.1 间歇精馏全回流操作

1967年,Barb和Block等[6]最早提出了塔顶累积全回流操作。随着研究的不断发展,Sφrensen等[7]研究了塔顶累积全回流操作的优化问题,与传统的恒回流比和恒塔顶浓度操作方式对比可知,这种操作在分离含有少量轻组分的原料时,可节省大量的操作时间。白鹏等[8]提出了动态累积全回流操作,目标是使全回流浓缩和无回流内部迁移操作交替进行,并在2000年对间歇精馏的动态累积操作方式进行了改进,提出了无返混动态累积操作,有效降低了塔顶累积罐中组分的返混,极大地缩短了操作时间,提高了间歇精馏的分离效率。白鹏等[9]在2006年提出了采用塔顶和塔中温度进行控制操作状态转换的全回流间歇精馏控制方法,并以异丙醇-正丙醇为实验物系验证了该方法的可行性,进一步提高了塔的分离效率。2011年,黄丽丽等[10]人研究发现了通过塔顶、塔中上以及塔中3个温度控制进行操作状态转换的无累积罐循环全回流间歇精馏控制方法,并以理想物系—乙醇-正丙醇混合物为分离物系进行了实验验证。结果表明,在相同条件下,三温控制方式与双温控制方式相比,前者所用操作时间短、分离效率提高。1.2 反向间歇精馏塔操作

反向间歇精馏又称为提馏式间歇精馏。1950年,Robinson和Gilliland发现此种操作的最大优点是能在塔顶冷凝器中获得高浓度组分,并简要讨论了利用正常精馏塔去除轻组分,然后利用反向间歇精馏塔去除重组分的可能性。1991年,Chiotti等[11]在准稳态的基础上建立了数学模型,利用此模型对一般间歇精馏操作和反向间歇精馏操作分离两组分混合物的过程进行了模拟计算;2008年,王超[12]使用塔身分散式加热,对热敏物系的间歇提馏过程进行了操作方式的改进,该方法通过在塔身进行加热,减少了再沸器的加热功率和时间,能有效缩短受热时间,减少热敏物质的损耗。1.3 中间罐间歇精馏塔操作

中间罐间歇精馏塔也叫复合式间歇精馏塔,被认为是常规间歇精馏塔和反向间歇精馏塔的复合体。1950年,Robinson等[13]提出了中间罐间歇精馏塔操作。2006年,Thomas A等[14]在前人研究的基础上,将中间罐间歇精馏应用于一个可逆的化学反应过程,即中间罐发生反应的半连续间歇精馏,进一步提高了精馏的分离效率。2009年,Leipold等[15]对中间储罐间歇精馏多目标的优化建立了模型,并利用进化算法求解,结果显示,中间储罐方法的经济效益更好。

1.4 多罐间歇精馏塔操作

多罐间歇精馏塔又叫多效间歇精馏塔,Hasebe和Skogestad 于1995年提出了这种新型的精馏塔。2005年,Low等[16]对多储罐操作以经济效益最大化为目标进行优化,采用自适应搜索技术,对关键设计和操作参数进行优化。结果发现,待分离混合物中组分越多,多储罐精馏塔较常规间歇塔就越高效。2008年,Mahmud 等[17]在特定产量和产品纯度基础上对多储罐间歇精馏进行了优化,对于特定的分离任务,多储罐间歇精馏塔更加节能、环保。

2 间歇精馏的模拟、优化研究

2.1 间歇精馏的数学模型

间歇精馏过程的数学模拟开始于20世纪60年代,主要包括严格模型、降阶模型、简捷模型、半严格模型。

2.1.1 严格模型

1963年,Meadows等[18]提出了第一个严格的多组元间歇精馏模型,它基于两个假设,一是各塔板上液体全混和,二是塔身绝热,恒体积持液量,忽略塔板汽相持汽量。1981年,Boston等在Meadows模型的基础上,引入了中间加料、中间换热以及汽液相侧线采出,将先前用于求解稳态精馏问题的“由内而外”技术应用到求解间歇精馏问题中来,并证明了该技术是一种有效的的方法,使模型得到进一步完善。1999年,Furlonge等人[19]提出了更为严格的数学模型,此模型与实际塔非常接近,但计算时所消耗的时间较多。2007年,美国科学研究者对严格模型做进一步研究,它可以灵活的建立单元模拟流程,也可以自动生成矢量。

2.1.2 降价模型

1983年,Cho和Joseph[20]提出了降价模型,间歇精馏分离的模拟过程中,难度较大的就是利用数学模型对多元函数进行模拟分离,而他们两个将原料组成及流量函数近似成塔的高度的连续函数,并采用多项式的形式来表示,而理论板数是离散的整数。这样,描述系统的微分方程数将大大减少。在此模型中,配置点的位置及个数直接影响结果的精确度,由于配置点的个数比精馏塔的级数少得多,再加上理论板数不再是离散的整数,又通过多组分系统的分离的间歇精馏装置应用,因此,此模型可较好的应用于填料塔。

