同步网时钟及等级

同步网时钟及等级
同步网时钟及等级

同步网时钟及等级

基准时钟

同步网由各节点时钟和传递同步定时信号的同步链路构成.同步网的功能是准确地将同步定时信号从基准时钟传送给同步网的各节点,从而调整网中的各时钟以建立并保持信号同步,满足通信网传递各种通信业务信息所需的传输性的需要,因此基准时钟在同步网中至关重要.

基准时钟源由网络中心基准时钟(NPRC)提供.它由两个铯原子钟或二套接收

GPS/GLONASS的同步时钟设备或二套接收双GPS的同步时钟设备组成.本地基准时钟(LPRC)设置在大区或重要的汇接节点上,配置一套接收GPS/GLONASS双星或双GPS的同步时钟设备,具有双备份铷钟,并可通过地面同步链路接收邻近区域内的基准定时信号.由于铯原子钟价格较高,维护管理不方便,作为备用;双星接收机同步时钟设备(包括双GPS)作为主用,它可以提供频率稳定度优于1×10-11长期精度(实际可达1×10-12/

天,N×10-13/周),时间精度小于300 ns(实际可达100ns),同时还可利用中国电信国际局基准信号同步本站时钟设备作为备用基准输入.

在各大区中心和重要汇接中心,配置本地基准时钟(LPRC),具有同时接收GPS和GLONASS卫星的同步时钟设备,同时通过PDH 2Mb/s传输链路或SDH的STM-N线路信号接收来自邻近的基准定时信号.

基准时钟信号的传送与分配

在数字同步网中,高稳定度的基准时钟是同步网的最高基准源,通过等级分配结构提供同步信息.例如根据光缆干线网络示意图,设置于一级节点(NPRC)网络中心基准时钟通过PDH 或SDH传输系统向二级节点和三级节点传递定时信号.这些数字延伸和基准时钟一起称为基准分配网络.基准分配网络应当设置主用和备用,如果某个二级时钟失去了与基准时钟的同步,它将以保持方式工作,并且在必要时使用备用传输路由满足滑动率指标.因此,在基准分配网络内短时间的中断对同步影响很小,甚至没有影响.

局内综合定时供给

局内综合定时供给发生器,受来自同步链路的至少两个2048Kb/s信号同步,定时供给发生器向楼内的所有被同步的时钟提供2048Kb/s,2048KHZ等多种定时信号.

楼内同步链路选择:

(1)为安全可靠起见,楼内同步链路尽可能分散.例如,主备用定时尽可能来自不同路由;

(2)为防止基准发生故障性中断,应保证同步链路能适时倒换和识别;

(3)为保证基准的质量,在楼内应指定基准传输路由.

同步定时信号的传递方式

当采用分布式多基准钟同步系统时,各基准时钟输出定时信号直接同步本站长途交换

机.SDH传输系统和DDN网,同时通过传输系统向各网元时钟提供定时信号.

同步区的划分

各个通信运营公司都必须建立自己的数字同步网,拥有独立的基准参考源和NPRC.由于各运营公司既相互竞争,又要互通互连,因此最好的方法:采用基准参考源均来自卫星信号的同步时钟设备.

各个通信运营公司同步区划分原则上采用建立全国中心(包括大区网络枢纽中

心)NPRC.而同步区划分按每一个分公司(省)为一个同步区建立本地LPRC,每一个同步区再划分几个子同步区(或电信区),在沿海发达地区子同步区范围可更小一点,这样更便于维护管理,同时提高各同步区定时信号质量.

同步网时钟及等级

一级基准时钟:

一级基准时钟分为两种:

⑴全网基准钟(PRC):由自主运行的铯原子钟组或铯原子钟与卫星定位系统(GPS 和/或GLONASS及其他定位系统)组成。PRC是全网同步基准的根本保障,PRC的设置应符合以下原则:

——PRC的设置数量及分布应满足省际SDH传送层的同步稳定和安全可靠性要求,即:宜使省际SDH传送网层有来自两个不同PRC的同步基准源;

——PRC的设置数量及分布应有利于对全程全网漂动指标的控制;

——PRC应设置在省际传送层枢纽节点所在的通信搂内。

⑵区域基准钟(LPR),由卫星定时系统(GPS和/或GLONASS及其他定位系统,下同)和铷原子钟组成。它既能接收卫星定位系统的同步,也能同步于PRC,LPR是各省的同步基准源。LPR的设置应符合以下原则:

——LPR的设置数量及分布应满足省内SDH传送网层的同步稳定和安全可靠性要求,即:宜使省内SDH传送网层源自两个不同LPR的同步基准源;

——原则上每个省设置两个LPR(如该省已设有1个PRC,则需设1个LPR),地点选择在省际传送层与省内传送层交汇节点所在的通信搂内。

二级节点时钟(SSU-T)

二级节点时钟是各地市接收LPR同步基准源的同步节点。二级节点时钟的设置应符合以下原则:

