锂电池电量显示电路仿真

锂电池电量显示电路仿真
锂电池电量显示电路仿真

精心整理锂电池电量显示电路仿真(四级显示)

自己做了个移动电源,但是没有电量显示装置,用起来相当不爽,在淘宝上搜罗了好多电量显示板,最便宜的都在10元再加上邮费就太不值了。还不如自己动手做一个,于是就从本论坛搜罗了这个电路,动手之前先仿真一下,试一下效果。免得来回折腾本电路分四段显示,小于3.6V 灯都不亮,3.6V亮一个灯;3.8V亮两

个灯;4V

亮三个灯;4.2V亮四个灯。想做成贴片的体积越小

越好。哪位坛友可帮忙画个PCB,不甚感激。上图1.原图

电路图附上

rp1用12.5k,用50k可调

汽车蓄电池容量的检测方法详解

汽车蓄电池容量的检测方法详解 汽车蓄电池是汽车启动时的唯一电源,在汽车发电机不工作时,它可以在一段时间内向汽车的用电设备供电(1~2h);在发电机正常发电时,它将发电机供给用电器后多余的电能转化成化学能储存起来,供下次启动或其它用电。 蓄电池的工作能力随其规格型号不同而不同,也随其生产的年代、厂家牌号有较大区别。同一个蓄电池,由于不同的使用维护水平,其剩余的工作力也不同。加上蓄电池自身的自行放电,极板硫化等不可避免的因素作用,也会使蓄电池的工作能力逐渐削弱以至报废。因此,在必要时对蓄电池的工作能力进行检测就成为汽车维护与保养的重要工作之一。 一、蓄电池的容量指标及其测定 蓄电池的工作能力用“容量”来衡量,它是在规定的端电压范围内,蓄电池对负载供给一定电流所能持续的时间(t),即衡量蓄电池电能做功的能力A=UIt(瓦秒)。在实际运用中,蓄电池的容量指标Q常用安培小时(Ah)来表示: Q=I·t(A·h) I—放电电流(A);t—放电时间(h) 由于电流单位安培(A)=库伦/秒,所以容量的单位安培小时(Ah)=库伦/秒×3600秒=3600库伦(3.6kC)。 库伦是电荷量单位,1库伦=6.24×1018(624亿亿)个电子所带的电量,所以容量与电池的物质量(正负极板数、总面积、电解液密度)有关。对于标准正、负极板组而言,每片正极板的额定容量为15Ah,每个单格电池中负极板数总是比正极板多1片,因此可以算出一定容量的单格电池中正负极板的准确片数,如3-QA-60Ah蓄电池,其额定容量为60Ah,正极板数=60(Ah)/15(Ah)=4;负极板数=4+1=5。如果蓄电池的额定容量不是15Ah 的整数倍数,则极板的尺寸、厚度及材料就会有所区别。 蓄电池的常用容量指标有“额定容量”、“储备容量”和“启动容量”三种。 1. 额定容量 根据GB5008-91规定,额定容量是:将充足电的新蓄电池在电解液温度为25±5℃条件下以20h率的放电电流(即0.05Q20)连续放电至单格电池平均电压降到1.75V时输出的电量。

关于手机电池电量显示不正确的问题研究

关于手机电池电量显示不正确的问题研究 问题一:电量30%的时候还好好的,然后看电影,播了几分钟看了下电量,还有27%,然后突然就自动关机了,而且按电源键无法开机。 问题二:充至80%拔掉充电器几秒后,电量显示忽然降至低值(如7%),再次插充电器,电池图标有显示闪电,但未显示电量上升动画,充电显示电量仍不上升。拔掉充电线重启,恢复正常电量。不拔重启则不恢复正常。问题三:手机电量格一直显示69%的电量,但实际的电量只有26% 1 安卓智能手机2 安卓平板电脑 1 原因一:手机固件问题,系统固件不过关,电量显示不正确, 解决方法:更新固件版本。2 原因二:刷机时电量很低,刷机的时候系统电量统计信息batterystates.bin正好重置开始计时导致电量显示错误 解决方法:将电池电量用完然后关机充电充满100%,进入recovery模式清空电量统计信息然后开机。 或:连接充电器开机,进入system/app,删除batterystates.bin,然后关机,拔出充电器,开机。3

