常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析
常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析

光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。可见光电耦合电路在各位的设计应用中发挥着重要的作用。

光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。

光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。

(1)组成的多谐振荡器电路图

工作流程为接通电源后:

A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态;

B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec)

C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???;

D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。

作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。将直流电变为交流

电。通过上述电路,可以更好的取出干扰。特别是直流和交流电信号转化的时候,电磁干扰是一个不容忽视的干扰,这样可以更好的将信号进行转化和利用。

(2)组成开关电路图

工作流程以左图为例:

A、输入信号ui低电平,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;

B、ui高电平,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.

C、该电路因Ui为低电平时,开关不通,故为高电平导通状态.图2输入无信号或为低电平时,开关导通,故为低电平导通状态.

作用:开关电路是进行开和关状态的跳转,现在很多开关电路都已经实现通过自身的特性就可以进行开和关智能操作。而上述的电路,通过光信号来判断状态的关闭,由于光信号的敏感性和准确性,可以使整个电路更加灵敏,反应时间更短。

(3)组成逻辑电路图

工作流程以与门逻辑为例:

A、与门逻辑表达式为P=A*B;

B、两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1;

C、还可以组成或门、与非门、或非门等逻辑电路。

作用:逻辑电路是数字电路中常用的基本电路之一。通过光来进行信号的转换,可以让整个系统运行起来更加快速并且信号的传递不容易受到干扰和影响,从而让在实际应用中可以更好的得到理想的结果。

(4) 组成隔离耦合电路

工作原理以交流耦合放大电路为例:

适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。交流耦合由于是交流电,电磁感性是不容忽视的,本身交流电由于本身就不是恒定稳定的,因而要很好的控制和反应它,就需要灵敏的器件,LED就是很好的一个选择。通过上述的组合,可以让整个系统的输出更加理想。

(5)组成双稳态输出电路

工作原理:

(a)光电耦合器控制的双稳态输出开关电路,光电耦合开关接在两管的发射极回路上,能有效地解决输出与负载间的隔离问题。

(b)光电耦合开关的施密特电路。当输入电压U1为低电平时,光电三极管C、e间呈高电阻,BG1导通,BG2截止,则输出电压U0为低电平;当输入电压U1大于鉴幅值时,光电三极管c、e间呈低电阻,则BG1截止,BG2导通,输出的电压U0为高电平。调节电阻R3,即改变鉴幅电平。

但是在实际的应用中,我们在设计光耦光电隔离电路时,也必须正确选择光耦合器的型号及参数。在通常情况下,单芯片集成多路光耦的器件速度下相比之下比较慢,大多都是单路的速度快,而且在制作工艺上大量的隔离器件需要占用很大布板面积导致设计的成本大大增加。在设计中需要在性能参数可以满足的条件上,应该看看是否电路板尺寸、传输速度、设计成本等因素也符合要求。

光电耦合电路品种和类型非常多,在光电子DATA手册中,其型号超过上千种,一般都是按照光路径、输出形式、封装形式、传输信号、输出速度、通道数量、隔离特性、工作电压等来划分,在选择的时候根据实际的要求来查看手册就可以找到合适的产品用来设计和应用。

本文主要对常见的光电耦合电路及其应用分析,以组成多谐振荡器、组成开关、组成逻辑、隔离耦合、双稳态输出等电路作为例子深入的分析,常见光电耦合电路有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等,它们都是利用光电效应进行转化和利用,实现电一光一电的转换,从而实现更多的功能,各种都有自身的特点和优势。

常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析 光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。可见光电耦合电路在各位的设计应用中发挥着重要的作用。 光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。 光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。 (1)组成的多谐振荡器电路图 工作流程为接通电源后: A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态; B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec) C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???; D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。 作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。将直流电变为交流

PC817A光电耦合器

PC817A/B/C--- 电光耦合器 光耦特性与应用 1.概述 光耦合器亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。 近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别介绍光耦合器的工作原理及检测方法。 2. 光耦的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。 事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双极型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。然而,这类放大电路的工作稳定性较差,