——二级节点时钟的设置数量及分布应满足本地SDH传送层的同步稳定和安全可靠性要求,即:宜使本地SDH传送网层源自两个不同SSU-T的同步基准源;

——二级节点时钟设置地点选择在省内传送层与本地传送层交汇节点所在的通信搂内。

——未设有PRC和LPR的省中心一级交换中心、地市二级交换中心、以及本地网的汇接局所在通信楼内也可设置二级节点时钟三级节点时钟(SSU-L)

三级节点时钟由高稳晶体钟组成。三级节点时钟宜设置在本地网端局以及传送层汇聚节点处所在通信楼。三级节点时钟的设置应根据通信楼内业务节点发展、局房条件、本地定时平台上的SDH系统可提供的同步输出端口等因素综合考虑,要切实注意技术经济的实用性和合理性。

表1 同步网的分级和时钟设置

网络时钟系统方案设计

时钟系统 技术方案 烟台北极星高基时间同步技术有限公司 2012年3月

第一部分:时钟系统技术方案 一、时钟系统概述 1.1概述 根据办公楼的实际情况,特制定如下施工设计方案: 时钟系统主要由GPS接收装置、中心母钟、二级母钟(中继器)、全功能数字显示子钟、、传输通道和监测系统计算机组成。 系统中心母钟设在中心机房内,其他楼各设备间设置二级母钟,在各有关场所安装全功能数字显示子钟。 系统中心母钟接收来自GPS的标准时间信号,通过传输通道传给二级母钟,由二级母钟按标准时间信号指挥子钟统一显示时间;系统中心母钟还通过传输系统将标准时间信号直接传给各个子钟,为楼宇工作人员提供统一的标准时间 二、时钟系统功能 根据本工程对时钟系统的要求,时钟系统的功能规格如下: 时钟系统由GPS校时接收装置(含防雷保护器)、中心母钟、扩容接口箱、二级母钟、数字式子钟、监控终端(也称监测系统计算机)及传输通道构成。其主要功能为: ☉显示统一的标准时间信息。 ☉向其它需要统一时间的系统及通信各子系统网管终端提供标准时间信息。 2.1 中心母钟 系统中心母钟设置在控制中心设备室内,主要功能是作为基础主时钟,自动接收GPS的标准时间信号,将自身的精度校准,并分配精确时间信号给子钟,二级母钟和其它需要标准时间的设备,并且通过监控计算机对时钟系统的主要设备进行监控。 中心母钟主要由以下几部分组成: ☉标准时间信号接收单元 ☉主备母钟(信号处理单元) ☉分路输出接口箱 ☉电源 中心母钟外观示意图见(附图) 2.1.1标准时间信号接收单元 标准时间信号接收单元是为了向时间系统提供高精度的时间基准而设置的,用以实现时间系统的无累积误差运行。 在正常情况下,标准时间信号接收单元接收来自GPS的卫星时标信号,经解码、比对后,经由RS422接口传输给系统中心母钟,以实现对母钟精度的校准。 系统通过信号接收单元不断接收GPS发送的时间码及其相关代码,并对接收到的数据进行分析,判断这些数据是否真实可靠。如果数据可靠即对母钟进行校对。如果数据不可靠便放弃,下次继续接收。

铁路真题及答案2014

2014 年度全国一级建造师执业资格考试试卷 专业工程管理与实务(铁路) 应考人员注意事项 本试卷科目代码为“4”,请将此代码和应考人员信息填涂、填写在答题卡相应栏目上。全卷共三大题,全部在答题卡上作答。其中第一、二大题为客观题,共30 题,连续编号,请按题号在答题卡上将所选选项对应的字母涂黑;第三大题共5 题,请在答题卡的指定区域内作答,不得将答案写出黑框之外,否则会影响考试成绩。本试卷所有填涂部分请使用2B 铅笔,书写部分请使用黑色钢笔或签字笔。在试卷上作答无效。 一、单项选择题(共20 题。每题1 分。每题的备选项中。只有1 个最符合题意) 1.最终检查施工测量质量的单位应是(D )。 A. 建设单位 B.监理单位 C.设计单位 D.施工单位 2.根据施工测量缺陷分类,属于重缺陷的是(B )。 A.仪器未经计量检定 B.控制点点位选择不当 C.起算数据采用错误 D.测量记录不规整 3.下列高速铁路工程测量平面控制网中,主要为勘测和施工提供控制基准的是(C )。 A. CP0 B. CPⅠ C. CPⅡ D. CPⅢ 4.在水泥使用中,对其质量有怀疑时应采取的措施是(C )。 A.退货 B. 报废 C. 复验 D. 降低等级使用 5.配置抗渗混凝土应优先选用( A )。 A.普通硅酸盐水泥 B.硅酸盐水泥 C.快硬硅酸盐水泥 D.矿渣水泥 6.下列检测方法中,适用于桥梁钻孔桩无损检测的是(B )。 A.拔出法 B.小应变法 C.钻芯法 D. 回弹法 7.影响拌合混凝土流动性的主要因素是( C )。 A.水泥品种 B.水泥用量 C.混凝土单方用水量 D. 混凝土含砂率 8.对于开挖深度为10~15m的石质傍山路堑地段,宜采用的开挖方法是( D )。 A.全断面开挖 B.横向台阶开挖 C.逐层顺坡开挖 D. 纵向台阶开挖 9.下列地基处理方法中,施工前必须要进行工艺性试验的是( A )。 A.碎石桩 B.抛石挤淤 C.堆载预压 D. 换填 10.对于开挖深度8~10m,地下水不发育的软弱岩质路堑地段,宜采用的路基支挡结构是(B )。 A.扶壁式挡土墙 B.土钉墙 C.悬臂式挡土墙 D.加筋土挡土墙 11.桥梁深水基础钢板桩围堰的施工顺序是(A )。 A.定位桩插打→围囹安装→钢板桩插打→钢板桩合龙 B.围囹安装→定位桩插打→钢板桩插打→钢板桩合龙 C.钢板桩插打→定位桩插打→围囹安装→钢板桩合龙 D.钢板桩插打→围囹安装→定位桩插打→钢板桩合龙

