医学图像三维重建的体绘制技术综述

医学图像三维重建的体绘制技术综述
医学图像三维重建的体绘制技术综述

医学图像三维重建的体绘制技术综述

摘要:体绘制技术是目前医学图像三维重建的主要方法之一,是一种能够准确反映出数据内部信息的可视化技术,是可视化研究领域的一个重要分支,是目前最活跃的可视化技术之一。本文首先分析了医学图像三维重建的两大方法及其基本思想,并将体绘制技术与面绘制技术进行了比较;然后分别描述了射线投射法、足迹法、剪切-曲变法、基于硬件的3D纹理映射、频域体绘制法以及基于小波的体绘制等典型算法;最后通过比较分析给出了各类算法的性能评价,并在此基础上展望了体绘制技术研究的发展前景。

关键字:体绘制;三维重建;可视化;性能评价

Abstract:Volume rendering techniques is one of the main methods of 3D reconstruction of medical images currently. It's also an important branch of visual technology which can reflect the inside information of data.It is one of the most active visualization technology.This paper first introduces are the two methods of 3D reconstruction of medical image and the basic thought of them,then volume rendering technology and surface rendering technology are compared.Secondly,the author introduces some kinds of algorithm for volume rendering:Ray Casting ,Splatting,Shear-Warp,3D Texture-Mapping Hardware,Frequency Domin V olume Rendering,Wavelet .Based V olume Rendering.The differences of their performances are compared and discussed in the last. Then some results are presented and their perspective are given in the end.

Key words:Volume rendering techniques;3D reconstruction of medical images;visual technology;Performance evaluation

1.引言

自20世纪70年代以来,利用计算机X射线断层投影(Computer Tomography,CT)、核磁共振(Magnetic Resonance Imaging,MRI)、超声(US)、数字血管减影成像技术(DSA)等医学成像技术可以得到的二维数字断层图像序列。但是仅依靠这些二维图像很难直观地体现或确定物体的三维结构及其相互之间的关系。由于物体的三维信息在医学诊断和治疗及其他临床领域所具有的特殊应用价值,使得三维医学图像的可视化技术越来越引起人们的关注。通过计算机图像处理技术可以对二维医学图像进行分析和处理,从而实现对人体器官、软组织和病变体的分割提取、三维重建及显示,进而辅助医生对病变体及其他感兴趣的区域进行定性甚至定量的分析,大大提高了医疗诊断的准确性和可靠性。

2.医学图像的三维重建

医学图像的三维重建是研究利用各种医学成像设备获取的二维图像及彩色冰冻切片图像来构建组织或器官的三维几何模型,并在计算机屏幕上“真实”地绘制并显示出来。根据绘制过程中数据描述方法的不同,目前医学图像三维重建的方法主要有两类:

1. 通过几何单元拼接拟合物体表面来描述物体的三维结构,称为表面绘制方法,又称间接绘制方法,即面绘制法;

2. 直接将体素投影到显示平面的方法,称为体绘制方法,即体绘制法。

经过十几年的发展,医学图像三维重建已经从辅助诊断发展成为辅助治疗的重要手段。三维重建技术能充分利用CT 、MRI等医学图像体数据,采用面绘制或体绘制的成像算法,根据需要得到任意视角透视的三维投影图像,构造三维模型,并对三维模型从不同方向投影显示,提取出相关器官的信息,能使医生对感兴趣器官的大小、形状和空间位置获得定量描述。

基于表面的方法,即面绘制法是表示三维物体形状最基本的方法,它可以提供三维物体形状的全面信息。它的基本思想是从体数据中抽取一系列相关表面,并用多边形拟合近似后,再通过传统的图形学算法显示出来。表面绘制方法的处理过程主要包括下面三部分:体数据中待显示物体表面的分割;通过几何单元内插形成物体表面;通过照明、浓淡处理、纹理映射等图形学算法来显示有真实感的图像。经典的算法主要有立方块(Cuberille)方法,移动立方体法(Marching

Cubes),MarchingTetrahedral(MT)和剖分立方体法(Dividing Cubes) 等。

面绘制技术需要对体数据进行判别分类,即需要判别每一个体素是否在当前绘制的面上,因此在处理复杂的、边界模糊的人体组织时,经常出现分类上的错误,从而造成虚假的面显示或在显示面上产生空洞。

体绘制法是由Drebin 和Levoy在80年代末提出的,该方法避免了面绘制技术中构造几何多边形等表面的中间过程,采用直接对所有的体数据进行明暗处理的方法,进而合成具有三维效果的图像。其优点是无须进行分割即可直接进行绘制,有利于保留三维医学图像的细节信息,增强图像整体的绘制效果。但缺点是需要对所有体素进行处理,加大了计算量,限制了图像的绘制速度。

随着计算机、工作站性能的提高,各种分布计算和并行绘制算法和硬件环境的发展,以及医学体数据密度和分辨率的不断提高,面绘制的交互优势越来越不明显,体绘制优异的三维表现能力正在吸引使用者越来越多的注意力。可以预见,在不久的将来,体绘制技术将在越来越多的应用中取代面绘制技术,成为三维绘制的主要技术。另外,许多科研工作者从不同的角度提出了体绘制的加速算法,使体绘制的速度有了明显的提高,表现出很大的发展潜力。

3.医学图像三维重建的体绘制技术

体绘制法是由Drebin 和Levoy在80年代末提出的,该技术的中心思想是为每一个体素指定一个不透明度(Opacity) ,由光线穿过整个数据场,并考虑每一个体素对光线的透射、发射和反射作用。这里体素就是将三维图像中的每一像素看成是空间中的一个六面体小单元。光线的透射取决于体素的不透明度;光线的发射取决于体素的物质度(Objectness):物质度愈大,其发射光愈强;光线的反射则取决于体素所在的面与入射光的夹角关系。因此,体绘制的步骤原则上可分为投射、消隐、渲染和合成等4 个步骤。