光电耦合器及其应用

光电耦合器及其应用 [作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31 【字体:A 】 光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、 寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等 特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电 器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、 过流保护、长线传输、高压控制及电平匹配等。 为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大 家参考与开拓。 1.器件选择 (1)三极管输出型光电耦合器 三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。其中,1、2端为输入端,通常由发光器件构成; 4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。 图46-1 三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。 (2)可控硅输出型光耦合器 可控硅输出型光耦合器的电路如图46?中(b)所示。该器件为六脚双列式封装。当1、2端加入输入信号后,发射管发出的红

外光被接在4、5、6脚的光敏可控硅接收,使其导通。它可应用在低电压电子电路控制高压交流回路的开启。 (3)光耦合的可控硅开关驱动器 图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。图中(a)为非过零控制,图中(b)为过零控制。本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输 出的控制功率由可控允许功率决定。 图46-2 (4)达林顿管输出的光检测器 达林顿管输出的光检测器如图46?中(a)所示。它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的 驱动电流,有较强的光检测灵敏度。 (5)数字电路光耦合器 数字电路光耦合器电路如图46?中(b)所示。光耦合器输出为施密特触发电路形式,其特点是响应速度快、数字逻辑可靠,应 用于计算机接口、数控电源及电动机控制中。 (6)双向开关触发器输出的光检测器 图46—3中的(c)为双向开关触发器输出的光检测器电路。该图为三端器件,内部是光敏双向开关器件,收到红外光线后,双向开关器件导通,触发外接可控硅导通,使负载接入220V回路中。

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装 图二光电耦合器之内部结构图三极管接收型 6脚封装

图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在

光电耦合器moc3083

光电耦合器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。 中文名 光电耦合器 外文名 optical coupler 英文缩写 OC 目录 .1基本资料 .?简介 .2工作原理 .?基本原理 .?基本工作特性(光敏三极管) .3结构特点 .4仪器测试 .5应用

.?开关电路 .6具体应用 .?组成开关电路 .?组成逻辑电路 .?隔离耦合电路 .?高压稳压电路 .?门厅照明灯自动控制电路 .7分类 .?按光路径分 .?按输出形式分 .?按封装形式分 .?按传输信号分 .?按速度分 .?按通道分 .?按隔离特性分 .?按工作电压分 .8选取原则 .9发展现状注意事项 .10发展现状 .11应用前景 基本资料 编辑 简介 光电耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光电耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。 光电耦合器是一种把发光器件和光敏器件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。其中,发光器件一般都是发光二极管。而光敏器

光电耦合器的应用与使用注意事项

国内的消费者很多是“面子消费”者,这一点很难用经济学去解读清楚,他们中的很多人并不是按照理性的穷人逻辑或者富人逻辑来决策自己的购买。所以商家对付穷人最好的促销办法就是,先给商品一个昂贵的价格,然后再给一个极低的折扣,这样让穷人觉得占了很大便宜。 富人从来不屑于干这样的事,他们不想更麻烦。对于他们来说,时间才是宝贵的,便捷才最重要,他们想在什么时候消费就在什么时候消费,对于他们来说,他们的经济条件可以让他们获得更多的自由度。 他们的购买总是即兴的,他们更喜欢在实体店里体验消费,享受店员为他们的讲解和赞誉,尽管他们知道那是阿谀之词。 他们会询问有没有折扣,但其实他们只是为了证明自己的精明,并不在意有多大折扣。 相对来说,富人更在意购物的体验过程,很多时候富人的消费愉悦只是购物后拥有的一刹那,事后他们往往对已经拥有的商品并没有多大兴趣了,甚至是买回去后,再也没有用过。 富人不懂得网购、不懂得团购、不懂得秒杀。他们更懂得名牌,懂得名牌间的细微差距,他们总是津津乐道并放大那些细微的见识,用以印证自己是个有品位的人如果我们把人分作穷人和富人,把商品分作必需品和奢侈品,我们就可把这些要素纳入一张表中,在这张表中我们可以清晰地看到,穷人对必需品的需求弹性大,而富人对奢侈品的需求弹性大。 这也就解释了为什么:穷人对必需品很容易情绪紧张,富人超喜欢名牌打折! 中国的消费者结构发生了变化,所以,一方面我们看到消费者对CPI的增长怨声一片,另一方面我们也看到在奢侈品领域繁荣一片。这都是真实的,穷人不明白富人为何买那些没用的东西,富人不明白穷人为何那么斤斤计较。 穷“富人”与富“穷人” 如果你单纯地认为中国的穷人与富人已经划分清楚,穷人在意必需品,富人在意奢侈品,那你就错了! 中国的消费者不是可以简单地用穷人和富人来分得开的,中国历来都有“穷大方”,“富抠门”的说法,更多的消费者是兼具这两种品性的。 有时候我们真的不知道他们的收入状况。我们曾走访过国内许多城市的消费者,在我们做专项调查的时候,中国的消费者无一例外地虚报自己的收入,最离谱的是成都,收入虚报