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

时钟同步网教材

4 时钟同步网 4.1 一般规定 4.1.1 铁路时钟同步网(又称“频率同步网”)用于为铁路数字通信等网络提供基准频率信号。 4.1.2铁路时钟同步网由一级时钟节点、二级时钟节点、三级时钟节点、定时链路、网管系统及配套设备组成。 4.1.3铁路时钟同步网分为骨干同步网和铁路局内同步网。铁路骨干同步网由全网基准时钟(简称PRC、一级时钟节点)、区域基准时钟(简称LPR、一级时钟节点)、定时链路和网管系统组成;铁路局内同步网由LPR、二级时钟节点(SSU-T)、三级时钟节点(SSU-L)、定时链路和网管系统组成。原则上骨干同步网为一个同步区,每个铁路局为一个同步区。全路采用混合同步方式,每个同步区内采用主从同步方式。 4.1.4 时钟同步网的网络管理分为二级。一级网管设置在通信中心,负责铁路骨干同步网的管理;二级网管设置在各铁路局,负责铁路局内同步网的管理,在同步时钟设备所在地根据需要设置本地维护终端。 4.2 设备管理 4.2.1 时钟同步专业与其他专业的维护界面以同步时钟设备配线架上的连接器为界,连接器(含)至同步时钟设备由同步专业维护。 4.2.2 维护部门应根据时钟同步网维护需要,配备原子钟、时频测试仪、频率计、SDH分析仪(具备抖动、漂移测试功能)等相关仪表。 4.2.3 维护部门应具备以下技术资料: (1)相关工程竣工资料、验收测试记录; (2)时钟同步网网图; (3)机架面板图; (4)端口运用台账;

(5)应急预案; (6)设备及仪表技术资料(含说明书、维护手册、操作手册等)。 4.3 设备及网络维护 4.3.1时钟同步网维修项目与周期见表4.3.1。 表4.3.1 时钟同步网维修项目与周期 类别序号项目与内容周期备注 日常检修1 设备状态检查 日 网管或机房 2 告警等事件检查分析处理网管 3 卫星接收机运行状态检查 月 网管 4 地面输入链路的频偏统计 5 时钟设备(含卫星信号)频率偏差检查 季 网管或仪表6 设备表面清扫机房(雷雨 后天馈线及 防雷检查)7 卫星接收机天线馈线及周边环境检查 8 定时链路状态检查 网管 9 系统数据备份并转储 集中检修1 时钟设备输出口频率偏差测试 年 开通3年及 以上设备每 种类型端口 使用仪表抽 测1路 2 时钟设备输出口MTIE、TDEV测试 3 时钟设备输出口抖动测试 4 设备地线检查、天馈线防雷装置检查雨季前 5 配线及标签检查 重点整修1 承担定时链路的SDH网元SEC时钟输出口抖 动测试 根据需 要 仪表 2 承担定时链路的SDH网元SEC时钟输出 MTIE、TDEV测试 3 定时链路SDH网元数检查、调整网管 4 系统隐患整治可根据需要 检查各项质 量指标 5 系统版本升级 6 网络优化调整 4.4 质量标准 4.4.1时钟同步设备、SDH设备应具备正确标示、识别、传送同步状态信息(SSM)的功能。各级时钟同步设备、SDH网元时钟均应处于正常跟踪状态,且主备用时钟输入口的时钟质量等级均应达到一级时钟等级。

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

GPS时钟同步装置K用户手册(C型D型)