体绘制方法是对三维空间中定义的三维物体,从任意的视点来跟踪体素,赋予它一定的色彩和透明度,由光线穿越半透明物质时能量聚集的光学原理,进行色彩合成的成像操作。此种显示方法的特点是由灰度体数据直接显示,没有体数据到几何图元的映射过程,因而又称为直接体绘制法。

体绘制算法按处理数据域的不同可分为空间域方法和变换域方法。前者是直接对原始的体数据进行处理显示;后者是将体数据变换到变换域,然后再进行处

理显示。基于空间域的经典方法主要有射线投射法(Ray Casting) ,足迹法(又称抛雪球法)(Splatting) ,错切形变法(Shear-Warp) 等。基于变换域的方法主要有频域体绘制法(Frequency Domain V olume Rendering) 和基于小波的体绘制法(Wavelet .Based V olume Rendering)等。

体绘制技术是直接研究光线通过体数据场时与体素的相互关系,所以无须构造中间面,因而体素中的许多细节信息得以保留,结果的保真性大为提高。因此从绘制结果来讲,体绘制的图像质量通常要优于面绘制。但是体绘制法对硬件的要求很高,运行速度比较慢。

3.1 基于空间域的方法

(1)射线投影法(Ray Casting)

射线投射法是一种典型的以图像空间为序的直接体绘制算法,他从屏幕上的每一个像素点出发,沿着特定的视点方向,发出一条射线,该射线穿过三维数据场,沿这条射线选择若干个等距采样点,由距离某一采样点最近的八个体素的颜色值及不透明度值做三线性插值,求出该采样点的不透明度值及颜色值。在求出该条射线上所有采样点的颜色值和不透明度值以后,可以采用由后到前或由前到后的两种不同的方法将每一采样点的颜色及不透明度进行组合,从而计算出屏幕上该像素点处的颜色值。

(2)足迹法(Splatting)

足迹法首先由Westover提出,也译为抛雪球法,其原理是将体数据表示为一个由交叠的基本函数构成矩阵,基本函数通常选择幅值由体素值表示的高斯函数核(Kemel),然后根据一个预先计算的、存储着沿视线方向对函数核积分的足迹查询表,把这些基本函数投射到象平面以生成图像。其实质也可视为将体数据与函数核作卷积,再沿视线的反方向投射积累到象平面的过程。

(3)错切形变法(Shear-Warp)

错切形变法(Shear-Warp)也称剪切曲变法,被认为是目前速度最快的一种体绘制算法。错切变形算法由Lacroute提出,基本原理是将三维视觉变换分解成三维错切变换和两维的变形变换。体数据按照错切变换矩阵进行错切,投影到错切空数据按照错切变换矩阵进行错切,投影到错切空间形成一个中间图像,然后中间图像经变形生成最后的结果图像。

(4)基于硬件的3D纹理映射(3D Texture-Mapping Hardware)

基于硬件的3D纹理映射首先是由Cabral应用于无明暗处理的体绘制。其方法是首先将体数据装载到纹理内存,再由硬件将平行于视平面的多边形层片转变为图像。这些层片是由后向前地进行融合,插值滤波器为三次或四次线性函数,而层片间的距离可以任意选择。目前,这种方法已被推广应用到具有明暗处理的体绘制中。

3.2 基于变换域的方法

(1)频域体绘制法(Frequency Domain V olume Rendering)

变换域体绘制算法的理论基础是1993年Malzbender提出的傅里叶切片投影定理。频域体绘制法的基本原理是首先用三维傅立叶变换将空间域的体数据

(S

F,然后沿着经过原点并与视正交的抽取平面f变换到频域得到离散频谱)

(X

)

对离散频谱)

F进行插值,插值后的频谱再经过重新采样,得到一个二维的频

(S

谱,对其作二维傅立叶反变换即可得到该视方向上的空间域投影图。频域体绘制方法又可细分为傅里叶体绘制和哈特里体绘制。

(2)基于小波的体绘制法(Wavelet .Based V olume Rendering)

基于小波的体绘制是一种通过对体数据进行三维离散小波变换,以构成体数据的多分辨率表示,然后代入到体绘制方程中来生成三维图像的方法。它包括小波足迹法(Wavelet Base Splatting)和小波域射线投射法(Ray Tracing in Wavelet Space)。前者的基本思想是将体数据的三维离散小波变换的近似结果直接代入到体绘制方程中求解,从本质上来看它是射线投射法在小波域的实现;后者的基本思想是利用傅立叶频域绘制先得到每个小波和尺度函数的足迹,再通过小波系数加权得到投影图像。

4.各种算法的比较分析

射线投射法是采用为每个体素分配不透明度和光强的方法来合成图像,因此有利于保留图像的细节,绘制高品质的图像,特别适用于绘制区域特征模糊、体素特征相关性高的三维图像。但是因为需要对每一个体素都进行操作,所以极大地限制了绘制速度。为此人们对射线投射法提出了各种的加速算法,如可以略过三维图像空区域的空间跳跃算法(Space-Leaping)、累积透明度接近于数值1时终

止射线投射的射线提前终止法(Early-Ray Termination)等。

足迹法最大的优点是只有与图像有关的体素才会被映射到象平面,从而可以大大地减少需要处理和存储的数据量。足迹法用经过一个足迹样条的采样均值来代替射线投射法的点采样,这相当于引入了一个低通滤波器对信号进行平滑滤波。这样一来,一方面有利于克服图像的失真或混叠,但另一方面有时也会使图像的高频分量受到衰减。足迹法也有应用类似于射线提前终止法概念的加速算法:基于动态计算屏幕阻塞图(Screen Occlusion Map)的足迹提前终止法。