手机电池主板已坏,需要更换或者修理主板。4 电池和机板接触不良,挤压或超负运载自动断电,导致关机,处理:擦净电池和机板导电金属片! 手机使用时间长后,电池仓内与电池接触的铜片氧化或有污垢,使用清洁剂(有去锈迹效果的那种)及牙刷对电池及手机电池仓的接触铜片刷洗一次。5 电池不是原装电池,电池虚电,电池亏损,看似有电,在带负荷时突然断电,处理:杷电池虚电一次性放尽,一次充足后使用!若不能解决问题就更换正版原装电池 6 你可能不知道你的手机在刷完新的ROM后会保留原有的电池统计信息,这样导致的结果就是你的手机电池续航时间可能出现异常,比如显示电量100%,但是实际上并没有充满。拔下充电器后,没有几分钟就掉到90%,校准后,电池充到100%,数个小时后才会掉99,98……原理是删除系统中的batterystats.bin电池统计信息文件,并生成一个新的文件,这样就可以删除之前保留的虚假电池信息,所以这也要求手机必须获取ROOT权限。为了更好的使用效果下面我编辑的使用方法:1,手机充电,至提示充满,提示百分之百,拔下充电器2,手机关机,然后充电,至提示充满,提示百分之百,拔下充电器。3,手机开机,完全进入系统立刻关机,连接充电,至提示充满,提示百分之百拔下充电器。4,手机开机,打开校准软件,连接充电器至提示充满,提示百分之百,然后再多充10分钟。5,点击“电池校正”按钮即可,重新校准可能需要数天才能完成,成功进行校准之后你的手机续航将会恢复到正常水平 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始

开题报告——基于单片机的锂离子电池电量检测系统毕业设计论文

(此文档为word格式,下载后您可任意编辑修改!) 南昌工程学院 09 级毕业(设计)论文开题报 告 机械与电气工程学院系(院)电气工程及其自动化专 业 题目基于单片机的锂离子电池电量检测系统设计 班级09电气工程及其自动化(1)班 学号 指导教师饶繁星

日期2013 年 1 月 4 日 南昌工程学院教务处订制

题目:基于单片机的锂离子电池电量检测系统设计 一、选题的依据及课题的意义 随着手机、数码相机、摄像机、手提电脑、音频视频播放器等便携式电子设备的迅猛发展,由于其便携性的特点,便携式设备必须由电池来进行供电。目前,便携式仪表的主流供电电池有铅酸电池,镍镉电池,镍氢电池,锂电池和锂聚合物电池等。与其它主流可充电电池相比,具有高单体电池电压、高功率密度、长循环寿命、无记忆效应、低自放电率等优点。锂电池是指以锂为负极材料的化学电池的总称,大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,该类电池具有较高能量质量比和能量体积比。 为了提高电池的使用率及全面掌握电池的状态,大多数设备在应用场合需要显示电池组的剩余电量信息,以供使用者明确电池组的工作状态,及时对电池组进行充电。在电池放电过程中,电池电压与剩余电量、工作时间之间并不是线性关系,所以并不能简单地采用电压采样、函数计算剩余电量。针对该要求,设计了一种基于单片机的锂离子电池电量检测系统,该检测系统的设计对全面掌握锂离子电池的电量状态,提高其利用率具有现实意义。本设计的研究成果若能广泛应用于便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

二、研究概况及发展趋势综述 锂电池常用的电量检测方法有两种,一种是利用库仑计,根据电池工作的电流与时间进行计算出电池的实际容量,此种检测方法是最准确的检测方法,一般用的芯片有TI,美信等电池管理芯片,但是成本太高,调试复杂。另一种方法是利用电池工作的电压曲线来分析出电池的容量,这种方式比较简单,成本也低,由于直接采用比较器如LM339,LM324等,检测精度低,检测相对很不准确,温漂大,功耗大。 在满足要求的前提下,本设计尽可能采用简单的锂离子电池电量检测方案,提出的基于单片机的锂离子电池电量检测方案,抗干扰能力强,并且可以实现对锂离子电池电量的高精度检测。 在本设计方案中,没有考虑电池老化等复杂因素对电量检测精度产生的负面影响,所以检测结果稍有误差。未来在要求更高精度的锂离子电池电量检测应用中,该检测系统必须考虑这些复杂问题对检测精度的影响,还需要做进一步的改进,让检测精度提高一个水平。