2.1.3 简捷模型

1991年,Diwekar等[21]在恒塔顶组成和回流比不变的操作条

[收稿日期] 2012-09-18

[作者简介] 周年忠(1965-),男,高级工程师,华南农业大学兼职研究生导师,主要从事精细化工产品开发与新工艺研究。*为通讯作者。

间歇精馏技术及其模拟优化进展

2012年第15期广东化工 第39卷总第239期https://www.360docs.net/doc/0e8636975.html, · 5 · 间歇精馏技术及其模拟优化研究进展 周年忠1,田文广2,顾宇昕1,李雁2*,陶红秀2,解新安2 (1.中国电器科学研究院,广东广州 510000;2.华南农业大学,广东广州 510642) [摘要]间歇精馏技术是一种重要的化工分离手段。文章综述了国内外间歇精馏技术及其常用的数学模型,其中主要阐述了严格模型和简捷模型,简要讨论了降价模型、半严格模型,同时探讨了间歇精馏优化的发展及其应用,并展望了间歇精馏系统的发展趋势。 [关键词]间歇精馏;操作方式;数学模型;优化 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)15-0005-02 Development in Batch Distillation Technology and it’s Simulation and Optimization Zhou Nianzhong1, Tian Wenguang2, Gu Yuxin1, LI Yan2*, Tao Hongxiu2, Xie Xinan2 (1. China National Electric Apparatus Research Institute, Guangzhou 510000;2. South China Agricultural University, Guangzhou 510642, China) Abstract: Batch distillation is an important unit operation. The research progress on operation model of batch distillation at home and abroad was particularly introduced. Several kinds of mathematical models that are usually used, such as rigorous model and short-cut model, price reduction model, semi-rigorous model were reviewed. And development of batch distillation optimization and its application were discussed; the computer simulation and multi-objective optimization will become a trend. Keyword: batch distillation;operation model;mathematical model;optimization 在石油和化工行业生产中,间歇精馏也是较重要的化工分离手段之一[1]。间歇精馏也叫分批反应精馏,一般用于小规模生产。与连续精馏相比,间歇精馏是一个动态的过程,其单个塔就可以完成多个组分的分离,能够适应进料组分浓度在较大范围的变化,设计和操作过程非常灵活[2]。但同时也存在两大问题,一是由于处理原料量较小,使得生产的周期较长;二是操作过程中各参数变化较大,使操作过程的控制比较困难,很难实现自动化管理[3]。 目前,间歇精馏的研究主要集中在两个方面,一方面是关于间歇精馏的数学模型及其计算方法的研究。由于间歇精馏是一个动态的过程,数学模型中含有复杂的微分方程组,求解比较困难,因此,模拟难度大[4]。另一方面是关于操作过程的优化研究。从不同的目标出发,采用不同的方法,得到优化方案和新的操作模式和新的塔结构,虽然缩短了操作时间,但操作起来比较困难,在实际生产中很难得到广泛应用。因此,对间歇精馏的综合优化问题的研究势在必行[5]。 1 间歇精馏技术的发展 1.1 间歇精馏全回流操作 1967年,Barb和Block等[6]最早提出了塔顶累积全回流操作。随着研究的不断发展,Sφrensen等[7]研究了塔顶累积全回流操作的优化问题,与传统的恒回流比和恒塔顶浓度操作方式对比可知,这种操作在分离含有少量轻组分的原料时,可节省大量的操作时间。白鹏等[8]提出了动态累积全回流操作,目标是使全回流浓缩和无回流内部迁移操作交替进行,并在2000年对间歇精馏的动态累积操作方式进行了改进,提出了无返混动态累积操作,有效降低了塔顶累积罐中组分的返混,极大地缩短了操作时间,提高了间歇精馏的分离效率。白鹏等[9]在2006年提出了采用塔顶和塔中温度进行控制操作状态转换的全回流间歇精馏控制方法,并以异丙醇-正丙醇为实验物系验证了该方法的可行性,进一步提高了塔的分离效率。2011年,黄丽丽等[10]人研究发现了通过塔顶、塔中上以及塔中3个温度控制进行操作状态转换的无累积罐循环全回流间歇精馏控制方法,并以理想物系—乙醇-正丙醇混合物为分离物系进行了实验验证。结果表明,在相同条件下,三温控制方式与双温控制方式相比,前者所用操作时间短、分离效率提高。1.2 反向间歇精馏塔操作 反向间歇精馏又称为提馏式间歇精馏。1950年,Robinson和Gilliland发现此种操作的最大优点是能在塔顶冷凝器中获得高浓度组分,并简要讨论了利用正常精馏塔去除轻组分,然后利用反向间歇精馏塔去除重组分的可能性。1991年,Chiotti等[11]在准稳态的基础上建立了数学模型,利用此模型对一般间歇精馏操作和反向间歇精馏操作分离两组分混合物的过程进行了模拟计算;2008年,王超[12]使用塔身分散式加热,对热敏物系的间歇提馏过程进行了操作方式的改进,该方法通过在塔身进行加热,减少了再沸器的加热功率和时间,能有效缩短受热时间,减少热敏物质的损耗。1.3 中间罐间歇精馏塔操作 中间罐间歇精馏塔也叫复合式间歇精馏塔,被认为是常规间歇精馏塔和反向间歇精馏塔的复合体。1950年,Robinson等[13]提出了中间罐间歇精馏塔操作。2006年,Thomas A等[14]在前人研究的基础上,将中间罐间歇精馏应用于一个可逆的化学反应过程,即中间罐发生反应的半连续间歇精馏,进一步提高了精馏的分离效率。2009年,Leipold等[15]对中间储罐间歇精馏多目标的优化建立了模型,并利用进化算法求解,结果显示,中间储罐方法的经济效益更好。 1.4 多罐间歇精馏塔操作 多罐间歇精馏塔又叫多效间歇精馏塔,Hasebe和Skogestad 于1995年提出了这种新型的精馏塔。2005年,Low等[16]对多储罐操作以经济效益最大化为目标进行优化,采用自适应搜索技术,对关键设计和操作参数进行优化。结果发现,待分离混合物中组分越多,多储罐精馏塔较常规间歇塔就越高效。2008年,Mahmud 等[17]在特定产量和产品纯度基础上对多储罐间歇精馏进行了优化,对于特定的分离任务,多储罐间歇精馏塔更加节能、环保。 2 间歇精馏的模拟、优化研究 2.1 间歇精馏的数学模型 间歇精馏过程的数学模拟开始于20世纪60年代,主要包括严格模型、降阶模型、简捷模型、半严格模型。 2.1.1 严格模型 1963年,Meadows等[18]提出了第一个严格的多组元间歇精馏模型,它基于两个假设,一是各塔板上液体全混和,二是塔身绝热,恒体积持液量,忽略塔板汽相持汽量。1981年,Boston等在Meadows模型的基础上,引入了中间加料、中间换热以及汽液相侧线采出,将先前用于求解稳态精馏问题的“由内而外”技术应用到求解间歇精馏问题中来,并证明了该技术是一种有效的的方法,使模型得到进一步完善。1999年,Furlonge等人[19]提出了更为严格的数学模型,此模型与实际塔非常接近,但计算时所消耗的时间较多。2007年,美国科学研究者对严格模型做进一步研究,它可以灵活的建立单元模拟流程,也可以自动生成矢量。 2.1.2 降价模型 1983年,Cho和Joseph[20]提出了降价模型,间歇精馏分离的模拟过程中,难度较大的就是利用数学模型对多元函数进行模拟分离,而他们两个将原料组成及流量函数近似成塔的高度的连续函数,并采用多项式的形式来表示,而理论板数是离散的整数。这样,描述系统的微分方程数将大大减少。在此模型中,配置点的位置及个数直接影响结果的精确度,由于配置点的个数比精馏塔的级数少得多,再加上理论板数不再是离散的整数,又通过多组分系统的分离的间歇精馏装置应用,因此,此模型可较好的应用于填料塔。 2.1.3 简捷模型 1991年,Diwekar等[21]在恒塔顶组成和回流比不变的操作条 [收稿日期] 2012-09-18 [作者简介] 周年忠(1965-),男,高级工程师,华南农业大学兼职研究生导师,主要从事精细化工产品开发与新工艺研究。*为通讯作者。