在错切形变法算法中,体素行程是按不透明度的初分类进行RLE编码的。这就需要在三个主视方向上构造出独立的编码体素;因为采样插值仅仅出现在剪切出的体素层,因此直接体绘制积分的间距是与视相关的,且不能任意改变来满足沿射线进行密集采样(或过采样),这样在非主视方向上可能不能遵守采样定理,特别是在视域的分辨率高于体素分辨率时,会导致所绘制的图像品质明显下降。

3D纹理映射的实现需要昂贵的专用图形硬件,对于较大规模的医学体素据则需要在有限的纹理内存中(在较小的机器中通常为4M)反复搬动数据。限制3D纹理影射绘制图像质量的主要因素归结于其画面帧存储器(Framebuffer)有限的位分辨率(8-12 bits),这远低于软件算法中使用的浮点数的精度。特别是有限的位分辨率严重制约了不透明度加权颜色(或亮度)方法的使用,因为低不透明度的体素经不透明度加权后,其体素的颜色(或亮度)值会降低到帧存储器分辨率以下,这就限制了具有低不透明度、低密度体素区域的合成绘制。一种解决方法是按比例地放大体素颜色(亮度)值,但这样有时会造成其它区域值的饱和。

频域体绘制法利用快速傅立叶变换(FFT)可以达到较快的绘制速度。由于可以在频域内灵活地根据不同的视对离散频谱抽取平面,因此可以便捷地得到不同视角的图像。但是由于不能保留体素的光吸收特性,因此不能得到半透明的图像。小波域射线投射法是射线投射法在小波域的实现,因此它具有射线投射法的许多优点,如高品质的图像、半透明的视觉效果以及可以加入各种明暗处理等,但缺点是计算量大,绘制速度慢。小波足迹法的最大优点是绘制速度快,可以达到网络交互级的速率,但缺点是绘制的图像质量呈现一种指数型的自阻塞特性。

表1 各种算法的比较分析

5.研究展望

随着现代医学影像技术日新月异的发展和各种医学数字影象设备技术的发

展及广泛应用,医学图像三维重建的体绘制技术已经成为研究的热点之一。尽管

目前体绘制技术的绘制速度仍然受到计算机运算速度的限制,但随着计算机技术

的发展和体绘制算法研究的深入,可以预见体绘制的绘制速度很快能达到实时交

互的速率。

当前体绘制技术的研究可以根据现有的硬件条件与具体的应用要求,寻求图

像品质与绘制速度之间的最佳方案。在各类算法中,基于小波的体绘制技术表现

出较好的应用前景,可以作为重点的研究内容,如克服小波足迹法中图像品质的

自阻塞指数特性。随着计算机硬件技术的发展,基于硬件的3D 纹理映射体绘制也

表现出巨大的发展潜力,许多新技术、新方法有待于深入研究与开发。此外,在

不影响图像品质的前提下如何将错切形变算法中的某些概念引入到射线投射法

或足迹法中以提高绘制速度,以及足迹法的明暗算法等都是值得继续深入研究的

问题。 体绘制算法

图像品质 绘制速度 算法特点 空 间

射线投射法

最高 慢 无需分割,可以利用不透明度得到整体的层次结构

占用内存大 足迹法 高 中等 占用内存小,可渐进显示 错切形变法

中等 最快 占用内存小 3D 纹理映射 较低 快 图像品质依赖帧存储

器位分辨率 变

换域 频域体绘制法 较高 快 X 光片效果,利用FFT 算法简洁 小波

域 射线投射法 高 慢 可利用不透明度得到整体的层次

结构,占用内存大 足迹法 较高 较快 X 光片效果,可渐进显示,局部细节

添加

目前国内的医学图像三维重建的体绘制技术研究依旧处于起步阶段,面对医学临床已具备的丰富的三维医学体数据和应用需求,尽快尽早地开展此类方面的研究具有广泛的应用价值和深远的发展前景。

参考文献

[1]UposonC,FaulhaberT. V-Buffer: Visible volume rendering[J]. Computer Graphics, 1988, 22(4), 59-64

[2]Westover L A. Interactive volume rendering [ A], Proceedings of the chapel hill on workshop volume visualization[ C]. Chapel Hill: Department of Computer Science, University of North Carolifornia, 1989: 9- 16.

[3]Dong F, Gordon J. V olume rendering of fine details within medical data[A].In: IEET Visualization'2001[C]. San Francisco: IEET Computer Society Press, 2001: 387-394.

[4]孙薇薇, 张桦. 三种体绘制算法的比较[J]. 天津理工大学学报, 2005, 21(4)

[5]张尤赛, 陈福民. 三维医学图像的体绘制技术综述[J]. 计算机工程与应用, 2002, 8: 18-19

[6]洪锋, 梅炯, 李明禄. 医学图象三维重建技术综述[J]. 中国图象图形学报, 2003, 8

[7]李燕, 谭鸥, 段会龙. 三维医学图象可视化技术综述[J]. 中国图象图形学报, 2001, 6

[8]陈云芝, 张彬, 程维春. 基于Matlab 的人体切片的三维重建及可视化[D]

[9]许元飞. 三维数据场可视化中体绘制技术的研究[D]. 西安: 西安科技大学, 2005

[10]彭延军, 石教英. 体绘制技术在医学可视化中的新发展[ J]. 中国图象图形学报( A 版), 2002, 12( 7): 1239-1246

[11]秦绪佳. 医学图象三维重建及可视化技术研究[D]. 大连理工大学博士论文. 2001

[12]王文举, 侯德文. 几种变换域体绘制算法的比较研究[J]. 计算机技术与发展[J]. 2008, 18(4)

[13]石玉. 直接体绘制技术研究[J]. 电脑知识与技术. 2009, 5(10)

[14]Totsuka T, Levoy M.Frequency domain volume rendering[A]. Coputer Graphics Proceedings, Annual Conference Series[C], 1993: 271-278