一、概述 随着计算机网络的迅猛发展,网络应用已经非常普遍,如电力、金融、通信、交通、广电、安防、石化、冶金、水利、国防、医疗、教育、政府机关、IT等领域的网络系统需要在大范围保持计算机的时间同步和时间准确,因此有一个好的标准时间校时器是非常必要的。为了适应这些领域对于时间越来越精密的要求,锐呈公司精心设计、自主研发了K系列NTP网络时间服务器。该装置以美国全球定位系统(GPS)为时间基准,内嵌国际流行的NTP-SERVER服务,以NTP/SNTP协议同步网络中的所有计算机、控制器等设备,实现网络授时。 K806卫星同步时钟-C型、D型(GPS时间服务器、NTP时间服务器、时间服务器、GPS 网络同步时钟、网络时钟、GPS网络时间服务器、NTP网络时间服务器)采用SMT表面贴装技术生产,以高速芯片进行控制,无硬盘和风扇设计,精度高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单、全自动智能化运行,免操作维护,适合无人值守。该产品可以为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存维护等系统提供精密的标准时间信号和时间戳服务。 二、安全须知 1.使用本装置之前,请您仔细阅读用户手册和装置随带的其它用户说明。 2.非专业人员请勿随意打开机箱,不能改动任何跳线设置,以免影响装置正常工作。3.避免金属线头(丝)或其它金属物落入机箱内,以防止短路或其它故障的发生。4.装置运行过程中,非专业人员不可随意按动装置前面板的按键。 5.装置使用之前,请将装置后面板上的接地端可靠接地。 6.在接电源之前,请确认装置后面板和用户手册上的电源要求,按要求接入电源。7.不同类型的对时信号输出的信号电压、电流幅值不同,在将信号接入被对时设备前请确认所接对时信号类型是否正确,以免损坏被对时设备接口。 三、装置的特点 1.精度高,同步快。

同步网时钟及等级

同步网时钟及等级 基准时钟 同步网由各节点时钟和传递同步定时信号的同步链路构成.同步网的功能是准确地将同步定时信号从基准时钟传送给同步网的各节点,从而调整网中的各时钟以建立并保持信号同步,满足通信网传递各种通信业务信息所需的传输性的需要,因此基准时钟在同步网中至关重要. 基准时钟源由网络中心基准时钟(NPRC)提供.它由两个铯原子钟或二套接收 GPS/GLONASS的同步时钟设备或二套接收双GPS的同步时钟设备组成.本地基准时钟(LPRC)设置在大区或重要的汇接节点上,配置一套接收GPS/GLONASS双星或双GPS的同步时钟设备,具有双备份铷钟,并可通过地面同步链路接收邻近区域内的基准定时信号.由于铯原子钟价格较高,维护管理不方便,作为备用;双星接收机同步时钟设备(包括双GPS)作为主用,它可以提供频率稳定度优于1×10-11长期精度(实际可达1×10-12/ 天,N×10-13/周),时间精度小于300 ns(实际可达100ns),同时还可利用中国电信国际局基准信号同步本站时钟设备作为备用基准输入. 在各大区中心和重要汇接中心,配置本地基准时钟(LPRC),具有同时接收GPS和GLONASS卫星的同步时钟设备,同时通过PDH 2Mb/s传输链路或SDH的STM-N线路信号接收来自邻近的基准定时信号. 基准时钟信号的传送与分配 在数字同步网中,高稳定度的基准时钟是同步网的最高基准源,通过等级分配结构提供同步信息.例如根据光缆干线网络示意图,设置于一级节点(NPRC)网络中心基准时钟通过PDH 或SDH传输系统向二级节点和三级节点传递定时信号.这些数字延伸和基准时钟一起称为基准分配网络.基准分配网络应当设置主用和备用,如果某个二级时钟失去了与基准时钟的同步,它将以保持方式工作,并且在必要时使用备用传输路由满足滑动率指标.因此,在基准分配网络内短时间的中断对同步影响很小,甚至没有影响. 局内综合定时供给 局内综合定时供给发生器,受来自同步链路的至少两个2048Kb/s信号同步,定时供给发生器向楼内的所有被同步的时钟提供2048Kb/s,2048KHZ等多种定时信号. 楼内同步链路选择: (1)为安全可靠起见,楼内同步链路尽可能分散.例如,主备用定时尽可能来自不同路由; (2)为防止基准发生故障性中断,应保证同步链路能适时倒换和识别;

传输系统中的时钟同步技术

传输系统中的时钟同步技术同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。摘要:网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。基本概念:抖动和漂移抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。图 1.抖动示意抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。抖动类型根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。图 2.以高斯概率密度函数表示的随机抖动对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。 3[!--empirenews.page--] 由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真(PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。图 3,总抖动的双模表示数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7 正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

时钟同步技术概述

作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面,从以TDM话音业务为主发展到以分组业务为主的多业务模式,从固定话音业务为主发展到以固定和移动话音业务并重,从窄带业务发展到宽带业务等等。在与同步网相关性非常紧密的传输技术方面,从同轴传输发展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技术。随着通信新业务和新技术的不断发展,其同步要求越来越高,包括钟源、锁相环等基本时钟技术经历了多次更新换代,同步技术也在不断地推陈出新,时间同步技术更是当前业界关注的焦点。 2、时钟技术发展历程 时钟同步涉及的最基本技术包括钟源技术和锁相环技术,随着应 用需求的不断提高,技术、工艺的不断改进,钟源技术和锁相环 技术也得到了快速的演进和发展。 (1) 钟源技术

