高考圆锥曲线典型例题(必考)

高考圆锥曲线典型例题(必考)
高考圆锥曲线典型例题(必考)

椭 圆

典例精析

题型一 求椭圆的标准方程

【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45

3

和 25

3

,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2

10=1或3x 210+y 2

5

=1.

【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识.

【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下:

据此,可推断椭圆C 1的方程为 . x 212+y 2

6

=1.

题型二 椭圆的几何性质的运用

【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;

(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.

【解析】(1)e 的取值范围是[12,1).(2)2

1

F PF S =12mn sin 60°=3

3

b 2,

【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2

,|PF 1|≥a -c . 【变式训练2】

已知P 是椭圆x 225+y 2

9=1上的一点,Q ,R 分别是圆(x +4)2

+y 2

=1

4

和圆

(x -4)2+y 2=1

4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值

为9.

题型三 有关椭圆的综合问题

【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2

b

2=1(a >b >0)的

左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.

(1)求E 的离心率;

(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.(1)

22.(2)为x 218+y 2

9=1.

【变式训练3】已知椭圆x 2a 2+y 2

b

2=1(a >b >0)的离心率为e ,两焦点为F 1,

F 2,抛物线以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若|PF 1|

|PF 2|=e ,则e

的值是( )

【解析】选B 题型思 有关椭圆与直线综合问题

【例4】【2012高考浙江理21】如图,椭圆C :22

22+1x y a b =(a >b >0)的离心率为12

其左焦点到点P (2,1)的距离为

10.不过原点O 的直线l 与C 相交于A ,B 两点,

且线段AB 被直线OP 平分.

(Ⅰ)求椭圆C 的方程;

(Ⅱ) 求?ABP 的面积取最大时直线l 的方程.

.

【变式训练4】【2012高考广东理20】

在平面直角坐标系xOy 中,已知椭圆C 1:22

221(0)x y a b a b

+=>>的离心率e=3,且

椭圆C 上的点到Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;

(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由.

总结提高

1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a 、 b 的值(即定量),若定位条件不足应分类讨论,或设方程为mx 2+ny 2=1(m >0,n >0,m ≠n )求解.

2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.

3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.

练习

1(2009全国卷Ⅰ理)已知椭圆2

2:12

x C y +=的右焦点为F ,右准线为l ,点A l ∈,

线段AF 交C 于点B ,若3FA FB =,则||AF =( )

A. 2

B. 2

C.3

D. 3 选A

.2(2009浙江文)已知椭圆22

221(0)x y a b a b

+=>>的左焦点为F ,右顶点为A ,点B

在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A .3

2

B .22

C .13

D .12 【答

案】D

3.(2009江西卷理)过椭圆22

221x y a b

+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆

于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为

A .22

B .3

3

C .12

D .13 【答案】B

4.【2012高考新课标理4】设12F F 是椭圆22

22:1(0)x y E a b a b

+=>>的左、右焦点,P 为

直线32

a

x =

上一点,12PF F ?是底角为30的等腰三角形,则E 的离心率为( )

()

A 12 ()

B 23 ()

C 34 ()

D 4

5

【答案】C

5【2012高考四川理15】椭圆22

143

x y +=的左焦点为F ,直线x m =与椭圆相交于

点A 、B ,当FAB ?的周长最大时,FAB ?的面积是____________。【答案】3

6【2012高考江西理13】椭圆 )0(122

22>>=+b a b

y a x 的左、右顶点分别是A,B,左、

右焦点分别是F 1,F 2。若1AF ,21F F ,B F 1成等比数列,则此椭圆的离心率为_______________.【答案】

5

5

【例4】【解析】(Ⅰ):

22

+143

x y =. (Ⅱ)易得直线OP 的方程:y =12

x ,设A (x A ,y A ),B (x B ,y B ),R (x 0,y 0).其

中y 0=12

x 0.

∴22

022

0+12333

43

4422

+14

3A A A B A B AB A B A B B B x y x y y x x k x x y y y x y ?=?-+??=

=-?=-?=-?-+?=??.

设直线AB 的方程为l :y =﹣

3

2

x m +(m ≠0),入椭圆:

22

22+143333032

x y x mx m y x m ?=???

-+-=?

?+??=-.显然222(3)43(3)3(12)0m m m ?=-?-=->

m

m ≠0.由上又有:A B x x +=m ,A B y y +=23

3

m -.