[15]缪琳. 三维数据场的信息处理与体绘制技术[D]. 2003

[16]Lacroute P. Analysis of apparallel volume rendering volume rendering systerm based on shear-warp factorization. IEET Transction Visualization and computer Graphics, 1996, (2): 218-231

[17]Westenberg M, Roerdink. Frequency domain V olume rendering by the wavelet X-ray transform[J]. IEET Transctions on Image Processing, 2000, 9(7): 1249-1261 [18]孙宇阳. 基于单幅图像的三维重建技术综述[J]. 北方工业大学学报, 2011, 23(1)

图像三维重建技术

1概述 随着计算机软硬件技术的快速发展,大规模复杂场景的实时绘制已经成为可能,这也加快了虚拟现实技术的发展,又对模型的复杂度和真实感提出了新的要求。虚拟场景是虚拟现实系统的重要组成部分,它的逼真度将直接影响整个虚拟现实系统的沉浸感。客观世界在空间上是三维的,而现有的图像采集装置所获取的图像是二维的。尽管图像中含有某些形式的三维空间信息,但要真正在计算机中使用这些信息进行进一步的应用处理,就必须采用三维重建技术从二维图像中合理地提取并表达这些 三维信息。 三维建模工具虽然日益改进,但构建稍显复杂的三维模型依旧是一件非常耗时费力的工作。而很多要构建的三维模型都存在于现实世界中,因此三维扫描技术和基于图像建模技术就成了人们心目中理想的建模方式;又由于前者一般只能获取景物的几何信息,而后者为生成具有照片级真实感的合成图像提供了一种自然的方式,因此它迅速成为目前计算机图形学领域中的研究热点。 2三维建模技术 三维重建技术能够从二维图像出发构造具有真实感的三维图形,为进一步的场景变化和组合运算奠定基础,从而促进图像和三维图形技术在航天、造船、司法、考古、 工业测量、 电子商务等领域的深入广泛的应用。3基于图像的三维重建技术 基于图像的建模最近几年兴起的一门新技术,它使用直接拍摄到的图像,采用尽量少的交互操作,重建场 景。 它克服了传统的基于几何的建模技术的许多不足,有无比的优越性。传统的三维建模工具虽然日益改进,但构建稍显复杂的三维模型依旧是一件非常耗时费力的工作。考虑到我们要构建的很多三维模型都能在现实世界中找到或加以塑造,因此三维扫描技术和基于图像建模技术就成了人们心目中理想的建模方式;又由于前者一般只能获取景物的几何信息,而后者为生成具有照片级真实感的合成图像提供了一种自然的方式,因此它迅速成为目前计算机图形学领域中的研究热点。 4 基于图像重建几何模型的方法 4.1 基于侧影轮廓线重建几何模型 物体在图像上的侧影轮廓线是理解物体几何形状的 一条重要线索1当以透视投影的方式从多个视角观察某一空间物体时,在每个视角的画面上都会得到一条该物体的侧影轮廓线,这条侧影轮廓线和对应的透视投影中心共同确定了三维空间中一个一般形状的锥体1显然,该物体必将位于这个锥体之内;而所有这些空间锥体的交则构成了一个包含该物体的空间包络1这个空间包络被称为物体的可见外壳,当观察视角足够多时,可见外壳就可以被认为是该物体的一个合理的逼近。鉴于此类算法一般需要大量的多视角图像,因此图像的定标工作就变得非常复杂。 4.2采用立体视觉方法重建几何模型 基于立体视觉重建三维几何是计算机视觉领域中的经典问题,被广泛应用于自动导航装置。近年来,立体视觉 图像三维重建技术 康皓,王明倩,王莹莹 (装甲兵技术学院电子工程系,吉林长春130117) 摘要:基于图像的三维重建属于计算机视觉中的一个重要的研究方向,从提出到现在已有十多年的历史。文章首先对三维重建技术做了详细阐述,并着重从计算机图形学的研究角度对基于图像建模技术进行了综述,介绍了 具有代表性的基于图像建模的方法及其最新研究进展,给出了这些方法的基本原理, 并对这些方法进行分析比较,最后对基于图像建模技术的未来研究给出了一些建议和应解决的问题。关键词:三维建模技术;图像建模技术;计算机图形学;虚拟现实中图分类号:TP271文献标识码:A 文章编号1006-8937(2009)11-0042-02 Three-dimensional image reconstruction technique KANG Hao,WANG Ming-qian,WANG Ying-ying (DepartmentofElectronicEngineering,ArmoredInstituteofTechnology,Changchun,Jilin130117,China) Abstract:Image-based Three-dimensional reconstruction is an important research direction in computer vision ,from now more than ten years'history.This article first describes three-dimensional reconstruction technique in detail and review image-based modeling techniques from the perspective of computer graphics research,introduce a representative of the method of image-based modeling and the latest research progress,give the basic principles of these methods,analysis and compare these methods,finally,give a number of recommendations and problems which should be solved on image-based modeling technology for future research. Keywords:three-dimensional modeling techniques;image modeling techniques;computer graphics;virtual reality 收稿日期:2009-03-19 作者简介:康皓(1978-),女,吉林长春人,硕士研究生,讲师,研 究方向:计算机辅助设计与编程。 TECHNOLOGICAL DEVELOPMENT OF ENTERPRISE 2009年6月Jun.2009 企业技术开发 第28卷