新型精馏技术介绍

新型精馏技术及其应用 摘要 介绍了萃取精馏、共沸精馏、反应(催化) 蒸馏、吸附蒸馏、膜蒸馏、惰性气体蒸馏、动态高效规整填料塔精馏和分子蒸馏等新型蒸馏技术的基本原理、特点、研究进展和发展方向 关键词萃取精馏共沸精馏反应(催化) 蒸馏吸附蒸馏膜蒸馏惰性气体蒸馏规整填料塔精馏分子蒸馏 蒸馏技术作为当代工业应用最广的分离技术,目前已具有相当成熟的工程设计经验与一定的基础理论研究,随着生物技术、中药现代化和环境化工等领域的不断发展和兴起,人们对蒸馏技术提出了很多新的要求(低能耗、无污染等) 。因此,在产品达到高纯分离的同时又能减低能耗和环境污染就成为蒸馏学科和工程研究开发的主要目标[1 ,2 ] ,并由此开发出以蒸馏理论为基础的许多新型复合传质分离技术,主要有以下几个方面:分子精馏、添加物精馏、耦合精馏和热敏物料精馏。我尽量大概介绍,并将其中个人觉得比较重点的着重详细介绍。 1分子精馏技术 分子蒸馏属于高真空下的单程连续蒸馏技术。在高真空操作压力下,蒸发面和冷凝面的间距小于或等于被分离物质蒸汽分子平均自由程,由蒸发表面逸出的分子毫无阻碍地奔射并凝集在冷凝表面上。这样利用不同物质分子平均自由程不同使其在液体表面蒸发速率不同,从而达到分离目的,蒸馏过程如下图所示。相对于普通的真空蒸馏,分子蒸馏汽液相间不存在相平衡,是一种完全不可逆过程,具有以下特点。操作压力低(0.1~10Pa);"蒸发面和冷凝面之间的间距小(10~50mm),操作温度远低于沸点;物料受热时间短(0.1-10s)。因 而适用于高分子量、高沸点、热稳定性差的物质蒸馏,特别是高分子有机化合物、热敏性食品、医药产品、塑料等物质的分离、提纯、蒸馏、反应等。随着合成化学的进展,新的、从来不为人所知的物质的操作愈来愈多,如高分子物质的单体正在不断地构成新的物质,而且

aspen模拟间歇精馏的简单程序

[注意]随便看看吧 BLOCK: COL MODEL: BATCHFRAC --------------------------------- CHARGE - FEED OPSTEP O-1 STAGE 10 OUTLETS - PROD COL-CONTENTS OPSTEP O-1 STAGE 10 DIST DISTILLATE OPSTEP O-1 STAGE 1 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR ) 35.5310 35.5310 -0.651964E-07 MASS(KG/HR ) 1000.00 1000.00 0.346421E-06 ENTHALPY(MMKCAL/H) -2.18172 -2.13628 -0.208274E-01 ********************** **** INPUT DATA **** ********************** **** INPUT PARAMETERS **** NUMBER OF PHASES 2 NUMBER OF THEORETICAL STAGES 10 NUMBER OF OPERATION STEPS 1 NUMBER OF ACCUMULATORS 1 ALGORITHM OPTION STANDARD MAXIMUM NO. OF TOTAL REFLUX LOOPS 60 MAXIMUM NO. OF OUTSIDE LOOPS 50 MAX NO. OF INSIDE LOOPS/OUTSIDE LOOP 10 MAXIMUM NUMBER OF FLASH ITERATIONS 50 REPORT TIME INTERVAL HR 2.00000 FLASH TOLERANCE 0.000100000 DISTILLATION ALGORITHM OUTSIDE LOOP TOL 0.100000-04 DISTILLATION ALGORITHM INSIDE LOOP TOL 0.100000-05 TOTAL REFLUX ALGORITHM TOLERANCE 0.100000-05 INTEGRATION ERROR TOLERANCE 0.000100000 INITIAL TIME STEP USED BY INTEGRATOR HR 0.00027778 ************************************ **** OPERATION STEP O-1 **** ************************************ **** COL-SPECS **** MOLAR VAPOR DIST / TOTAL DIST 0.0 MASS DISTILLATE RATE KG/HR 10.0000 MOLAR REFLUX RATIO 2.00000 MOLAR BOILUP RATE (TOTAL REF) KMOL/HR 3.55310 **** COLUMN PROFILES **** TRAY HOLDUP PRESSURE BAR 1 10.0000 KG 1.01000 2 1.00000 KG 1.02000 3 1.00000 KG 1.03000 4 1.00000 KG 1.04000 5 1.00000 KG 1.05000 6 1.00000 KG 1.06000 7 1.00000 KG 1.07000 8 1.00000 KG 1.08000 9 1.00000 KG 1.09000 10 0.0 CUM 1.10000 **** STOP CRITERION **** RUN UNTIL MASS FRACTION IN STAGE LIQUID FALLS ABOVE STOP CRITERION