∴|AB |

A B x x -|

∵点P (2,1)到直线l

的距离表示为:d =

=

∴S ?ABP =12d |AB |=1

2

|m +

,当|m +2|

m =﹣3 或m =

0(舍去)时,(S ?ABP )max =12

此时直线l 的方程y =﹣312

2

x +.

【变式训练4】【解析】(1)

设c =

由222

3

c e c a a ==

=,所以222213

b a

c a =-=

设(,)P x y 是椭圆C 上任意一点,则22

221x y a b

+=,所以

2

2

2

222(1)3y x a a y b

=-=-

||PQ === 当1b ≥时,当1y =-时,||PQ

有最大值3=

,可得a =

1,b c == 当1b <

时,3PQ <=< 不合题意

故椭圆C 的方程为:2

213

x y +=

(2)AOB ?中,1OA OB ==,11sin 22

AOB S OA OB AOB ?=???∠≤ 当且仅当90AOB ?∠=时,AOB S ?有最大值12

90AOB ?∠=时,点O 到直线AB 的距离为2d =

2222

22222d m n m n =

?=?+=+ 又22223

133,2

2

m n m n +=?==,此时点62(,)22M ±

±。

双曲线

典例精析

题型一 双曲线的定义与标准方程

【例1】已知动圆E 与圆A :(x +4)2+y 2=2外切,与圆B :(x -4)2+y 2=2内切,求动圆圆心E 的轨迹方程.【解析】x 22-y 2

14

=1(x ≥2).

【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E 点满足的几何条件,结合双曲线定义求解,要特别注意轨迹是否为双曲线的两支.

【变式训练1】P 为双曲线x 29-y 2

16=1的右支上一点,M ,N 分别是圆(x +5)2

+y 2=4和

(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )

【解析】选D. 题型二 双曲线几何性质的运用

【例2】双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的右顶点为A ,x 轴上有一点

Q (2a,0),若C 上存在一点P ,使PQ AP ?=0,求此双曲线离心率的取值范围.【解

析】(1,6

2

).

【点拨】根据双曲线上的点的范围或者焦半径的最小值建立不等式,是求离心率的取值范围的常用方法.

【变式训练2】设离心率为e 的双曲线C :x 2a 2-y 2

b

2=1(a >0,b >0)的右焦点

为F ,直线l 过焦点F ,且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是( )

-e 2>1 -e 2<1

-k 2>1 -k 2<1【解析】,故选C. 题型三 有关双曲线的综合问题

【例3】(2010广东)已知双曲线x 2

2

-y 2=1的左、右顶点分别为A 1、A 2,点

P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.

(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2,求h 的值.

【解析】(1)轨迹E 的方程为x 2

2+y 2=1,x ≠0且x ≠± 2.(2)符合条件的h

的值为3或 2.

【变式训练3】双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心

率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2等于( )

+2 2 +2 2 -2 2 -2 2 【解析】故选D 总结提高

1.要与椭圆类比来理解、掌握双曲线的定义、标准方程和几何性质,但应特别注意不同点,如a ,b ,c 的关系、渐近线等.

2.要深刻理解双曲线的定义,注意其中的隐含条件.当||PF 1|-|PF 2||=2a <|F 1F 2|时,P 的轨迹是双曲线;当||PF 1|-|PF 2||=2a =|F 1F 2|时,P 的轨迹是以F 1或F 2为端点的射线;当

||PF 1|-|PF 2||=2a >|F 1F 2|时,P 无轨迹.

3.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要掌握以下两个问题:

(1)已知双曲线方程,求它的渐近线;

(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y =±b

a x ,可将双曲

线方程设为x 2a 2-y 2

b

2=λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待

定系数法. 练习

1、【2012高考山东理10】已知椭圆2222:1(0)x y C a b a b +=>>双曲

线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为

(A )22182x y += (B )221126x y += (C )221164x y += (D )22

1205

x y +=

【答案】D

2.直线y =kx +2与双曲线x 2-y 2=6的右支交于不同两点,则k 的取值范围是 A .(-153,15

3

)

B .(0,15

3

)