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

医学图像三维重建的体绘制技术综述

医学图像三维重建的体绘制技术综述 摘要:体绘制技术是目前医学图像三维重建的主要方法之一,是一种能够准确反映出数据内部信息的可视化技术,是可视化研究领域的一个重要分支,是目前最活跃的可视化技术之一。本文首先分析了医学图像三维重建的两大方法及其基本思想,并将体绘制技术与面绘制技术进行了比较;然后分别描述了射线投射法、足迹法、剪切-曲变法、基于硬件的3D纹理映射、频域体绘制法以及基于小波的体绘制等典型算法;最后通过比较分析给出了各类算法的性能评价,并在此基础上展望了体绘制技术研究的发展前景。 关键字:体绘制;三维重建;可视化;性能评价 Abstract:Volume rendering techniques is one of the main methods of 3D reconstruction of medical images currently. It's also an important branch of visual technology which can reflect the inside information of data.It is one of the most active visualization technology.This paper first introduces are the two methods of 3D reconstruction of medical image and the basic thought of them,then volume rendering technology and surface rendering technology are compared.Secondly,the author introduces some kinds of algorithm for volume rendering:Ray Casting ,Splatting,Shear-Warp,3D Texture-Mapping Hardware,Frequency Domin V olume Rendering,Wavelet .Based V olume Rendering.The differences of their performances are compared and discussed in the last. Then some results are presented and their perspective are given in the end. Key words:Volume rendering techniques;3D reconstruction of medical images;visual technology;Performance evaluation

医学图像分割方法综述

医学图像分割方法综述 林瑶,田捷1 北京,中国科学院自动化研究所人工智能实验室,100080 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 关键词:医学图像分割 综述 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...: g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。 (b) 是连通的区域。 g k (c) ,即任意两个子区域不存在公共元素。 (d) 区域满足一定的均一性条件。均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。 医学图像分割到今天仍然没有获得解决,一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像比较,不可避免的具有模糊、不均匀性等特点。另外,人体的解剖组织结构和形状复杂,而且人与人之间有相当大的差别。这些都给医学图像分割的分割带来了困难。传统的分割技术或者完全失败,或者需要一些特殊的处理技术。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中研究人员提出的新方法或对原有方法的新改进。需要指出的是,由于从不同的角度将得到不同的分类结果,本文中所涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点 1x x g N k k =),(),(y g y =∪φ=(y y g j k ∩),(),x g x 1 联系人:田捷 电话:82618465 E-mail:tian@https://www.360docs.net/doc/0f4132230.html,

三维重建综述

三维重建综述 三维重建方法大致分为两个部分1、基于结构光的(如杨宇师兄做的)2、基于图片的。这里主要对基于图片的三维重建的发展做一下总结。 基于图片的三维重建方法: 基于图片的三维重建方法又分为双目立体视觉;单目立体视觉。 A双目立体视觉: 这种方法使用两台摄像机从两个(通常是左右平行对齐的,也可以是上下竖直对齐的)视点观测同一物体,获取在物体不同视角下的感知图像,通过三角测量的方法将匹配点的视差信息转换为深度,一般的双目视觉方法都是利用对极几何将问题变换到欧式几何条件下,然后再使用三角测量的方法估计深度信息这种方法可以大致分为图像获取、摄像机标定、特征提取与匹配、摄像机校正、立体匹配和三维建模六个步骤。王涛的毕业论文就是做的这方面的工作。双目立体视觉法的优点是方法成熟,能够稳定地获得较好的重建效果,实际应用情况优于其他基于视觉的三维重建方法,也逐渐出现在一部分商业化产品上;不足的是运算量仍然偏大,而且在基线距离较大的情况下重建效果明显降低。 代表文章:AKIMOIO T Automatic creation of3D facial models1993 CHEN C L Visual binocular vison systems to solid model reconstruction 2007 B基于单目视觉的三维重建方法: 单目视觉方法是指使用一台摄像机进行三维重建的方法所使用的图像可以是单视点的单幅或多幅图像,也可以是多视点的多幅图像前者主要通过图像的二维特征推导出深度信息,这些二维特征包括明暗度、纹理、焦点、轮廓等,因此也被统称为恢复形状法(shape from X) 1、明暗度(shape from shading SFS) 通过分析图像中的明暗度信息,运用反射光照模型,恢复出物体表面法向量信息进行三维重建。SFS方法还要基于三个假设a、反射模型为朗伯特模型,即从各个角度观察,同一点的明暗度都相同的;b、光源为无限远处点光源;c、成像关系为正交投影。 提出:Horn shape from shading:a method for obtaining the shape of a smooth opaque object from one view1970(该篇文章被引用了376次) 发展:Vogel2008年提出了非朗伯特的SFS模型。 优势:可以从单幅图片中恢复出较精确的三维模型。 缺点:重建单纯依赖数学运算,由于对光照条件要求比较苛刻,需要精确知道光源的位置及方向等信息,使得明暗度法很难应用在室外场景等光线情况复杂的三维重建上。 2、光度立体视觉(photometric stereo) 该方法通过多个不共线的光源获得物体的多幅图像,再将不同图像的亮度方程联立,求解出物体表面法向量的方向,最终实现物体形状的恢复。 提出:Woodham对SFS进行改进(1980年):photometric method for determining surface orientation from multiple images(该文章被引用了891次) 发展:Noakes:非线性与噪声减除2003年; Horocitz:梯度场合控制点2004年; Tang:可信度传递与马尔科夫随机场2005年; Basri:光源条件未知情况下的三维重建2007年; Sun:非朗伯特2007年; Hernandez:彩色光线进行重建方法2007年;