电池电量检测芯片

电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和 bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路 VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。

电池电量检测方法及原理 pdf

FUEL GAUGE 电池电量检测方法及原理锂电池具有高存储能量、寿命长、重量轻和无记忆效应等优点,已经在现行便携式设备中得到了广泛的使用,尤其是在手机、多媒体播放器、GPS终端等消费类电子设备中。这些设备不但单纯地只是支持单一的通讯功能,还支持流媒体播放和高速的无线发送和接收等等功能。随着越来越多功能的加入且要获得更长单次充电的使用时间,便携式设备中锂电池的容量也不断地增大,以智能手机为例,主流的电池容量已经800mAH增长到现在1500mAH,并且还有继续增长的趋势。 随着大容量电池的使用,如果设备能够精确的了解电池的电量,不仅能够很好地保护了电池,防止其过放电,同时也能够让用户精确地知道剩余电量来估算所能使用的时间,及时地保存重要数据。因此,在PMP和GPS中,电量计不断加入到设备中,并且电量计也在智能手机中得到了应用,尤其是在一些Windows Mobile操作系统的智能手机中,如图1所示,电池电量的显示已由原来的柱状图变为了数字显示。 本文介绍和比较三种种不同电量计的实现方法,并且以意法半导体的STC3100电池监控IC为例,在其Demo实现了1%精度的电池精度计量。 (a)柱状图电量显示(b)数字精确电量显示 图1 Windows Mobile 手机中电量计量 1,电量计的实现方法和分类。 据统计,现行设备中有三种电量计,分别是: 直接电池电压监控方法,也就是说,电池电量的估计是通过简单地监控电池的电压得来的,尽管该方法精度较低和缺乏对电池的有效保护,但其简单易行,所以在现行的设备中得到最广泛的应用。然而锂电池本身特有的放电特性,如图2所示。不难从中发现,电池的电量与其电压不是一个线性的关系,这种非线性导致电压直接检测方法的不准确性,电量测量精度超过20%。电池电量只能用分段式显示,,如图1.a所示,无法用数字显示精确的电池电量。手机用户经常发现,在手机显示还有两格电的时候,电池的电量下降得非常快,也就是因为这时候电池已经进入Phase3。 图2 锂电池放电曲线

锂电池充电器LCD电量显示驱动方案

中国锂电行业门户 锂电池充电器LCD电量显示驱动方案 随着便携式应用的高速发展,如手机和数码相机等产品配套的锂电池充电器也需要跟上便携式应用的发展脚步。在各种各样的锂电池充电器中,座充和万能充电器是目前最受欢迎的产品。据统计,这两种产品在世界范围内每月的销售量高达3千万个。 目前的充电器应用中,比较普遍的显示功能是通过LED或LCD灯的亮、暗、闪烁等状态来表 示是否充电以及电池是否充饱。在充电的过程中,客户只能看到两个状态,充满和未充满。而无 法显示电池更加详细的电量信息,在遇到突发事件时,这个缺点经常带来很大的麻烦。比如,当 充电器使用者急于了解电池何时能充满,或者电池目前充电到哪个阶段。有些情况下,知道电池 已经充到20%还是80%对使用者来说是相当重要的。 针对上述问题,思旺电子开发出一款为锂电池充电器(万能充/座充)设计的配套LCD/LED 驱动电路SE9120,在显示电池电量的同时还能显示充电进度和电池充饱状态。下文将重点介绍 SE9120的主要技术特点。 SE9120主要功能 SE9120主要功能包括电池电量检测及充电进度显示功能,能够通过电路内部自动判断电池极性,自动切换到电池正确的极性,解决用户在装载电池时需要人工判断电池极性的问题。在检测 电池极性的同时,SE9120能够检测电池的电量,同时SE9120是第一款创新的用4位分段显示的方法,驱动4柱LCD屏,使用户可以查看电池电量的集成电路。配合SE9020的充电器方案应用中,在充电的同时也可以显示电池充电的进度,用4位分段显示电池充电的电量变化及最终充饱的状态。 SE9120是一款高智能的数模混合电路,该芯片采用数模混合方式,通过4位柱状显示LCD屏 或LED屏,在显示电池电量的同时还能显示充电进度和电池充饱状态。SE9120的内部结构如图1 所示。主要包括五大功能模块:基准电压单元;电池电量检测单元;显示逻辑单元;LCD驱动单元;LED背光驱动单元。