催化精馏技术研究进展(DOC)

催化精馏技术应用研究进展 摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。 1、引言 反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research & Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。

2、催化精馏塔及其填料方式 2.1催化精馏塔 催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。

Aspen间歇精馏模拟教程

Aspen间歇精馏模拟教程 Use this Getting Started section to become familiar with the steps to set up a batch simulation using Aspen Batch Modeler. You will be modeling a system to recover methanol from a mixture of methanol and water. The objective is to separate methanol from the mixture with a purity of 99%. This mixture is not ideal given the polarity of the molecules; therefore, for a working pressure of 1atm, you will choose NRTL to model its physical properties. There are four steps in this process. Click a step to go the instructions for the step. Step 1 – Set up the Properties for Aspen Batch Modeler Step 2 – Enter structural data and specifications for the Aspen Batch Modeler block Step 3 – Enter Operating Steps Step 4 – Run the simulation and view the results Step 1 - Set up the Properties for Aspen Batch Modeler We want to define a Properties file that has the following defined. Components Property Method Water NRTL Methanol To define this Properties file, follow the steps below. To set up the Problem Definition file from within Aspen Batch Modeler: 1. Start Aspen Batch Modeler. 2. On the Species form, click Edit Using Aspen Properties.

aspen精馏模拟步骤

Aspen精馏模拟的步骤 一、板式塔工艺设计 首先要知道工艺计算要算什么?要得到那些结果?如何算?然后再进行下面的计算步骤。 其次要知道你用的软件(或软件模块)能做什么,不能做什么?你如何借助它完成给定的设计任务。 设计方案,包括设计方法、路线、分析优化方案等,应该是设计开题报告中的一部份。没有很好的设计方案,具体作时就会思路不清晰,足见开题的重要性。下面给出工艺设计计算方案参考,希望借此对今后的结构和强度设计作一个详细的设计方案,明确的一下接下来所有工作详细步骤和方法,以便以后设计工作顺利进行。 板式塔工艺计算步骤 1.物料衡算(手算) 目的:求解aspen 简捷设计模拟的输入条件。 内容:(1) 组份分割,确定是否为清晰分割; (2)估计塔顶与塔底的组成。 得出结果:塔顶馏出液的中关键轻组份与关键重组份的回收率 参考:《化工原理》有关精馏多组份物料平衡的内容。 2.用简捷模块(DSTWU)进行设计计算 目的:结合后面的灵敏度分析,确定合适的回流比和塔板数。 方法:选择设计计算,确定一个最小回流比倍数。 得出结果:理论塔板数、实际板数、加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。 3.灵敏度分析

目的:1.研究回流比与塔径的关系(NT-R),确定合适的回流比与塔板数。 2.研究加料板位置对产品的影响,确定合适的加料板位置。 方法:可以作回流比与塔径的关系曲线(NT-R),从曲线上找到你所期望的回流比及塔板数。 得到结果:实际回流比、实际板数、加料板位置。 4. 用DSTWU再次计算 目的:求解aspen塔详细计算所需要的输入参数。 方法:依据步骤3得到的结果,进行简捷计算。 得出结果:加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。 5. 用详细计算模块(RadFrace)进行初步设计计算 目的:得出结构初步设计数据。 方法:用RadFrace 模块的Tray Sizing(填料塔用PAking Sizing),利用第4步(DSTWU)得出的数据进行精确设计计算。 主要结果:塔径。 6. 核算 目的:确定工艺计算的最后结果。 方法:对第5 步的计算结果(如:塔径等)按设计规范要求进行必要的圆整,用RateFrace 或RateFrace 模块的Tray Rating(填料塔用PAking Sizing),对塔进行设计核算。 结果:塔工艺设计的所有需要的结果。 如果仅是完成设计,至此,工艺计算全部完成。 工艺计算说明书内容要求 1.给出aspen 每步输入参数(除给定的设计条件外)和选项的依据。