图像处理论文

图像处理技术近期发展及应用 摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.近期发展及应用领域

核医学图像重建快速迭代算法OSEM

一、引言核医学影像设备如单光子断层扫描仪(SinglePositronEmissionComputeTomography,SPECT)、正电子发射断层扫描仪(PositronEmissionTomo-graphy,PET)融合了当今最高层次的核医学技术,是目前医学界公认的极为先进的大型医疗诊断成像设备,在肿瘤学、心血管疾病学和神经系统疾病学研究中,以及新医药学开发研究等领域中已经显示出它卓越的性能。随着核医学断层影像设备的广泛应用和计算机技术的迅速发展,图像重建方法作为该类设备中的一个关键技术,其研究工作越来越受到人们的重视。本文概述了传统的图像重建方法,并详细介绍了一种具有较高图像质量和较短计算时间的重建算法—有序子集最大期望值方法(Ord-eredSubsetsExpectationMaximization,OSEM)在核医学影像设备中的应用。二、传统的图像重建方法在核医学影像设备中,需要根据物体某一层面在不同探测器上检测到的投影值来重建该断层图像层面,即二维图像重建。传统的图像重建方法主要分为解析法和迭代法。解析法是以中心切片定理(CentralSliceTheorem)为理论基础的求逆过程。常用的一种解析法称为滤波反投影法(FilteredBack-Projection,FBP)。FBP法首先在频率空间对投影数据进行滤波,再将滤波后的投影数据反投影得到重建断层图像。滤波器选为斜坡函数和某一窗函数的乘积,窗函数用于控制噪声,其形状权衡着统计噪声和空间分辨。常用的窗函数有Hanning窗,Hamming窗,Butterworth窗以及Shepp-Logan窗。解析法的优点是速度快,可用于临床实时断层重建。但当测量噪声较大或采样不充分时,这类算法的成像效果不甚理想,尤其是在核医学断层图像重建中对小尺寸源的成像效果差(即所谓偏体积效应)。在滤波中如果对高频信号不做抑制,截止频率高,此时空间分辨最好,但所重建的图像不平滑,易产生振荡和高频伪影;反之,采用较低截止频率,过多压抑高频成分的低通窗函数会造成重建图像的模糊,故在变换法中低噪声和高分辨对滤波器的要求是矛盾的,需折衷选择。且难以在重建中引入各种校正和约束,如衰减校正等。迭代法是从一个假设的初始图像出发,采用迭代的方法,将理论投影值同实测投影值进行比较,在某种最优化准则指导下寻找最优解。迭代求解方法的基本过程是: (1)假定一初始图像f(0); (2)计算该图像投影d; (3)同测量投影值d对比; (4)计算校正系数并更新f值; (5)满足停步规则时,迭代中止; (6)由新的f作为f(0)从(2)重新开始。该方法最大优点之一是可以根据具体成像条件引入与空间几何有关的或与测量值大小有关的约束和条件因子,如可进行对空间分辨不均匀性的校正、散射衰减校正、物体几何形状约束、平滑性约束等控制迭代的操作。其中实现对比的方法有多种,施加校正系数的方法也有多种。在某些场合下,比如在相对欠采样、低计数的核医学成像中可发挥其高分辨的优势。但是迭代法收敛速度慢,运算时间长,运算量大,而且重建图像会随着迭代次数的增加而趋于“老化”甚至发散,出现高频伪影,这些缺点极大地限制了它在临床中的应用。 [!--empirenews.page--]三、OSEM迭代算法为了加快收敛速度,减少运算时间,提高图像质量,人们提出了很多快速算法,其中有序子集最大期望值法是很有应用前景的一种快速迭代重建算法,它是在最大似然期望法(MaximumLike-lihoodExpectationmaximization,MLEM)的基础上发展起来的。 MLEM方法旨在寻找与测量的投影数据具有最大似然性(ML)的估计解,其迭代过程是由最大期望值算法(EM)来实现的。由于是以统计规律为基础,MLEM重建法具有很好的抗噪声能力,是目前公认为最优秀的迭代重建算法之一,尤其是在处理统计性差的数据时,更能显示出它相对于解析法的优越性,但是这种方法仍然存在迭代法的运算量大、运算时间长等缺点。MLEM方法在每一次迭代过程中,使用所有的投影数据对重建图像每一个象素点的值进行校正,重建图像只被替换一次。 OSEM方法在每一次迭代过程中将投影数据分成N个子集,每一个子集对重建图像各象素点值校正以后,重建图像便被更新一次,所有的子集运算一遍,称为一次迭代过程,它所需要的运算时间与FBP重建的时间基本相等。在ML-EM方法一次迭代过程中,重建图像被更新一次,而在OSEM方法中重建图像被更新N次,所以OSEM方法具有加快收敛的作用。OSEM 算法中子集的选取和划分有很多种,在SPECT中投影数据可以根据每个采样角度实时地进行划分和重建,在PET中由于各个探测器上测得的投影数据是在符合判选之后同时获得的,因此可以在全部投影数据采集完成之后划分子集。不同子集的重建顺序也可以有选择的进行,如

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

CT三维重建的指南

CT三维重建指南 1、脊柱重建: 腰椎: 西门子及GE图像均发送至西门子工作站,进入3D选项卡 A、椎体矢状位及冠状位: a. 选择骨窗薄层图像(西门子 1mm 70s;GE 0.625mm BONE),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR; b. 横断位作为定位相,做矢状位重建,打开定位线选项卡,点击垂直定位线,变换数字顺序,使其从右向左,选择层厚3mm,层间距3mm,方向平行于棘突-椎体轴线,两边范围包全椎体及横突根部(一般为19层),点击确定,保存; c. 矢状位作为定位相,打开曲面重建选项卡,沿各椎体中心弧度画定位相曲线,范围包全,双击结束,选择层厚3mm,层间距3mm,变换数字顺序,使其从前向后,范围前至椎体前缘,后至棘突根部(一般为19层),点击确定,保存。 B、椎间盘重建: a. 选择软组织窗薄层图像(西门子 1mm 30s;GE 0.625mm STND),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR; b. 矢状位作为定位相,做椎间盘重建,打开定位线选项卡,点击水平定位线,变换数字顺序,使其从上向下,选择层厚3mm,层间距3mm,层数5层,方向沿椎间隙走行方向,做L1/2-L5/S1椎间盘,注意右下角图像放大,逐个保存。 注意:脊柱侧弯患者,椎间盘重建过程中需不断调整冠状位定位相上矢状定位线(红色),使其保持与相应椎间隙垂直。 C、椎体横断位重建: 椎体骨质病变者,如压缩性骨折、骨转移、PVP术后等病人,加做椎体横断位重建,矢状位图像做定位相,沿病变椎体轴向,做横断位重建,注意重建图像放大,保存。 打片: 矢状位及冠状位二维一张:8×5;椎间盘一张:6×5; 若为椎体骨质病变者,椎间盘图像不打,打椎体横断位重建图像,共两张胶片。