光电耦合器的发展及应用(精)

光电耦合器的发展及应用 摘要:半导体光电耦合器现已发展成为一类特殊的半导体隔离器件。它体积小、寿命长、无触点、抗干扰、能隔离,并具有单向信号传输和容量连接等功能。文中介绍了光电耦合器的典型结构和特点以及国内外的发展现状,最后给出了半导体电隔离耦合器件的多种应用电路实例。 关键词:发光器件光接收器件输入输出光电耦合器 随着半导体技术和光 电子学的发展,一种 能有效地隔离噪音和 抑制干扰的新型半导 体器件——光电耦合 器于1966年问世了。 光电耦合器的优点是 体积小、寿命长、无 触点、抗干扰能力 强、能隔离噪音、工 作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN 光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。 1 光电耦合器的结构特点 光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内,然后利用发光器件的管脚作输入端,而把光接收器的管脚作为输出端。当在输入端加电信号时,发光器件发光。这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。从而实现了以“光”为媒介的电信号传输,而器件的输入和输出两端在电气上是绝缘的。这样就构成了一种中间通过光传输信号的新型半导体电子器件。光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。图1是三种系列的光电耦合器电路图。 光电耦合的主要特点如下: ●输入和输出端之间绝缘,其绝缘电阻一般都大于10 10Ω,耐压一般可超过1kV,有的甚至可以达到10kV以上。

光电耦合器件简介

光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之部结构图三极管接收型 4脚封装

图二光电耦合器之部结构图三极管接收型 6脚封装 图三光电耦合器之部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之部结构图可控硅接收型 6脚封装 图五光电耦合器之部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:

(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。 图六光电耦合器接线原理 对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。 功率驱动电路中的光电隔离 在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。电路实例如图7所示。

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,

各种光电耦合器参数

常用参数 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持 IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 最大额定值 参数名称 符号 最大额定值 单位 V 反向电压 5 V R I 正向电流 50 mA

数字信号光耦合器应用电路设计

2008年10月第10期电子测试 EL ECTRONIC TEST Oct.2008No.10 数字信号光耦合器应用电路设计 田德恒 (莱芜职业技术学院信息工程系 莱芜 271100) 摘 要:较强的输入信号可直接驱动光耦的发光二极管,较弱的则需放大后才能驱动光耦。在光耦光敏三极管的集电极或发射极直接接负载电阻即可满足较小的负载要求;在光耦光敏三极管的发射极加三极管放大驱动,通过两只光电耦合器构成的推挽式电路以及通过增加光敏三极管基极正反馈,既达到较强的负载能力,提高了功率接口的抗干扰能力,克服了光耦的输出功率不足的缺点,又提高光耦的开关速度,克服了由于光耦自身存在的分布电容,对传输速度造成影响。最后给出了光耦合器在数字电路中应用示例。关键词:数字信号;光电耦合器;输入电路;输出电路中图分类号:TP211 文献标识码:B Applied circuit design of optoelect ronic coupler to t he digital signal Tian Deheng (Dept of Information Engineering ,Lai Wu Vocational College ,Laiwu 271100,China ) Abstract :The light 2emitting diode of optocoupler can be directly drived by stro nger inp ut sig 2nals ,t he weaker t he inp ut signal can be enlarged before driving optocoupler.Connecting direct 2ly load resistance wit h t he collector or emitter of p hotot ransistor to meet smaller load require 2ment s ;drover by t he amplifier triode on t he emitter of p hotot ransistor ,p ush 2p ull circuit s con 2sisting of two optocoupler as well as positive feedback added to base of t he p hotot ransistor not o nly achieve st rong load capacity and enhance t he power of t he interface anti 2jamming capabili 2ty ,but also overcome t he shortcomings of t he scant outp ut power ,increase t he switching speed ,overcome effect on t he speed of t he t ransmission due to t he distribution of capacitance.Finally ,t he application example of t he optocoupler in t he digital circuit is given.K eyw ords :digital signal ;optoelect ronic coupler ;inp ut circuit ;outp ut circuit 0 引 言 光电耦合器是一种把发光元件和光敏元件封 装在同一壳体内,中间通过“电2光2电”转换来传输 电信号的半导体光电子器件。光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由