C .(-

153,0) D .(-153

,-1) 3.【2012高考湖北理

14】如图,双曲线22

22 1 (,0)x y a b a b

-=>的两顶点为1A ,2A ,虚轴

两端点为1B ,2B ,两焦点为1F ,2F . 若以12A A 为直径的圆内切于菱形1122F B F B ,切

点分别为,,,A B C D . 则

(Ⅰ)双曲线的离心率e = ;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面

积2S 的比值12

S S = .【答案】;2

15+=

e 25

221+=S S

【例3】由题意知|x 1|>2,A 1(-2,0),A 2(2,0),则有直线A 1P 的方程为y =y 1

x 1+2(x +2),①直线A 2Q 的方程为y =-y 1

x 1-2(x -2).②方法一:联立①②解得交点坐标为x =2

x 1,y =

2y 1

x 1

,即x 1=2x ,y 1=2y

x

,③则x ≠0,|x |< 2.

而点P (x 1,y 1)在双曲线x 22-y 2=1上,所以x 21

2

-y 21=1.

将③代入上式,整理得所求轨迹E 的方程为x 2

2

+y 2=1,x ≠0且x ≠± 2.

方法二:设点M (x ,y )是A 1P 与A 2Q 的交点,①×②得y 2

=-y 2

1x 21-2

(x 2-2).③

又点P (x 1,y 1)在双曲线上,因此x 212-y 21=1,即y 2

1=x 21

2

-1.

代入③式整理得x 2

2

+y 2=1.

因为点P ,Q 是双曲线上的不同两点,所以它们与点A 1,A 2均不重合.故点

A 1和A 2均不在轨迹E 上.过点(0,1)及A 2(2,0)的直线l 的方程为x +2y -2

=0.

解方程组?????=-=-+12

,

0222

2

y x y x 得x =2,y =0.所以直线l 与双曲线只有唯一交点

A 2.

故轨迹E 不过点(0,1).同理轨迹E 也不过点(0,-1).

综上分析,轨迹E 的方程为x 2

2+y 2=1,x ≠0且x ≠± 2.

(2)设过点H (0,h )的直线为y =kx +h (h >1),

联立x 2

2

+y 2=1得(1+2k 2)x 2+4khx +2h 2-2=0.

令Δ=16k 2h 2-4(1+2k 2)(2h 2-2)=0,得h 2-1-2k 2=0,

解得k 1=h 2-1

2

,k 2=-

h 2-1

2

.由于l 1⊥l 2,则k 1k 2=-

h 2-1

2

=-1,

故h = 3.

过点A 1,A 2分别引直线l 1,l 2通过y 轴上的点H (0,h ),且使l 1⊥l 2,因此

A 1H ⊥A 2H ,由

h

2×(-h

2

)=-1,得h = 2. 此时,l 1,l 2的方程分别为y =x +2与y =-x +2,

它们与轨迹E 分别仅有一个交点(-23,223)与(23,22

3).

所以,符合条件的h 的值为3或 2.

【变式训练3】据题意设|AF 1|=x ,则|AB |=x ,|BF 1|=2x . 由双曲线定义有|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a

?(|AF 1|+|BF 1|)-(|AF 2|+|BF 2|)=(2+1)x -x =4a ,即x =22a =

|AF1|.

故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.

又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边

平方整理得c2=a2(5-22)?c2

a2

=e2=5-22,.

抛物线

典例精析

题型一抛物线定义的运用

【例1】根据下列条件,求抛物线的标准方程.

(1)抛物线过点P(2,-4);

(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.

【解析】(1)y2=8x或x2=-y.(2)方程为y2=±2x或y2=±18x.

【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a>0)满足|PA|=d,试求d的最小值.

【解析】d min=2a-1.

题型二直线与抛物线位置讨论

【例2】(2010湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.

(1)求曲线C 的方程;

(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FB FA ?<0若存在,求出m 的取值范围;若不存在,请说明理由.

【解析】(1)y 2=4x (x >0). (2)3-22<m <3+2 2.

由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA ·FB <0,且m 的取值范围是(3-22,3+22).

【变式训练2】已知抛物线y 2=4x 的一条弦AB ,A (x 1,y 1),B (x 2,y 2),AB 所在直线与y 轴的交点坐标为(0,2),则1y 1+1

y 2= .【解析】1

2

.

题型三 有关抛物线的综合问题

【例3】已知抛物线C :y =2x 2,直线y =kx +2交C 于A ,B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .

(1)求证:抛物线C 在点N 处的切线与AB 平行;

(2)是否存在实数k 使NA ·NB =0若存在,求k 的值;若不存在,说明理由.

【解析】

【点拨】直线与抛物线的位置关系,一般要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须使用弦长公式.

【变式训练3】已知P 是抛物线y 2=2x 上的一个动点,过点P 作圆(x -3)2

+y 2

=1的切线,切点分别为M 、N ,则|MN |的最小值是 .【解析】45

5

.

总结提高

1.在抛物线定义中,焦点F 不在准线l 上,这是一个重要的隐含条件,若F 在l 上,则抛物线退化为一条直线.

2.掌握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p ;(4)过焦点垂直于对称轴的弦(通径)长为2p .

3.抛物线的标准方程有四种形式,要掌握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采用待定系数法.

4.抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握.但由于抛物线的离心率为1,所以抛物线的焦点有很多重要性质,而且应用广泛,例如:已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,设A (x 1,y 1),B (x 2,y 2),则有下列性质:|AB |=x 1+x 2+p 或|AB |=2p

sin 2α

(α为AB 的倾斜角),

y 1y 2=-p 2,x 1x 2=p 2

4

等.

练习

1.【2012高考全国卷理8】已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2=

(A)14 (B )35 (C)34 (D)45

【答案】C

2.【2012高考安徽理9】过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ?的面积为( )

()A 22

()B 2 ()C 322 ()D 22【答

案】C

【例3】证明:如图,设A (x 1,2x 21),B (x 2,2x 22),把y =kx +2代入y =2x 2

得2x 2-kx -2=0,

由韦达定理得x 1+x 2=k 2,x 1x 2=-1,所以x N =x M =

x 1+x 22=k

4

,所以点N 的坐标为(k 4,k 2

8

).

设抛物线在点N 处的切线l 的方程为y -k 28=m (x -k

4),将y =2x 2代入上式,

得2x 2-mx +

mk

4

-k 2

8

=0,

因为直线l 与抛物线C 相切,所以Δ=m 2-8(mk 4-k 2

8

)=m 2-2mk +k 2=(m -

k )2=0,所以m =k ,即l ∥AB .

(2)假设存在实数k ,使NA ·NB =0,则NA ⊥NB , 又因为M 是AB 的中点,所以|MN |=2

1

|AB |.

由(1)知y M =12(y 1+y 2)=12(kx 1+2+kx 2+2)=12[k (x 1+x 2)+4]=12(k 2

2

+4)=

k 2

4

+2.因为MN ⊥x 轴,所以|MN |=|y M -y N |=k 24+2-k 28=

k 2+16

8

.

又|AB |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=

1+k 2

·

(k

2)2

-4×(-1)=12

k 2

+1·k 2+16. 所以k 2+168

=1

4

k 2+1·k 2+16,解得k =±2.即存在k =±2,使·=0.

直线与圆锥曲线的位置关系

典例精析

题型一 直线与圆锥曲线交点问题

【例1】若曲线y 2=ax 与直线y =(a +1)x -1恰有一个公共点,求实数a 的值.

【解析】综上所述,a =0或a =-1或a =-4

5

.

【点拨】本题设计了一个思维“陷阱”,即审题中误认为a ≠0,解答过程中的失误就是不讨论二次项系数a

a 1 =0,即a =-1的可能性,从而漏掉两解.本

题用代数方法解完后,应从几何上验证一下:①当a =0时,曲线y 2=ax ,即直线y =0,此时与已知直线y =x -1 恰有交点(1,0);②当a =-1时,直线y =-1与抛物线的对称轴平行,恰有一个交点(代数特征是消元后得到的一元二次方程中二次项系数为零);③当a =-4

5

时直线与抛物线相切.

【变式训练1】若直线y =kx -1与双曲线x 2-y 2=4有且只有一个公共点,则实数k 的取值范围为( )

A.{1,-1,

52,-52} B.(-∞,-52]∪[5

2

,+∞) C.(-∞,-1]∪[1,+∞) D.(-∞,-1)∪[5

2,+∞)

【解析】答案为A.

题型二 直线与圆锥曲线的相交弦问题

【例2】(2010辽宁)设椭圆C :x 2a 2+y 2

b

2=1(a >b >0)的右焦点为F ,过F 的

直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF =2.