基于MATLAB的CT图像三维重建的研究与实现

基于MATLAB的CT图像三维重建的研究与实现 作者:张振东 来源:《电子世界》2013年第03期 【摘要】介绍了利用MATLAB软件对CT切片图像进行三维重建的方法与程序实现。分别对体绘制法、面绘制法实现的三维重建进行了研究与讨论。利用MATLAB软件制作GUI界面,实现对肺部CT图像的三维重建以及切分操作。 【关键词】体绘制;面绘制;三维重建;GUI界面 CT(Computed Tomography)技术是指利用计算机技术对被测物体断层扫描图像进行重建获得三维断层图像的扫描方式。自从CT被发明后,CT已经变成一个医学影像重要的工具,虽然价格昂贵,医用X-CT至今依然是诊断多种疾病的黄金准则。利用X射线进行人体病灶部位的断层扫描,可以得到相应的CT切片图像。医生可以通过对连续多张CT切片图像的观察,来确定有无病变。应用三维重建技术可以将连续的二维CT切片图像合成三维可视化图像,便于观察研究。医学图像的三维建在判断病情、手术设计、医患沟通和医学教学等方面具有很高的研究价值。CT图像通常是以DICOM格式存储,实验中通常需要转换格式。本文分别研究讨论了利用MATLAB软件实现对JPG格式的CT切片三维重建的两种常用方法,并制作GUI界面实现切分操作。 1.MATLAB软件在生物切片图像三维重建中的应用 MATLAB7.O提供了20类图像处理函数,涵盖了图像处理包括近期研究成果在内的几乎所有的技术方法,是学习和研究图像处理的人员难得的宝贵资料和加工工具箱。 Matlab软件环境提供了各种矩阵运算、操作和图象显现工具。它已经在生物医学工程,图象处理,统计分析等领域得到了广泛的应用。在三维重建方面,使用的数据量相对较大,同时涉及到大量的矩阵、光线、色彩、阴影和观察视角的计算,对于非计算机专业研究人员来讲,难度很大。利用MATLAB软件中的图像处理函数、工具箱操作,可以大大简化研究。 2.常用的三维重建方法 2.1 面绘制 面绘制法是指利用几何单元拼接拟合物体表面来描述物体的三维结构,实现三维重建,也被称为间接绘制方法。

CT图像三维重建(附源码)

程序流图: MATLAB 源码: clc; clear all; close all; % load mri %载入mri 数据,是matlab 自带库 % ph = squeeze(D); %压缩载入的数据D ,并赋值给ph ph = phantom3d(128); prompt={'Enter the Piece num(1 to 128):'}; %提示信息“输入1到27的片的数字” name='Input number'; %弹出框名称 defaultanswer={'1'}; %默认数字 numInput=inputdlg(prompt,name,1,defaultanswer) %弹出框,并得到用户的输入信息 P= squeeze(ph(:,:,str2num(cell2mat(numInput))));%将用户的输入信息转换成数字,并从ph 中得到相应的片信息P imshow(P) %展示图片P D = 250; %将D 赋值为250,是从扇束顶点到旋转中心的像素距离。 dsensor1 = 2; %正实数指定扇束传感器的间距2 F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1); %通过P ,D 等计算扇束的数据值 dsensor2 = 1; %正实数指定扇束传感器的间距1 F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2); %通过P ,D 等计算扇束的数据值 dsensor3 = 0.25 %正实数指定扇束传感器的间距0.25 [F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,... 'FanSensorSpacing',dsensor3); %通过P ,D 等计算扇束的数据值,并得到扇束传感器的位置sensor_pos3和旋转角度fan_rot_angles3 figure, %创建窗口 imagesc(fan_rot_angles3, sensor_pos3, F3) %根据计算出的位置和角度展示F3的图片 colormap(hot); %设置色图为hot colorbar; %显示色栏 xlabel('Fan Rotation Angle (degrees)') %定义x 坐标轴 ylabel('Fan Sensor Position (degrees)') %定义y 坐标轴 output_size = max(size(P)); %得到P 维数的最大值,并赋值给output_size Ifan1 = ifanbeam(F1,D, ... 'FanSensorSpacing',dsensor1,'OutputSize',output_size); %根据扇束投影数据F1及D 等数据重建图像 figure, imshow(Ifan1) %创建窗口,并展示图片Ifan1 title('图一'); disp('图一和原图的性噪比为:'); result=psnr1(Ifan1,P); Ifan2 = ifanbeam(F2,D, ... 'FanSensorSpacing',dsensor2,'OutputSize',output_size); %根据扇束投影数据F2及D 等数据重建图像 figure, imshow(Ifan2) %创建窗口,并展示图片Ifan2 disp('图二和原图的性噪比为:'); result=psnr1(Ifan2,P); title('图二'); Ifan3 = ifanbeam(F3,D, ... 生成128的输入图片数字对图片信息进行预处 用函数fanbeam 进行映射,得到扇束的数据,并用函数ifanbeam 根据扇束投影数据重建图像,并计算重建图像和原图的 结束