光电耦合器组成的脉冲电路(精)

https://www.360docs.net/doc/0f1197583.html, 光电耦合器组成的脉冲电路https://www.360docs.net/doc/0f1197583.html, 这里介绍的光电耦合器是由发光二极管和光敏三极管组合起来的器件,发光二极管是把输入边的电信号变换成相同规律变化的光,而光脉敏三极管是把光又重新变换成变化规律相同的电信号,因此,光起着媒介的作用。由于光电耦合器抗干扰能力强,容易完成电平匹配和转移,又不受信号源是否接地的限制。所以应用日益广泛。 一、用光电耦合器组成的多谐振荡电路 用光电耦合器组成的多谐振荡电路见图1。 当图1(a)刚接通电源Ec时,由于UF随C充电而增加,直到UF≈1伏时,发光二极管达到饱和,接着三极管也饱和,输出Uo≈Ec。 三极管饱和后,C放电(由C→F→E1→Er和由C→RF→+Ec→Re两条路径放电),uo减小,二极管在C放电到一定程度后就截止,而三极管把储存电荷全部移走后,接着也截止,uo为零。三极管截止后,电源Ec又对C充电,重复上述过程,得出图示的尖峰输出波形,其周期,为(当RF》Re时): T=C(RF+Re)In2 图1(b)是原理相同的另一种形式电路。 图1、用光电耦合的多谐振荡器 二、用光电耦合器组成的双稳态电路 用光电耦合器组砀双稳态电路如图2所示。 电路接通电源后的稳态是BG截止,输出高电位。在触发正脉冲作用下,ib 增加使BG进入放大状态,形成ib↑→if↑→ib↑↑,结果BG截止,这种电路比普通的触发顺具有更高的抗干扰能力。若设BG的极限电流Ic=6毫安,则R2=取为: R2≥(13-1)/(6×10)=24欧 限流电阻R1可按下式计算 R1≥(E-IbmRce2min)/Ibm 式中:Ibm是晶体管的最大基极电流,Rce2min是光敏三极管集射间的最小电阻值。

光电隔离RS485典型电路

光电隔离RS485典型电路 一、RS485总线介绍 RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。而且在多节点的工作系统中也有着广泛的应用。 二、RS485总线典型电路介绍 RS485电路总体上可以分为隔离型与非隔离型。隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。 我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS485芯片直接与MCU的串行通讯口和一个I/O控制口连接就可以。如图1所示: 图1、典型485通信电路图(非隔离型) 当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个的上拉偏置电阻;在B线上加一个的下拉偏置电阻。中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。(匹配电阻:485整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。当然,具体怎么区分

第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。)TVS我们一般选用的,这个我们会在后面进一步的讲解。 RS-485标准定义信号阈值的上下限为±200mV。即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。但当A-B在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。 三、隔离型RS485总线典型电路介绍 在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无**常工作了,严重时甚至会烧毁芯片和仪器设备。 解决此类问题的方法是通过DC-DC将系统电源和RS-485收发器的电源隔离;通过隔离器件将信号隔离,彻底消除共模电压的影响。实现此方案的途径可分为: (1)传统方式:用光耦、带隔离的DC-DC、RS-485芯片构筑电路; (2)使用二次集成芯片,如ADM2483、ADM2587E等。 传统光电隔离的典型电路:(如图2所示) 图2、光电隔离RS485典型电路