精馏技术研究进展与工业应用分析 颜志明

精馏技术研究进展与工业应用分析颜志明 发表时间:2019-05-08T16:35:06.583Z 来源:《防护工程》2019年第1期作者:颜志明 [导读] 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。 浙江新化化工股份有限公司浙江杭州 311607 摘要:化学工业是当今国民经济发展的支柱型产业,分离技术是化工生产过程中保证对原料进行净化、对相关产品进行提纯、对产生的废物进行处理的支撑。伴随着科学技术的发展,化学工程中的分离技术呈现出多元化的发展趋势,精馏就是其中应用最广泛、技术最成熟的分离方式之一,在化工工业生产中扮演着重要角色。国家的精馏技术在研究和应用的过程中取得了极大进步,精馏塔在此技术发展的进程中,也体现出举足轻重的作用。 关键词:精馏技术;研究进展;工业应用 1、概述 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。随着化学工程技术的发展,分离技术逐渐向着多元化发展。常规的化工分离技术包括精馏、吸收、萃取、结晶、吸附、膜分离等。精馏仍是应用最广泛、技术最成熟的分离方法之一,在工业生产中占有相当的比重。 精馏塔伴随着板式塔和填料塔交替式发展,两者各有其优缺点,现呈现出并行发展的趋势。板式塔具有结构简单、适应性强、造价较低、易于放大等特点;填料塔具有高效率、高通量、低压降、低持液等优势。尽管随着精馏塔的广泛应用,人们对精馏塔的认识越来越深刻,但由于塔内部流体流动及传质过程的复杂性,致使精馏塔的设计仍依靠大量的经验和半经验的数据。塔内流体力学、传质动力学、过程动态学的计算等基础传递问题的研究仍需重视,尽可能地摆脱经验的束缚。同时,随着化学工业的发展,生产大型化、优化节能、高效填料与新型塔板的开发与应用等问题仍需探索。因此,对精馏塔的研究非但不能削弱,而是需要进一步加强,以迎接新的挑战。 近年来,我国精馏塔技术在基础研究与应用方面取得了巨大进步,对精馏塔的结构、性能等进行了较为系统的实验研究,并且获得了丰富的实验数据和研究成果,为推动我国化学工业的发展与进步,做出了显著贡献。本文对精馏塔类型、流体力学性能、传质性能、塔器大型化、过程节能与强化等方面的研究进展进行综述。 2、精馏塔的种类 精馏分离技术是通过精馏塔来完成的,精馏塔有板式塔和填料塔两种,在精馏技术的发展过程中,精馏塔和板式塔也都在不断发展之中,两种精馏塔都是十分重要的应用,各自也具有比较明显的优缺点。其中,板式塔的优点在于其结构简单、适应性强,而且造价比较便宜等;填料塔则具有较高的分离效率,并且还具有高通量、低压降和低持液等方面的优点。下面对这两种精馏塔进行介绍: 2.1板式塔 板式塔最早出现于1813年,当时泡罩塔板是最主要的板式塔的塔板形式,这种板式塔的优点包括具有较大的适用范围、不易堵塞以及操作简单等方面。而后随着板式塔的不断发展,筛孔塔板、浮阀塔板固阀塔板、雾化概念塔板等诸多不同类型的塔板相继出现,这些类型的塔板各具优势,有效的促进了板式塔分离效果的提升。 2.2填料塔 按照填料形式的不同,可以将填料塔分为规整调料以及散堆填料等两种类型。其中,散堆填料是一种具有一定外形结构的颗粒体,包括环形填料、球形填料、鞍形填料等不同的形式。不同的填料形式在特点上有所区别,如鞍形填料明显的特点是压降小,而球形调料由于堆积比较均匀,利于流体的分布,因此在气体吸收以及除尘等方面具有优势。规整调料是指具有规则的几何图形,并且堆砌整齐的填料。应用规整填料的填料塔具有分离效率高、处理量低、压降低以及适应性强等优点,在化学分离装置中有着非常重要的应用,在规整填料中,以Sulzer公司开发的金属丝网波纹规整填料和金属板波纹规整填料最具代表性。 3、精馏技术的发展 3.1塔器大型化 随着化工行业的发展,千万吨炼油、甲醇制烯烃等大型工程开始建设并且投入应用,这些工程的开展促进了精馏塔大型化的发展,这是现代工业体系下精馏塔发展的必然方向。精馏塔的大型化有助于提高设备的分离效率,同时对于减少废物排放也有重要的作用。但是一当前情况来看,精馏过程的大型化还面临着很多科学上以及工程上的问题。首先,分离方面,由于塔器的大型化,导致塔内气液两相的接触状态发生了一定的变化,从而对塔的热量、质量传递造成影响,并且导致了精馏塔分离效率的降低。而且,随着塔板的大型化,其对精馏塔的内件结构造成了一定的影响,要求其在水平度、强度以及流体分布等方面的性能都有所提升。当前针对塔器大型化带来的分离以及内件结构方面的问题,研究人员正进行深入的研究。 3.2数据化设计技术的发展 随着计算机技术和计算机流体力学理论不断的发展完善,数字化设计技术在精馏塔的设计之中起到越来越重要的作用,其已经逐渐的成为了大型塔内件设计、问题诊断和优化的重要手段,在不久的将来计算机集成化系统将会在精馏中有非常重要的应用。当前数字化设计技术在精馏工程中已经有了广泛的应用,包括化工过程模拟技术、三维可视化技术等。其中,化工过程模拟技术是基于气液分离过程的MESH方程组,通过结合相关基础科学,包括综合化工热力学、化学反应以及化学操作单元等,通过这些技术建立化工过程仿真数学模型,并且利用其进行计算,从而得到工艺设计过程中所需要的基础数据。这一技术在精馏过程设计中具有重要的作用,包括塔器设备尺寸估算、工艺操作参数优化等方面,而且还能够为塔器设备的定型、选材以及载荷估算等提供有效的技术支持,从而保证各项参数的正确性。可视化技术在精馏设计中的应用包括液体可视化技术、力学性能可视化技术以及结构可视化技术等方面。 4、精馏技术的工业应用 4.1精馏过程节能技术 精馏过程中的节能技术是在精馏技术不断引用在各个领域中被提出的,精馏技术在各领域有着举足轻重的重要地位,同时精馏技术的应用也为企业的发展和技术的进步提供了巨大的支持,增加了企业的经济效益,经过不断的努力研究分析,人们对精馏技术的认识越来越

分离工程大作业--乙腈与水变压精馏模拟过程精选.

建立如图所示的流程图。 流程的描述:原料在合适的位置进入低压塔TOWER1,塔顶出共沸组成,塔底为水出口;塔顶共沸组成经泵加压后进入高压塔TOWER2,塔底为合格的已经产品,塔顶为高压下共沸物,循环回一塔TOWER1。 (2)物性方法的选择 根据文献介绍,用ASPEN物性数据库中的NRTL模型计算得出的乙腈-水共沸物的汽液平衡数据和实际值基本一致,故选用NRTL模型为本次模拟的物性方法。 (3)模拟参数 进料组成为60%的乙腈和40%的水(质量分数),假定流量为100kg/h。分离出的产品:99.9%乙腈(质量分数)。 (4)两塔的压强的确定 根据变压精馏的原理可得,不同压力下的共沸组成差别越大,循环的物流量就越少,循环量越少,那么能耗就会相应地降低;但是高压或者是真空下操作又会影响我们塔的投资费用。 经过文献调研,吸取他人的工程经验最终选择0.4bar和3.5bar。作为塔的操作压力。