图像分割阈值选取技术综述

图像分割阈值选取技术综述 中科院成都计算所刘平2004-2-26 摘要 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域.本文是在阅读大量国内外相关文献地基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法地评估做简要介绍. 关键词 图像分割阈值选取全局阈值局部阈值直方图二值化 1.引言 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交地区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显地不同[37].简单地讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理.图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用地图像分割方法,也不存在一种判断是否分割成功地客观标准. 阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域,例如,在红外技术应用中,红外无损检测中红外热图像地分割,红外成像跟踪系统中目标地分割;在遥感应用中,合成孔径雷达图像中目标地分割等;在医学应用中,血液细胞图像地分割,磁共振图像地分割;在农业项目应用中,水果品质无损检测过程中水果图像与背景地分割.在工业生产中,机器视觉运用于产品质量检测等等.在这些应用中,分割是对图像进一步分析、识别地前提,分割地准确性将直接影响后续任务地有效性,其中阈值地选取是图像阈值分割方法中地关键技术. 2.阈值分割地基本概念 图像阈值化分割是一种最常用,同时也是最简单地图像分割方法,它特别适用于目标和背景占据不同灰度级范围地图像[1].它不仅可以极大地压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前地必要地图像预处理过程.图像阈值化地目地是要按照灰度级,对像素集合进行一个划分,得到地每个子集形成一个与现实景物相对应地区域,各个区域内部具有一致地属性,而相邻区域布局有这种一致属性.这样地划分可以通过从灰度级出发选取一个或多个阈值来实现. 阈值分割法是一种基于区域地图像分割技术,其基本原理是:通过设定不同地特征阈值,把图像像素点分为若干类.常用地特征包括:直接来自原始图像地灰度或彩色特征;由原始灰度或彩色值变换得到地特征.设原始图像为f(x,y>,按照一定地准则在f(x,y>中找到特征值T,将图像分割为两个部分,分割后地图像为 若取:b0=0<黑),b1=1<白),即为我们通常所说地图像二值化. <原始图像)<阈值分割后地二值化图像) 一般意义下,阈值运算可以看作是对图像中某点地灰度、该点地某种局部特性以及该点在图像中地位置地一种函数,这种阈值函数可记作 T(x,y,N(x,y>,f(x,y>> 式中,f(x,y>是点(x,y>地灰度值;N(x,y>是点(x,y>地局部邻域特性.根据对T地不同约束,可以得到3种不同类型地阈值[37],即 点相关地全局阈值T=T(f(x,y>> (只与点地灰度值有关> 区域相关地全局阈值T=T(N(x,y>,f(x,y>> (与点地灰度值和该点地局部邻域特征有关> 局部阈值或动态阈值T=T(x,y,N(x,y>,f(x,y>> (与点地位置、该点地灰度值和该点邻域特征有关> 图像阈值化这个看似简单地问题,在过去地四十年里受到国内外学者地广泛关注,产生了数以百计地阈值选取方法[2-9],但是遗憾地是,如同其他图像分割算法一样,没有一个现有方法对各种各样地图像都能得到令人满意地结果,甚至也没有一个理论指导我们选择特定方法处理特定图像. 所有这些阈值化方法,根据使用地是图像地局部信息还是整体信息,可以分为上下文无关(non-

机器视觉—三维重建技术简介

三维重建技术简介 一、视觉理论框架 1982年,Marr立足于计算机科学,首次从信息处理的角度系统的概括了心理生理学、神经生理学等方面已经取得的重要成果,提出了一个迄今为止比较理想的视觉理论框架。尽管Marr提出的这个视觉理论框架仍然有可以进行改进和完善的瑕疵,但是在近些年,人们认为,计算机视觉这门学科的形成和发展和该框架密不可分。 第一方面,视觉系统研究的三个层次。 Marr认为,视觉是一个信息处理系统,对此系统研究应分为三个层次:计算理论层次,表示与算法层次,硬件实现层次,如下图所示: 计算机理论层次是在研究视觉系统时首先要进行研究的一层。在计算机理论层次,要求研究者回答系统每个部分的计算目的与计算策略,即视觉系统的输入和输出是什么,如何由系统的输入求出系统的输出。在这个层次上,将会建立输入信息和输出信息的一个映射关系,比如,系统输入是二维灰度图像,输出则是灰度图像场景中物体的三维信息。视觉系统的任务就是研究如何建立输入输出之间的关系和约束,如何由二维灰度图像恢复物体的三维信息。 在表示与算法层次,要给出第一层中提到的各部分的输入信息、输出信息和内部信息的表达,还要给出实现计算理论所对应的功能的算法。对于同样的输入,如果计算理论不同,可能会产生不同的输出结果。 最后一个层次是硬件实现层次。在该层次,要解决的主要问题就是将表示与算法层次所提出的算法用硬件进行实现。 第二方面,视觉信息处理的三个阶段。 Marr认为,视觉过程分为三个阶段,如表所示:

第一阶段,也称为早期阶段,该阶段是求取基元图的阶段,该阶段对原始图像进行处理,提取出那些能够描述图像大致三维形状二维特征,这些特征的集合构成所构成的就是基元图(primary sketch)"。 第二阶段也称中期阶段,是对环境的2.5维描述,这个阶段以观察者或者摄像机为中心,用基元图还原场景的深度信息,法线方向(或一说物体表面方向)等,但是在该阶段并没有对物体进行真正的三维恢复,因此称为2.5维。 第三阶段也称为后期阶段,在一个固定的坐标系下对2.5维图进行变换,最终构造出场景或物体的三维模型。 二、三维重建技术现状 目前三维重建的方法大致可分为三类,即:用建模软件构造的方式,多幅二维图像匹配重建的方式以及三维扫描重建的方式。 对于第一种方式,目前使用比较广泛的是3D Max, Maya, Auto Cad以及MultiGen-Creator等软件。这些三维建模软件,一般都是利用软件提供的一些基本几何模型进行布尔操作或者平移旋转缩放等操作,来创建比较复杂的三维模型。这样所构建出来的模型,比较美观,而且大小比例等非常精确。然而,这需要建模者精确知道三维场景的尺寸、物体位置等信息,如果没有这些信息,就无法建立精准的模型。 第二种方式是利用实时拍摄的图像或者视频恢复场景的三维信息。这种方式是基于双目立体视觉,对同一物体拍摄不同角度的图像,对这些图像进行立体匹

相关文档
最新文档