时钟振荡器是所有数字通信设备的基本部件,按照应用时间的先后,钟源技术可分为普通晶体钟、具有恒温槽的高稳晶振、原子钟、芯片级原子钟。 一般晶体振荡器精度在nE-5~nE-7之间,由于具有价格便宜、尺寸小、功耗低等诸多优点,晶体振荡器在各个行业和领域中得到广泛应用。然而,普通晶体钟一般受环境温度影响非常大,因此,后来出现了具有恒温槽的晶体钟,甚至具有双恒温槽的高稳晶体钟,其性能得到很大改善。随着通信技术的不断发展,对时钟精度和稳定性提出了更高的要求,晶体钟源已经难以满足要求,原子钟技术开始得到应用,铷钟和铯钟是其中最有代表性的原子钟。一般来说,铷钟的精度能达到或优于nE-10的量级,而铯钟则能达到或优于1E-12的量级。 然而,由于尺寸大、功耗高、寿命短,限制了原子钟在一些领域的应用,芯片级原子钟有望解决这个难题。目前民用的芯片级原子钟基本上处于试验阶段,其尺寸只有立方厘米量级,耗电只有百毫瓦量级,不消耗原子,延长了使用寿命,时钟精度在nE-10量级以上,具有很好的稳定性。芯片级原子钟将在通信、交通、电力、金融、国防、航空航天以及精密测量等领域有着广泛的应用前景。 (2) 锁相环技术 锁相环技术是一种使输出信号在频率和相位上与输入信号同步的电路技术,即当系统利用锁相环技术进入锁定状态或同步状态后,系统的震荡器输出信号与输入信号之间相差为零,或者保持为常数。锁相环路技术是时钟同步的核心技术,它经历了模拟锁相环

铁路防灾系统

- 客运专线防灾安全监控系统总体技术方案(暂行)(初稿) 1.总则 1.1防灾安全监控系统是保证客运专线列车安全、高速运行的重要基础装备之一。行车调度员根据风雨雪天气、地震灾害、异物侵限等安全环境的实时监测报警、预警信息以及铁道部、铁路局的相关规章制度,指挥列车安全运行;工务维护部门按照防灾安全监控系统提供的相关灾害信息,开展基础设施的巡检、抢险及维修养护工作。 1.2防灾安全监控系统是风监测子系统、雨量监测子系统、雪深监测子系统、地震监控子系统以及异物侵限监控子系统的集成系统,并预留轨温监测子系统的接入条件。 1.3客运专线铁路应根据沿线的气象、地质条件以及线路环境、运营速度,选用相应的子系统,合理构建客运专线防灾安全监控系统。 1.4防灾安全监控系统应与客运专线同步设计、安装、调试及开通运用。 1.5防灾安全监控系统设备应布设于铁路用地界内,现场监测设备的安装不得侵入客运专线的建筑限界。 1.6防灾安全监控系统与其他系统的接口设备故障时,不应影响其他系统的正常运行。

1.7防灾安全监控系统应具有抗雷电及电气化铁路电磁干 - 2 - 扰的能力。 1.8防灾安全监控系统的构建应支持兼容子系统的接入及其所引起的系统容量、功能等方面的平滑扩展。 1.9防灾安全监控系统现场设备应满足无人值守的要求,具有较完善的故障自诊断和远程维护功能。 2.引用标准 《地面气象观测规范》(QX/T61-2007) 《中国地震动参数区划图》(GB18306-2001) 《地震台站观测环境技术要求》(GB/T 19531.1-2004)《计算机软件开发规范》(GB8566-88); 《微型计算机通用规范》(GB/T 9813-2000); 《国际电联2Mbps 接口通信标准》(ITU—TG.703、G.704);《电磁兼容试验和测量技术》(IEC61000-4-12); 《计算机信息系统雷电电磁脉冲安全防护规范》(GA267);《外壳防护等级》(GB4208-2008); 《电工电子产品环境试验》(IEC60068-2-14:1984); 《电子计算机场地通用规范》(GB2887-2000); 《铁路防雷、电磁兼容及接地工程技术暂行规定》(铁建设…2007?39号); 《CTCS-3级列控系统技术创新总体方案》(铁运…2008?73