(1)求椭圆C 的离心率;

(2)如果|AB |=15

4

,求椭圆C 的方程.

【解析】(1)e =c a =23.(2)x 29+y 2

5

=1.

【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.

【变式训练2】椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则a b 的值为 .【解析】a b =y 0x 0=3

2

.

题型三 对称问题

【例3】在抛物线y 2=4x 上存在两个不同的点关于直线l :y =kx +3对称,求k 的取值范围.

【解析】故k 的取值范围为(-1,0).

【点拨】(1)本题的关键是对称条件的转化.A (x 1,y 1)、B (x 2,y 2)关于直线l 对称,则满足直线l 与AB 垂直,且线段AB 的中点坐标满足l 的方程;

(2)对于圆锥曲线上存在两点关于某一直线对称,求有关参数的范围问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范围.

【变式训练3】已知抛物线y =-x 2+3上存在关于x +y =0对称的两点A ,

B ,则|AB |等于( )

【解析】设AB 方程:y =x +b ,代入y =-x 2+3,得x 2+x +b -3=0, 所以x A +x B =-1,故AB 中点为(-12,-1

2

+b ).

它又在x +y =0上,所以b =1,所以|AB |=32,故选C. 总结提高

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

数学曲线方程及圆锥曲线典型例题解析

数学曲线方程及圆锥曲线典型例题解析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线方程及圆锥曲线典型例题解析 一.知识要点 1.曲线方程 (1)求曲线(图形)方程的方法及其具体步骤如下: 化” (2)求曲线方程的常见方法: 直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。 转移代入法:这个方法又叫相关点法或坐标代换法。即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。 几何法:就是根据图形的几何性质而得到轨迹方程的方法。 参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐

标,间接地把坐标x,y联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。 2.圆锥曲线综合问题 (1)圆锥曲线中的最值问题、范围问题 通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。 圆锥曲线的弦长求法: 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、 B(x2,y2)两点,则弦长|AB|为: 若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. 在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围。 (2)对称、存在性问题,与圆锥曲线有关的证明问题 它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。 (3)实际应用题 数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等。

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .7 5 C .85 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 22 1(6)106x y m m m +=<--与曲线221(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

高考数学之圆锥曲线常见习题及解析(经典版)

高考数学 圆锥曲线常见习题及解析 (经典版)

椭圆 一、选择题: 1. 已知椭圆方程22143x y +=,双曲线22 221(0,0)x y a b a b -=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为 A.2 B.3 C. 2 D. 3 2.双曲线22 221(0,0)x y a b a b -=>> 的左、右焦点分别为F 1,F 2,渐近线分别为12,l l ,点P 在第 一象限内且在1l 上,若2l ⊥PF 1,2l //PF 2,则双曲线的离心率是 ( ) A .5 B .2 C .3 D .2 【答案】B 【解析】双曲线的左焦点1(,0)F c -,右焦点2(,0)F c ,渐近线1:b l y x a = ,2:b l y x a =-,因为点P 在第一象限内且在1l 上,所以设000(,),0P x y x >,因为2l ⊥PF 1,2l //PF 2,所以12PF PF ⊥,即121 2 OP F F c ==, 即22200x y c +=,又00b y x a =,代入得222 00()b x x c a +=,解得00,x a y b ==,即(,)P a b 。所以 1PF b k a c = +,2l 的斜率为b a -,因为2l ⊥PF1,所以()1b b a c a ?-=-+,即2222()b a a c a ac c a =+=+=-,所以2220c ac a --=,所以220e e --=,解得2e =,所以双曲线 的离心率2e =,所以选B. 3.已知双曲线()0,012222>>=-b a b y a x 的一条渐近线的斜率为2,且右焦点与抛物线x y 342 =的焦 点重合,则该双曲线的离心率等于 A .2 B .3 C .2 D .2 3