笔记本电池电量显示原理

电池电量计的原理与计算(图) [日期:2008-1-11] 来源:今日电子/21IC 作者:Maxim公司陈祝清[字体:大中小] 充电电池简介 目前大量应用的充电电池包括铅酸蓄电池、镍镉/镍氢电池、锂离子/锂聚合物电池。这几种电池的特性如表1所示。 铅酸蓄电池容量大,内阻低(一般400Ah的2V蓄电池内阻大约为0.5mΩ),可进行大电流放电,但是笨重且体积庞大、不便于携带,常用在汽车和工业场合。其电极材料含铅,可对环境造成极大污染。铅酸蓄电池对充电控制的要求不高,可以进行浮充。 镍镉电池容量较大,内阻低、放电电压平稳,适合作为直流电源。与其他种类的电池相比,镍镉电池耐过充电和过放电,操作简单方便,但是具有记忆效应,应尽量在完全放电之后进行充电。电极材料含有剧毒重金属镉,随着环保要求的提高,其市场份额越来越小。 镍氢电池是在镍镉电池的基础上发展而来的,采用金属化氢替代有毒的镉,在大部分场合可以替代镍镉电池。其容量约为镍镉电池的1.5~2倍,且没有记忆效应。相对于镍氢电池,它对充电控制的要求较高,目前大量使用在一些便携电子产品中。 锂离子电池是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的 1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达

到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、m p3等。 锂聚合物电池是一种新型的二次锂电池,具有更大的容量;内阻较低,允许10C充放电电流。它和锂离子电池一样需要精确的充放电控制。目前,锂聚合物电池主要用于一些需要大电流充放电的应用中,如动力/模型汽车等。 充电电池容量估算方法 在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。 图1 简化的电池电量计框图 最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。 另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

12V电池电量指示电路

12V电池电量指示电路 12V电池电量指示电路 LM3914可以感知电压等级和可开10点模式或酒吧模式的LED显示屏。酒吧模式和点阵模式,可以通过外部设置多个IC可级联在一起,拿着首级扩展显示。该IC可以从一个宽电源电压(3V至25V DC)。LED的亮度可以通过一个外部电阻编程。LM3914的LED输出的是TTL和CMOS兼容。说明电路图中的发光二极管D1的toD10显示点或条形图模式电池的水平。电阻R4引脚6,7和地面之间的连接,控制LED的亮度。电阻R1和R2的壶形成一个分压器网络的POT R2可以用于校准。此处所示的电路设计,以监测10.5V至15V DC之间。可以做如下的校准电路。成立后的电路连接12V直流电源输入。现在调整的10K锅LED10发光(点模式)或发光二极管10辉光(栏模式)。现在减少的步骤和10.5伏电压只有LED1的意志焕发。开关S1可用于点模式和条形图模式之间进行选择。当S1闭合,PIN9的集成电路被连接到正电源和条形图模式被启用。当开关S1是开放的IC PIN9断开连接到正电源和显示器去点模式。随着稍加修改电路可以用来监视其他的电压范围。对于这个刚刚删除的电阻R3和连接上层的输入电压。现在调整的POT R2,直到10的LED发光(点模式)。删除上电压等级较低的水平,并连