铁路调度通信

8 调度通信 8.1 一般规定 8.1.1 铁路调度通信系统是为调度指挥中心、调度所的调度员与其所管辖区内有关运输生产人员之间业务联系使用的专用电话通信系统。 8.1.2 铁路调度通信系统由干线调度通信系统与区段调度通信系统组成。主要设备有:调度所调度交换机、车站调度交换机、调度台、值班台、语音记录仪、网管设备。附属设备包含光纤配线架(ODF)、数字配线架(DDF)、音频配线架等。实现干线调度通信、区段调度通信、站场通信、站间通信、区间通信等与运输指挥相关的通信业务。 8.2 电路管理 8.2.1 调度电路规定如下: (1)干线调度电路(以下简称干调电路):铁路总公司调度所调度交换机至铁路局汇接调度交换机之间的数字电路。 (2)局间调度电路:相邻局调度所调度交换机之间以及相邻局车站调度交换机之间的数字电路。 (3)区段调度电路: ①数字区段调度电路:调度所调度交换机之间、调度所调度交换机至车站调度交换机之间以及车站调度交换机之间的数字电路; ②音频区段调度电路:调度交换机至音频调度分机间的电路。 8.2.2 铁路总公司调度机械室是干线调度通信系统的牵头单位,负责指挥协调各相关维护单位进行设备维修与障碍处理,其主要职责是: (1)指挥处理干线调度通信系统障碍和全程电路障碍,跟踪障碍处理过程直至障碍处理结束; (2)在系统测试过程中,对全程全网全过程负责; (3)负责组织干线调度电路质量的检查以及主备路由试验; (4)指导和督促各铁路局调度机械室做好干线调度通信系统的日常维护工作; (5)根据干线调度通信系统运用情况,提出网络优化建议和重点整修建议。 8.2.3 铁路局调度机械室是局内调度通信的牵头单位,负责指挥协调局管内各相关维护单位进行设备维修与障碍处理,其主要职责是: (1)指挥处理局内调度通信系统障碍和全程电路障碍,跟踪障碍处理过程直至障碍处理结束; (2)在系统测试过程中,对全程全网全过程负责; (3)负责组织区段调度电路质量的日常检查、测试以及数字环主备用电路切换试验; (4)指导和督促局管内相关机械室(工区)做好沿线车站调度通信设备的维修工作; (5)根据调度通信系统运用情况,提出网络优化建议和重点整修建议。 8.3 设备管理 8.3.1 调度通信系统的维护分界 (1)调度通信专业与传输专业的界面:以传输设备所在机房配线架上的连接器为界,连接器(不含)至调度通信设备由调度通信专业负责; (2)调度通信专业与通信线路专业的界面:以引入室内第一连接处VDF保安器外线端子为界,外线端子(含)至调度通信设备由调度通信专业负责; (3)调度通信专业与语音记录仪维护单位的界面:以VDF外线端子或语音记录仪输入插座为界,VDF外线端子(含)或语音记录仪输入插座(不含)至调度通信设备由调度通信专业负责;

GPS时钟系统(GPS同步时钟)技术方案(1)

GPS 时钟系统(GPS 同步时钟技术方案 技术分类:通信 | 2010-11-08 维库 在电力系统、 CDMA2000、 DVB 、 DMB 等系统中 , 高精度的 GPS 时钟系统(GPS 同步时钟对维持系统正常运转有至关重要的意义。 那如何利用 GPS OEM来进行二次开发 , 产生高精度时钟发生器是一个研究的热点问题。如在 DVB-T 单频网 (SFN中 , 对于时间同步的要求 , 同步精度达到几十个 ns, 对于这样高精度高稳定性的系统 , 如何进行商业级设计 ? 一、引言 在电力系统的许多领域,诸如时间顺序记录、继电保护、故障测距、电能计费、实时信息采集等等都需要有一个统一的、高精度的时间基准。利用 GPS 卫星信号进行对时是常用的方法之一。 目前, 市场上各种类型的 GPS-OEM 板很多, 价格适中, 具有实用化的条件。利用 GPS-OEM 板进行二次开发,可以精确获得 GPS 时间信息的 GPS时钟系统 (GPS 同步时钟。本文就是以加拿大马可尼公司生产的 SUPERSTAR GPS OEM板为例介绍如何开发应用于电力系统的的 GPS 时钟系统(GPS 同步时钟。 二、 GPS 授时模块 GPS 时钟系统 (GPS 同步时钟采用 SUPERSTAR GPS OEM 板作为 GPS 接受模块, SUPERSTAR GPS OEM 板为并行 12跟踪通道,全视野 GPS 接受模块。 OEM 板具有可充电锂电池。 L1频率为 1575.42MHz ,提供伪距及载波相位观测值的输出和 1PPS (1 PULSE PER SECOND脉冲输出。 OEM 板提供两个输入输出串行口,一个用作主通信口,可通过此串行口对 OEM 板进行设置,也可从此串口读取国际标准时间、日期、所处方位等信息。另一个串行口用于 RTCM 格式的差分数据的输出,当无差分信号或仅用于 GPS 授时,此串行口可不用。 1PPS 脉冲是标准的 TTL 逻辑