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 、选择题: 2. (2006全国 II )已知△ ABC 的顶点 B 、C 在椭圆 x 3 2+y 2 =1上,顶点 A 是椭圆的一个焦点,且椭圆的另外一个焦点 3 在 BC 边上,则△ ABC 的周长是 ( A )2 3 (B ) 二、填空题: 1 设点 A 1, ,则求该椭圆的标准方程为 1. (2006 全国 II )已知双曲线 a 2 b 2 (C )54 A)5 3 x 2 y 2 4 1的一条渐近线方程为 y = 3x ,则双曲线的离心率为( (D)3 2 C) 4 3 D)12 3. (2006全国卷 I )抛物线 y x 2 上的点到直线 4x 3y 0距离的最小值是( A . 4 3 .3 4.( 2006 广东高考卷) 已知双曲线 3x 2 y 2 9 ,则双曲线右支上的点 P 到右焦点的距离与点 P 到右准线的距离之比等 于( ) 22 A. 2 B. C. 2 D. 4 5. 2006 辽宁卷)方程 2x 2 5x 0 的两个根可分别作为( A.一椭圆和一双曲线的 离心率 B.两抛物线的离心率 6. 2006 辽宁卷)曲线 10 m 2 y 6m 2 1(m 6) 与曲线 x 5m 2 y 1(5 m 9) 的( ) 9m 7. 8. (A )焦距相等 (B ) 离心率相等 (C )焦点相同 (D )准线相同 2 2 x 2006 安徽高考卷)若抛物线 y 2 2 px 的焦点 与椭圆 6 A . 2 .4 1的右焦点重合,则 p 的值为( 22 2006 辽宁卷)直线 y 2k 与曲线 y 2 18k 2 x (k R,且k 0) 的公共点的个数为( (A)1 (B)2 (C)3 (D)4 9. (2006 全国卷 I )双曲线 mx 2 1的虚轴长是实轴长的 2 倍,则 m 10. (2006 上海卷 )已知在平面直角坐标系 xOy 中的一个椭圆, 它的中心在原点, 左焦点为 F ( 3,0) , 右顶点为 D (2,0) ,

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线经典小题教学文案

圆锥曲线经典小题 一、选择题 1.已知双曲线)0,0(1:2222>>=-b a b y a x C 的离心率为,25则C 的渐近线方程为( ) A .x y 41±= B .x y 31±= C .x y 2 1±= D .x y ±= 2.已知,40π θ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22 222=-θθx y C ( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 3.椭圆14 22 =+y x 的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ( ) A .23 B .3 C .2 7 D .4 4.已知双曲线1422 2=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) A .5 B .24 C .3 D .5 5.设1F 和2F 为双曲线)0,0(122 22>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为( ) A .23 B .2 C .2 5 D .3 6.已知双曲线12 2 2=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=?MF MF 则点M 到x 轴的距离为( ) A .3 4 B .3 5 C .332 D .3 7.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为( ) A .2 B .3 C . 213+ D .215+ 8.已知双曲线,122=-y x 点21,F F 为其两个焦点,点P 为双曲线上一点,若,21PF PF ⊥ 则||1PF ||2PF +的值为( )

圆锥曲线典型例题(精华版)

圆锥曲线典型例题强化训练 一、选择题 1、若点P 到直线1y =-的距离比它到点(03),的距离小2,则点P 的轨迹方程为( )A A. 2 12x y = B.2 12y x = C.2 4x y = D.2 6x y = 2、若圆0422 2 =--+y x y x 的圆心到直线0=+-a y x 的距离为2 2 ,则a 的值为( )C A .-2或2 B .2 321或 C .2或0 D .-2或0 3、设F 1、F 2为曲线C 1: x 2 6 + y 2 2 =1的焦点,P 是曲线2C : 13 22 =-y x 与C 1的一个交点,则△PF 1F 2的面积为( )C (A) 1 4 (B) 1 (C) 2 (D) 2 2 4、经过抛物线x y 22 =的焦点且平行于直线0523=+-y x 的直线l 的方程是( )A A.0346=--y x B. 0323=--y x C.0232=-+y x D. 0132=-+y x ' 5、若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) D A .2- B .2 C .4- D .4 6、如图,过抛物线)0(22 >=p px y 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点 C ,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( ) B A .x y 232 = B .x y 32 = C .x y 2 92 = D .x y 92 = 7、以14 122 2=-x y 的顶点为焦点,长半轴长为4的椭圆方程为( )D A . 1526422=+y x B. 1121622=+y x C. 141622=+y x D.11642 2=+y x 8、已知双曲线192 22=-y a x ()0>a 的中心在原点, 右焦点与抛物线x y 162=的焦点重合,则该双曲线的离心率等于( ) D

相关文档
最新文档