接输入。现在连接在R3的地方高价值的锅(例如500K)和调整直至单独的LED1发光。现在删除了锅,测量直流电阻和连接电阻值相同,在R3的地方。水平显示器已经准备就绪。电池电量指标使用LM3914的电路图电池电量指示电路采用LM3914级联两个LM3914两个或两个以上的LM3914芯片可以级联在一起,得到一个扩展显示。两个LM3914集成电路cacaded合力得到了20颗LED的电压水平指示器的示意图如下所示。级联两个LM3914其他一些电池水平的相关电路,您可能会喜欢的1,简单的电池电量指示灯:该电路可用于监测3V电池的水平。电路是基于从松下MN13811G 的。MN13811G是CMOS电压检测IC,可用于各种电压监控应用。在电路中的LED D1将闪烁时候电池电压降到2.4伏以下。2,3个LED电池电量指示灯:这里显示3 LED电池电量指示灯,可用于监测12V汽车电池的电压水平。三个国家的电池,即低于11.5V之间的11.5和13.5 13.5以上,显示的LED发光。3,闪烁的电池监控:该电路可用于监测的6至12V电池的电压等级。基于晶体管的电路,并可以通过使用一个电位器来调整电压等级的LED开始闪烁。LM3914外形图一: LM3914外形图二:

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

锂电池电量关系

锂电池电压电量关系 锂离子电池电压与容量的关系及容量计算方法 锂离子电池电压与容量的关系及容量计算方法 锂离子电池开路电压与电池容量的对应关系分析 先给出一个表格:如下,百分比是电池的剩余容量,右侧是对应的电池的开路电压(OCV). 100%----4.20V 90%-----4.06V 80%-----3.98V 70%-----3.92V 60%-----3.87V 50%-----3.82V 40%-----3.79V 30%-----3.77V 20%-----3.74V 10%-----3.68V 5%------3.45V 0%------3.00V 以下是这个表格的来龙去脉. 一.首先几个概念解释: 1.OCV:open circuit voltage的缩写,开路电压. 2.锂离子电池:本篇讨论的是目前手机上普遍采用的以4.2V恒压限制充电的单节锂离子电池. 3.mAh:电池容量的计量单位,实际就是电池中可以释放为外部使用的电子的总数. 折合物理上的标准的单位就是大家熟悉的库仑. 库仑的国际标准单位为电流乘于时间的安培秒. 1mAh=0.001安培*3600秒=3.6安培秒=3.6库仑 mAh不是标准单位,但是这个单位可以很方便的用于计量和计算. 比如一颗900mAh的电池可以提供300mA恒流的持续3小时的供电能力. 4.fuel gauging:电量计量,原意是油量计量,后在电化学上被引用为电量计量的意思. 最科学的并且是最原始的电池的电量计量方法是对流经的电子流量的统计.即库仑计(coulomb count). ★要想获得锂离子电池的电量使用的正确情况,只有用库仑计.就象大家家里面的水量计量用的水表的作用原理.要计算流经的电荷的多少才能获得锂离子电池的电量使用情况.

电池电量检测指示电路

電池低壓指示電路 , , 喬治查爾斯電子電路網 https://www.360docs.net/doc/111221597.html, 在許多製作中常會使用到充電池或是一般電池來當成電源,但總不能用到沒電時才知道,到時上不了場,就出天窗了,所以收集了幾個相關的電路,供大家參考: 電池低壓指示(1): 這個簡單的電路可以偵測電池的電壓,當電壓低於由可變電阻VR1所預設的電壓時,LED會亮起,實際上VR1及相關的電阻成為Q1 (ON) 的偏壓保持Q2(OFF)使LED也是OFF的,當電池電壓逐漸降低至所預設的電壓之下,Q1成為OFF狀態,轉而使Q2成為ON,使LED亮起。這個電路可正常工作於12V以下的電池。你可先使用一個可變電源供應器,先調整你希望指示的低電壓,接上電路,調整VR1至開始亮起或關暗的臨界值。