根据变压精馏的原理可得:当压力确定时,流程中每一股物流的量大致是确定的。可以根据公式(书上的公式)计算出。也就是说,塔的塔顶采出率和塔底采出率都是定值,也只有在这个定值下,流程才能够物料守恒而收敛。 同时由于,如果两塔同时给定塔顶采出率或者塔底采出率时,很难收敛。故选择TOWER1给定塔顶采出率,TOWER2给定塔底采出率。 所以,先计算出大概的初值,然后再在附近调试,是流程能够顺利收敛。 最终初次收敛时的参数如下图所示: TOWER1的初始参数如下图所示:

TOWER2初始参数如下图所示:

(6)流程的优化(这个想一想) 根据变压精馏的原理 (1)分离要求对回流比无明显要求,0.1,0.01,0.001都能满足分 离要求。(可能没到那个限度吧?思考ing) (2)鉴于此,将回流比分别定为0.001和0.005;在此回流比下对 塔板数进行灵敏度分析,观察塔板数和进料位置对产品纯度的影响。 低压塔的灵敏度分析: S-1:进料位置为3;最终选择8块板。

分离工程大作业乙腈与水变压精馏模拟过程

(1)流程的确定 建立如图所示的流程图。 流程的描述:原料在合适的位置进入低压塔TOWER1,塔顶出共沸组成,塔底为水出口;塔顶共沸组成经泵加压后进入高压塔TOWER2,塔底为合格的已经产品,塔顶为高压下共沸物,循环回一塔TOWER1。 (2)物性方法的选择 根据文献介绍,用ASPEN物性数据库中的NRTL模型计算得出的乙腈-水共沸物的汽液平衡数据和实际值基本一致,故选用NRTL模型为本次模拟的物性方法。 (3)模拟参数 进料组成为60%的乙腈和40%的水(质量分数),假定流量为100kg/h。分离出的产品:%乙腈(质量分数)。 (4)两塔的压强的确定 根据变压精馏的原理可得,不同压力下的共沸组成差别越大,循环的物流量就越少,循环量越少,那么能耗就会相应地降低;但是高压或者是真空下操作又会影响我们塔的投资费用。 经过文献调研,吸取他人的工程经验最终选择和。作为塔的操作压力。 (5)流程的模拟

根据变压精馏的原理可得:当压力确定时,流程中每一股物流的量大致是确定的。可以根据公式(书上的公式)计算出。也就是说,塔的塔顶采出率和塔底采出率都是定值,也只有在这个定值下,流程才能够物料守恒而收敛。 同时由于,如果两塔同时给定塔顶采出率或者塔底采出率时,很难收敛。故选择TOWER1给定塔顶采出率,TOWER2给定塔底采出率。 所以,先计算出大概的初值,然后再在附近调试,是流程能够顺利收敛。 最终初次收敛时的参数如下图所示: TOWER1的初始参数如下图所示:

TOWER2初始参数如下图所示:

(6)流程的优化(这个想一想) 根据变压精馏的原理 (1)分离要求对回流比无明显要求,,,都能满足分离要求。(可能 没到那个限度吧思考ing) (2)鉴于此,将回流比分别定为和;在此回流比下对塔板数进行灵 敏度分析,观察塔板数和进料位置对产品纯度的影响。 低压塔的灵敏度分析: S-1:进料位置为3;最终选择8块板。