铁路通信网的综合网管系统

铁路通信网的综合网管系统 12008北京青年通信科技论坛,论文集 铁路通信网的综合网管系统 邓烨飞 北京全路通信信号研究设计院100073 【摘要】首先介绍了铁路通信系统的组成,然后指出了建立综合网管的必要性,最后介绍了综合网管系统的特点、功能 【关键词】铁路通信系统,综合网管 一、铁路通信网的组成 铁路通信网是列车运营、行政管理、维护抢修、货票管理等多方面信息的传输、交换、显示、应用的综合业务平台。 按照ITU-T提出的网络分层分割概念,铁路通信网可以从垂直方向划分为三层,从下至上为传送网、业务网和应用层。其中传送网可以细分为物理层和信道层(SDH/PDH/WDM等),在信道层上面可以支持由各种电路层设备(如分组交换机、路由器等)组成的业务网(如IP网等),提供各种网络业务。而在业务网上面可以开发出种种为用户提供信息服务的应用(TMIS/DMIS/会议电视等)。为了支持各层网络的有效运行和管理,需要有支撑网即信令网、同步网和网管网。铁路通信网分层结构见下图: <2008北京青年通信科技论坛》论文集铁路通信系统包括如下子系统:(1)传输子系统为其它通信子系统和信号系统等提供信息传输及交换信道。该系统由光数字传输设备及光纤环路组成。 (2)无线通信子系统为固定用户如调度员、车站值班员等与移动用户如列车司机、维修、公安等流动人员之间提供通信手段,它对行车安全、运营效率、服务质量、应付突发事件提供保证。该系统由数字集群设备组网。 (3)程控电话子系统供工作人员与内部及外部进行公务通信联系的通信子系统。该系统由数字程控交换机网络构成。 (4)数字专用调度电话子系统是列车运行调度指挥、电力调度、防灾救护

时间同步系统在线监测可行性研究报告

衡水电网智能调度技术支持系统时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板 项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号: 年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5经济分析 时间同步系统在线监测功能将时间同步装置、时间源服务器和被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。提高电力系统时间同步的准确性,保障电力系统运行控制和故障分析的重要基础。后期经济效益明显 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题

同步时钟系统

同步时钟系统 1.公司简介 南瑞集团公司是国家电网公司直属单位,是中国最大的电力系统自动化、水利水电自动化、轨道交通监控技术、设备和服务供应商。主要从事电力系统二次设备、信息通信、智能化中低压电气设备、发电及水利自动化设备、工业自动化设备、非晶合金变压器及电线电缆的研发、设计、制造、销售、工程服务与工程总承包业务。 南瑞集团通信与用电技术分公司(以下简称“通信用电分公司”)成立于2010年1月,是南瑞集团公司信息通信产业板块的核心单位、国内领先的高端智能用电产品及整体解决方案提供商,为国家电网公司提供各类智能芯片产品。 通信用电分公司充分把握智能用电产业发展的重大历史机遇,以服务坚强智能电网建设为主旨,以做专做精做大做强“智能用电产业”为目标,积极贯彻落实国家电网公司直属产业规划部署,确立了“1+5”发展战略,打造“1”个产业支撑平台,支撑“智能芯片、智能终端、智能传感、电力通信和智能服务”5项业务协同发展,形成从应用系统层、终端设备层和芯片器件层相互支撑的业务发展格局,致力于成为以芯片为核心支撑的高端综合解决方案提供商,已形成了信息管理、通信系统及通信设备、智能芯片、用电自动化及终端设备、电力物联网等5个产品线,拥有17个子产品线。随着生产业务的拓展,通信用电分公司已经取得一批具有自主知识产权的产品及成果,包括:“国网芯”系列芯片及与之配套的芯片发行系统、密钥管理系统;基于“国网芯”技术的智能用电产品及终端模块、电力线载波通信及配用电专用光通信产品;基于智能量测技术的智能防窃电系统、省级计量中心计量生产调度平台、智能感知互动综合服务平台等,并积极拓展节能服务、能效及智能传感等新型营销业务。 通信用电分公司成立3年来,各项经营业绩指标均保持迅猛增长,已承担多项重点科研和产业化项目,申请专利及软件著作权145项(其中发明专利66项),申请国际专利4项,截至2013年6月底,人员规模已从成立之初的83人

时间同步设备技术规范

时间同步设备技术规范 The Technical Specification for Time Synchronization Equipments 版本号:1.0.0 2004-06-10 发布 2004-06-10 实施 中国移动通信集团公司 发布 中国移动通信企业标准 QB-B-002-2004

目录 1 范围 (1) 2 引用标准 (1) 3 缩略语 (1) 4时间同步设备和其它业务网的关系 (1) 51级时间同步设备的功能要求 (2) 5.1 1级时间同步设备的构成 (2) 5.2 卫星接收机功能 (3) 5.3 时间输入功能 (3) 5.4 时钟功能 (3) 5.5 时间输出功能 (3) 5.6 时间调控功能 (4) 5.7 监控管理功能 (4) 61级时间同步设备的性能要求 (6) 6.1 绝对跟踪精度 (6) 6.2 相对守时精度 (6) 6.3 1PPS接口跟踪精度 (6) 6.4 时钟频率准确度 (6) 6.5 时钟保持特性 (6) 72级时间同步设备的功能要求 (6) 7.1 2级时间同步设备的构成 (6) 7.2 卫星接收机功能 (7) 7.3 时间输入功能 (7) 7.4 时钟功能 (7) 7.5 时间输出功能 (8) 7.6 时间调控功能 (8) 7.7 监控管理功能 (8) 82级时间同步设备的性能要求 (10)