常见光耦电路

常见光耦电路 光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用.光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中.下面介绍最常见的应用电路. 1.组成开关电路 图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q1 2间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态. 2.组成逻辑电路

图3电路为“与门”逻辑电路。其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路. 3.组成隔离耦合电路 电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。 4.组成高压稳压电路

电路如图5所示.驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。当输出电压增大时,V55 的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定. 5.组成门厅照明灯自动控制电路 电路如图6所示。A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,其触点断开,S1,S2,S3处于数据

常用光电耦合器代换大全

常用光电耦合器代换大全 常用光电耦合器代换大全 时间: 2012-05-19 18:15:51 来源: 山阳维修网 光电耦合器结构及代换型号 时间: 2010-10-25 03:22:21 来源: 山阳维修网 光电耦合器在彩电控制电路中应用比较广泛,维修人员也常接触到光电耦合器。 笔者依据光电耦合器的特性,设计了一个方便的测试光电耦合器好坏的电路,如图1所示。该电路简单、准确,使用方便。 电路原理 当接通电源后,LED不发光,按下S2,LED会发光。调Rp,LED的发光强度会发生变化,说明光电耦合器是好的。实际制作时,可用面包板安装元器件和焊接。另外,若S2用轻触常开开关,S1用钮子开关,电池用纽扣电池AG3等,再加上集成块座可把该测试电路安装在一个小印板上,整个装置只相当于1/2火柴盒大小。 附:常见光电耦合器结构及代换型号见图2。光耦

合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。各品牌光耦替代型号Fairchild NEC Part Nnmber TOSHIBA Par Number Lv PartNnmber

TOSHIBA Par Number Lv H11A617 TLP421 B PS2501-1 TLP421 A H11A817 TLP421

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。点击进入万联芯城 点击进入万联芯城

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在 电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发 光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管, 因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图 可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精

度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输 特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/ U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1 和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。 图2 光电耦合线性电路 另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送

光电耦合器的作用与选型

光电耦合器的作用与选型技巧经验总结 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。本篇文章主要以线性与非线性两个方面分别介绍光电耦合器的作用,以及华强北IC代购网工程师的一些光电耦合器选型技巧经验总结,望对大家的电路设计有所帮助。 光电耦合器的作用介绍 1、线性光电耦合器 线性光耦器件又分为两种:无反馈型和反馈型; 无反馈型线性光耦器件实际上是在器件的材料和生产工艺上采取一定措施(使得光耦器件的输入输出特性的非线性得到改善。但由于固有特性,改善能力十分有限。这种光耦器件主要用于对线性区的范围要求不大的情况,例如开关电源的电压隔离反馈电路中经常使用的PC816A和NEC2501H等线性光耦。不过这种光耦器件只是在有限的范围内线性度较高,所以不适合使用在对测试精度以及范围要求较高的场合。 另一种线性光耦是反馈型器件。其作用原理是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈,通过这样的方式来抵消直通通路的非线性,从而达到实现线性隔离的目的。这种器件例如德州仪器公司曾经出品现已停产的TIL300A,CLARE公司生产的LOC 系列线性光耦,惠普公司生产的HCNR200/201线性光耦等。 2、非线性光电耦合器 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。如4N25、4N26、4N35、4N36。 选型技巧经验总结 在设计光耦光电隔离电路时必须正确选择光耦合器的型号及参数,选型经验总结如下: 1、由于光电耦合器为信号单向传输器件,而电路中数据的传输是双向的,电路板的尺寸要求一定,结合电路设计的实际要求,就要选择单芯片集成多路光耦的器件; 2、光耦合器的电流传输比(CTR)的允许范围是不小于500%。因为当CTR<500%时,光耦中的LED就需要较大的工作电流(>5.0 mA),才能保证信号在长线传输中不发生错误,这会增大光耦的功耗; 3、光电耦合器的传输速度也是选取光耦必须遵循的原则之一,光耦开关速度过慢,无法对输入电平做出正确反应,会影响电路的正常工作。

相关文档
最新文档