一种间歇精馏连续化的工艺

万方数据

万方数据

万方数据

一种间歇精馏连续化的工艺 作者:梁坤, Liang Kun 作者单位:茂名市安全生产监督管理局,广东,茂名,525000 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2010,37(7) 被引用次数:0次 参考文献(3条) 1.黄少烈.邹华生化工原理 2006 2.钟理.伍钦.曾朝霞化工原理 2008 3.上海化工学院基础化学工程 1978 相似文献(7条) 1.期刊论文黄振旭.安明对苯酐间歇精馏装置的改进-河南化工2010,27(15) 针对当前苯酐间歇精馏装置中存在的主要工艺问题,通过改造设备和改变操作方法,可连续精馏13 d,精制苯酐收率达98.8%以上,改造后的装置生产稳定,系统能耗明显下降,从而有效地降低了生产成本,减轻了熟化处理过程中废气对空气的污染,经济效益和社会效益显著,具有很好的推广应用前景. 2.期刊论文王文江.吴剑华.WANG Wen-jiang.WU Jian-hua苯胺回收装置的开发及应用-沈阳化工学院学报2005,19(2) 叙述了对原苯胺回收装置的改造,改进了原装置的间歇精馏效果,原塔顶冷凝器管程走苯胺改为壳程走苯胺,解决了氯化铝催化剂堵塔问题.改造后的装置生产稳定,产品质量良好,苯胺得到回收,环境污染问题得到明显改善. 3.学位论文胡力焦化粗苯加氢精制萃取精馏工艺优化2009 本文在分析传统焦化粗苯加氢精制萃取精馏分离工艺基础上,系统研究了萃 取精馏工艺及其节能措施。针对目前焦化粗苯加氢精制萃取精馏工艺普遍存在着 工艺能耗较高,溶剂比较大的特点。本文在原有流程的基础上,对工艺进行优化 改进,提出了加氢精制分离新工艺,筛选出适宜的混和溶剂以减少溶剂比。 在常规流程的基础上,对萃取精馏塔、苯甲苯塔采用气相进料。利用ASPEN PLUS化工模拟软件,对改造前后的工艺进行模拟计算并且对气相进料工艺中的 萃取精馏塔和苯甲苯塔的回流比、进料位置、塔顶压力、理论板数进行了灵敏度 分析,确定了最佳操作参数。将改进前后的工艺进行能耗比较,表明采用气相进 料工艺比常规工艺节能27%以上。 混和溶剂的筛选,以N-甲酰吗啉作为主溶剂,DMF或DMAC作为副溶剂 选用修正的UNIFAC热力学模型预测和汽液平衡实验相结合的方法对其进行筛 选。通过使用MATLAB数学软件编程计算,研究发现在溶剂比为3∶1的条件下 当NFM/DMF=4或5(质量比)的时候,环己烷对苯的相对挥发度大于NFM和 DMF作为单一溶剂时环己烷对苯的相对挥发度。通过汽液平衡实验,结果表明 用DMF作为助溶剂优于DMAC,并且混和溶剂存在一个最佳的溶剂比,当 NFM/DMF=4(质量比)的时候分离效果最佳。进一步研究表明,溶剂比的增加可 以增加分离效果,但是当溶剂比大于一定值后,增加幅度趋于平缓。 建立起萃取精馏装置并对筛选出的萃取剂的分离效率进行了实验验证研究, 针对回流比和溶剂进料速率两个操作参数进行研究,发现在相同的操作条件下, 以NFM/DMF=4(质量)作为溶剂,塔顶馏分中环己烷的最高含量大于NFM或 DMF作为溶剂时塔顶馏分中环己烷的含量。表明筛选出来的混和溶剂的分离效 果确实优于单一溶剂。在常规间歇精馏过程中,通过对塔顶馏分中环己烷的最高 质量分数、塔顶馏分的产量、塔顶馏分中环己烷的质量分数以及环己烷的收率的 研究,表明溶剂流率对以上各参数的影响比回流比来得大。 关键词:萃取精馏 气相进料 混和溶剂 焦化粗苯加氢精制 ASPEN PLUS 4.学位论文何桃吉乙腈—水共沸物分离的模拟与实验研究2008 在制药工业中,乙腈因其对无机以及有机化合物的优良溶解性而被广泛使用,由此而产生大量含水的乙腈废液需要进行回收。由于乙腈与水形成共沸物,普通的精馏方法无法分离这一混合物,本课题研究了采用特殊精馏方法分离乙腈一水共沸物的工艺。 课题主要利用化工过程模拟软件Aspen Plus2004对乙腈-水共沸物系的萃取精馏、变压精馏稳态过程进行了模拟。对于萃取精馏稳态过程选取乙二醇作为萃取剂,采用WILSON方程计算液相活度系数,采用理想气体状态方程预测汽相逸度系数,对塔的工艺操作参数进行了优化,结果表明产品中乙腈浓度能够达到99.9wt%;对于变压精馏稳态过程,主要研究了变压精馏低压塔进料(包括常压塔回低压塔的循环物流进料和原料进料)位置,温度对分离过程的影响,得到了优化的工艺操作参数,产品中乙腈浓度能够达到99.9 wt%。 通过间歇精馏实验研究了乙腈-水共沸物的变压精馏以及加盐变压精馏分离过程。实验结果与模拟结果较为吻合,加盐变压精馏在常压塔回低压塔的循环物流进料中NaI试剂浓度达到0.2g/ml时,塔顶馏出液中乙腈含量差值可以增大到7.71 wt%,总能耗仅为原来的44.95%,对于同一生产装置原料处理能力提高70.26%。 通过模拟以及实验研究表明,加盐变压精馏技术能够有效解决变压精馏分离乙腈-水共沸体系时存在的塔间循环量大,处理量小,能耗高的问题,与萃取精馏的总能耗大体相当,可用于改造现有生产装置,或者直接应用于生产设计中。 5.学位论文石雪DMC生产过程自动控制系统2007 碳酸二甲酯(Dimethyl Carbonate,简称DMC)是近年来颇受重视的新型化工产品.它是无色透明液体,熔点4℃,沸点90.3℃,能以任意比例与醇、酮、酯等有机熔济混合,欧洲在1992年把它列为无毒化学品.DMC具有很好的反应活性,可取代剧毒的光气作羰基化剂,代替硫酸二甲酯(.DMS)作甲基化剂.因此它作为绿色中间体,对环保有着特殊的意义,被誉为有机合成中的新基石.

间歇精馏讲义

3.4.1 间歇精馏工艺 一、间歇精馏流程 间歇精馏的一个操作周期: 加料、平衡(全回流),第一产品采出、中间馏分采出、第二产品采出等等,釜液排放和塔的清洗。 图3-42 典型的工业间歇精馏装置 间歇精馏塔的形式: ?①常规间歇精馏塔也称精馏式间歇精馏塔(图3-43 )。 ?②提馏式间歇精馏塔(图3-44 )。 ?③带有中间贮罐的间歇精馏塔或称复杂间歇精馏塔(图3-45 )。

图3-43 精馏式图3-44 提馏式图3-45 带有中间贮罐的间歇精馏塔 ?④其他类型的间歇精馏塔(图3-46 )。 图3-46 其他间歇精馏塔 (a) 双回流罐型; (b) 双加热釜型; (c) 双塔共用加热釜型 二、间歇精馏过程分析 不同回流方式: 1)恒回流比操作 回流比保持不变,而馏出物的浓度和流率随时间变化,产品组成为馏出时间内的平均组成。多元物系的间歇精馏,馏出不同的产品可采用不同的恒回流比,整个过程为分段恒回流。 2)恒塔顶浓度操作 回流比随过程的持续进行而逐渐增大,从而使塔顶馏出物的组成维持恒定。 不同精馏模式的能耗比较: 连续精馏模式最节能,随馏出量的增加,连续精馏能耗线性增加,而间歇精馏的能耗则急剧增大,特别当要求易挥发组分全部蒸出时,间歇精馏能耗太大,不能采用。间歇精馏中的恒馏出液浓度比恒回流比操作能耗低,对于高纯度精馏这种差别更甚。 各种参数对间歇精馏操作的影响: 1)持液量 塔内持液有如下三点影响: ?①沿塔身建立浓度梯度需要一定时间,即需要一定的开工时间,持液量越