8.1 绝对跟踪精度 (10) 8.2 相对守时精度 (10) 8.3 1PPS接口跟踪精度 (10) 8.4 时钟频率准确度 (10) 8.5 时钟保持特性 (10) 9可靠性要求 (11) 10环境要求 (11) 10.1 电源要求 (11) 10.2 温度要求 (11) 10.3 湿度要求 (11) 11编制历史 (11)

同步时钟系统设计方案

2.2时钟系统 2.2.1系统功能 地铁时钟系统为地铁工作人员和乘客提供统一的标准时间,并为其它各有关系统提供统一的标准时间信号,使各系统的定时设备与本系统同步,实现地铁全线统一的时间标准,从而达到保证地铁行车安全、提高运输效率和管理水平、改善服务质量的目的。 地铁1号线一期工程时钟子系统按中心一级母钟和车站二级母钟两级方式设置,系统基本功能如下: 1)同步校对 中心一级母钟设备接收外部GPS或∕和北斗卫星标准时间信号进行自动校时,保持同步。同时产生精确的同步时间码,通过传输通道向1号线一期工程的各车站、车辆段的二级母钟传送,统一校准二级母钟。 二级母钟系统接收中心母钟发出的标准时间码信号,与中心母钟随时保持同步,并产生输出时间驱动信号,用于驱动本站所有的子钟,并能向中心设备回馈车站子系统的工作信息。 二级母钟在传输通道中断的情况下,应能独立正常工作。 2)时间显示 中心一级母钟和二级母钟均按“时:分:秒”格式显示时间,具备12和24小时两种显示方式的转换功能;数字子钟为“时:分:秒”显示(或可选用带日期显示)。 3)日期显示 中心一级母钟应产生全时标信息,格式为:年,月,日,星期,时,分,秒,毫秒,并能在设备上显示。 4)为其它系统提供标准时间信号 中心一级母钟设备设有多路标准时间码输出接口,能够在整秒时刻给地铁其它各相关系统及专业提供标准时间信号。这些系统主要包括: ◆传输系统 ◆无线通信系统

◆公务及站内通信系统 ◆调度电话系统 ◆广播系统 ◆导乘信息系统 ◆电视监视系统 ◆UPS电源系统 ◆网络管理系统 ◆地铁信息管理系统 ◆综合监控系统 ◆信号系统 ◆自动售检票系统 ◆门禁系统 ◆屏蔽门系统 5)热备份功能 一级母钟、二级母钟均有主、备母钟组成,具有热备份功能,主母钟故障出现故障立即自动切换到备母钟,备母钟全面代替主母钟工作。主母钟恢复正常后,备母钟立即切换回主母钟。 6)系统扩容 由于控制中心为1、2、3号线共用,因此1号线一期工程时钟系统应具备系统扩容功能,通过增加适当的接口板,为1号线南北延长线各车站及2、3号线设备提供统一的时钟信号,同时预留接口对接入该中心的其它线路提供统一的时钟信号,最大限度地实现线路间的资源共享,以节省投资和设备的维护成本、提高运营服务质量。 7)系统监控功能 在控制中心设置时钟系统监控管理终端,具备自诊断功能,可进行故障管理、性能管理、配置管理、安全管理、文档管理。

霍尼韦尔pks--时钟同步

对于正在运行的DCS系统装置来说,各个节点之间的时钟同步是非常重要的,假如各个节点的时间不一致,那么当装置出现故障的时候,我们无法准确的去判断故障发生的时间,给后续的事故事件分析带来了极大的不便。因此,我们一定要做好DCS系统的时钟同步,本文以霍尼韦尔PKS系统为例,讲述一下时钟同步的方法,主要分为两种情况,第一就是没有外部时钟源,第二是有外部时钟源,如GPS。 首先说第一种情况,如果没有外部时钟源作参考,那么我们就以PKS系统的服务器作为时钟源,其他各个节点都去同步服务器的时间就可。示例中两台冗余服务器,服务器A(IP:192.168.10.129)和服务器B(IP:192.168.10.131),我们把A服务器作为时钟源的主服务器,B服务器作为时钟源备用服务器,剩余的操作站(包括F站和C 站)作为时钟同步的客户端(Client),步骤如下: 在服务器A上用管理员权限打开时钟源配置文件ntpconfg软件(路径为C:\Program Files (x86)\Honeywell\Experion PKS\Utilities\NTPSetup),如下图所示,将服务器A设置成时钟源的主服务器,点击Setup Athoriative/Root Server即可。

同样,在服务器B上相同的路径,以管理员的权限运行ntpconfg软件,打开下图所示的界面,将服务器B设置成四种同步的备用服务器,点击Setup Secondary Server,在弹出的对话框中,将服务器A的IP地址输入到UP-Stream Time Source后的输入框中,点击OK保存即可,这样备用服务器就设置完成了。

相关文档
最新文档