大,开工时间越长; ?②分离难度加大。精馏过程开始馏出产品时,塔顶、塔身持液占有浓缩的易挥发组分,使釜液浓度比无持液情况降低,因此获得同样纯度产品所需浓缩倍数增加,分离难度加大; ?③延缓塔内浓度变化,有利于分离;但当间歇精馏过程进行到过渡馏分阶段后期,即将馏出下一合格产品时,持液的惯性作用而不断吐出残余的前一组分(即为该产品的易挥发杂质),而使馏出物呈现轻杂质的“拖尾”现象, 增加了过渡馏分的数量,减小了产品收率。 2)回流比和平衡级数 回流比越高,平衡级数越大,过渡区越小,分离效果越好。当平衡级数大到一定数目后,平衡级数对过渡区的影响不再明显,此时最有效的方法是增加回流比。 3)操作压力 操作压力取决于欲分离物系各组分的沸点和沸点范围。沸点范围较窄的物系宜采用恒定操作压力;沸点适中物系宜采用常压操作;沸点高或易分解的物系宜采用减压操作。

aspen plus间歇精馏作业初稿

一直想用aspen plus做一个关于间歇精馏的模拟,当开始做之后才发觉困难重重。间歇精馏和连续精馏差别比较大,面板上好多属性的设置都变了样,位置也改变了。还多出了夹套蒸汽加热,间歇进料时间设置等。 一打开间歇精馏设置发现多出了图中一块,以前从没接触过。只认识一些比较简单的选项,夹套加热,效率等。经过多方查找才知道setup项里的configuration是设置理论塔板数和有效项 Pot Geometry标签页中定义塔釜的大小尺寸 Pot Heat Transfer标签页中定义加热方式 Condenser标签页中定义冷凝的类型 Reflux标签页中定义回流比或者回流量等等 Jacket Heating子项中定义加热介质或者设定热负荷 然后是pressure/holdup选项定义操作压力和塔的压降 在pressure profile and Holdup中有两个类型Fixed和Calculator这里塔初始化是Empty选用calculator Holdup 是塔板持液量设置料再塔内的滞留量 然后是初始状态设置 Main中选择初始化条件Total Reflux Initial Charge标签页中设置塔釜初始条件 塔的设置完成后再设置操作步骤Operating Steps项

在End Condition标签页中定义结束精馏的条件当六甲基二硅氮烷的含量为0.05时结束精馏 我一直在惦记着还有两个问题没解决,一个是进料的事后属于间歇进料需要设置间歇进料的时间昨天在实验室看书刚刚找到了这方面的内容 在全局设置report options中有一个batch operation选项设置进料时间。躲得好深 还有一个问题是设置成丝网填料塔,前面所设置的板数只是理论板要换算成填料高度 最后终于找到了,在blocks的internals选项里面packing代表填料塔tray代表筛板塔。 运行完成之后出来结果

1间歇精馏塔的模拟

间歇精馏塔 概述信息 间歇精馏单元操作模拟一个宽范围的精馏塔实际操作过程。间歇精馏装置可以在真实的 间歇模拟模式下运行,进料填加到沉淀釜中先期蒸馏,在不同的时间从贮料塔取出产品,或在半间歇模式下在蒸馏期间进料可以被填入,并在一定的时间间隔下从精馏塔或贮料塔中提取产品。间歇精馏计算也可以是整体的进入稳态过程模拟。装置构造自动为持续流动的物流提供隐含的贮料罐,这些物流随时间变化进入间歇装置。同时由于循环操作,也考虑所有产品流(如在不同时间从贮料罐或在蒸馏时从精馏塔提出物流)的隐含罐。持续流动物流产品来自被间歇循环时间分离的产品。 热力学系统 间歇精馏的热力学系统的选择可以针对整个装置,也可以针对某一层塔板。间歇精馏也 允许使用电解质热力学方法。 详细信息 有关间歇精馏单元操作的详细信息,见PRO/II Add-On Modules User’s Guide。蒸馏器 概述信息 精馏塔单元操作可以用来模拟任何蒸馏和液-液抽提过程。液-液抽提装置在本章的 “液-液抽提精馏”部分进行叙述。一个精馏塔至少应包括一个平衡级或理论塔板。塔板应考虑与从每一塔板进入较高层塔板的蒸汽的连接问题。在精馏塔模拟中塔板的数量是不被限制的。 蒸馏器可以模拟气/液、气/液/水或气/液/液平衡过程。 进料和产品 精馏塔进料和产品是在PFT 主窗口建流程时输入的。在精馏塔主数据输入窗口单击Column Feed and Product…按钮,打开Column Feed and Product 窗口。 在此窗口中可以添加和改变进料塔板数。一个精馏塔的进料数是不限的。用单选按钮选 择进料闪蒸方式: Vapor and Liquid to be on the feed tray:此项为缺省。 Flash the feed adiabatically,vapor onto the tray above and liquid onto the tray.对于此选项,当进料塔板为精馏塔的最底层塔板时,蒸气被放在进料塔板上。 对于产品来说,产品类型、相数、塔板数的流量都在此窗口中输入。一个蒸馏塔的产品 数量是不限制的,产品从精馏塔的任何一层被提出。产品类型包括:塔顶、塔底、固定抽取率、总抽取相和假想组分。每一个精馏塔必须有一个从一号塔板流出的顶层产品以及从最高号塔板流出的底层产品。Sure,Inside-Out(IO)和Enhanced (IO)算法可以有一个出自顶层(冷凝器)的倾析水产品。Sure 算法也可以从任何塔板提取水。对于气/液/液平衡过程,从精馏塔的任何层可以提取液相。 你必须为所有固定流量提取的产品提供摩尔流量、质量和液体体积单位。还必须为顶层 和底层产品提供估计值。对全部提取的产品提供的流量均为估计值。为了更好地收敛,顶部或底层流量应尽可能地精确。你必须用Performance Specification(运行说明)顶部和底层产品设置所需的流量。 虚拟产物 虚拟产物用于设置与精馏塔内部物流相符的物流,使之能用于流程计算。在Column Feed and Product 窗口单击Pseudoproducts 按钮,出现Clumn Pseudoproduct 窗口,在此窗口中定

相关文档
最新文档