模型遙控直升機5.2V NiCad電池低壓指示(2): 以上這個電路,當電池電壓低於預設的值時可以使低壓偵測非常明亮的指示(使用高亮度或大型LED), 由於原設計是使用在搖控直昇機上,所以可以選用在白天還是可看得到的高亮或特定顏色的LED,切斷點是由P1可變電阻來調整於4.2至5.2V之間,依照你的選用的零件來設定,但建議設在4.6至4.8V之間,唯原設計在遙控宜升機上,但你也可用在別的應用上,依原設計當LED亮的時電流約12mA,而待機時的電流約在2mA以下。 電池低壓指示(3): 以電晶體的導通來說,在B及E極上大約要0.6V左右的偏壓才成立,這個電壓就由50K的可變電阻來調整,如果這個可變電阻調至最低時,那在50K VR 上的壓降約為 1.364V (50/22*0.6),在兩個串聯的電阻上的壓降就是 1.964 (1.364+0.6),所以電路的動作臨界電壓就是1.964V+3.9V=5.864V,所以上調可變電阻可以降低臨界電壓,所以整個電路可調整的臨界電壓範圍是

锂电池保护板的简单检测方法

锂电池保护板的简单检测方法 锂电池保护板对锂电池进行过充、过放、过流(充电过流、放电过流和短路)保护,有些保护板上设计有热敏电阻,用于对电池进行过热保护,但过热保护通常是由外电路完成的,并不由保护板实现。保护板上的热敏电阻仅仅是给外电路提供一个温度传感器。如果保护板不良,电池就很容易损坏。本文介绍一种锂电池保护板的简单检测方法。 检测电路如下图: 电路很简单,主要元件就是一个电容和两个电阻,两个开关可以用鳄鱼夹或手动搭线都没问题的。色框内的部分是锂电池保护板的内电路。 原理: 电解电容C连接到保护板上的电池接点(B+,B-)上,充当电池,可进行充电和放电,连接时别弄错极性就行。电压表(数字万用表20V电压档)并联在电容两端,用于监视电池电压。 初始时,电容C没电,保护板上的控制芯片无工作电源,保护板处于全关断状态,即使接通开关K2,电容也不会充电。断开开关K2,电容也无电可放。即使电容有电,但电压达不到保护芯片的工作电压,也不会通过R1、R2放电。 如果带保护板的锂电池(比如手机电池)放置太久,电池因自身放电和保护板电路耗电使电池电压低于保护板上控制芯片的工作电压,保护板则全关断。测量电池引出电极P+、P-无电压,充电也充不进,就相当于上述这种初始情况。对这样的电池,一般人只能将它报废处理。其实很多时候电池并没有坏,只是必须拆开电池的封装外壳跳过保护板直接给电池芯充电,当电池芯的电压达到保护板上控制芯片的工作电压之后,电池才起死回生,能正常充电和使用。 本电路中,电容C充当电池的作用,下文关于电路原理的叙述中一律称之为电池。 接通开关K2,如前所述,电池并不会充电。按下按钮开关K1,5V电源通过R1、保护板的P+、B+(保护板上的这两个接点是直通的)、K1给电池充电,电压表上可实时读取电池两端的电压,当电池电压上升到控制芯片的工作电压(约2V)时,放开K1,这时保护板已正常工作,电池会继续充电,电池电压持续上升。如果想知道保护板在多大的电池电压下开始工作,不要长按K1,按一下,放一下,让电池电压每次上升一点点,注意观察电池电压,当电压到某个值时,不按K1电池电压也继续上升,则这个值就是保护板开始工作的最低电池电压值。 当电池电压上升到过充启动电压时(约),保护板关断充电通路,进入过充保护状态,充电停止。这时电压表上显示的就是过充保护电压。由于电压表有内阻,以及保护板上控制芯片工作也需要耗电(电流很小),所以电池通过这两条通路缓慢放电,电压表上可看到电池电压缓慢下降。当下降到控制芯片的过充解除电压(约)时,过充

蓄电池性能检测电路设计设计

基于单片机的蓄电池性能测试电路的设计 电气工程及其自动化专业] [摘要] 阀控铅酸蓄电池作为后备电源已经广泛应用于工业生产,交通、通信和军事领域。如何高效率管理这些蓄电池,提高后备电源系统的可靠性是一个很现实的重要课题。因此,本课题设计一基于单片机的船舶蓄电池性能检测系统。该系统采用精密电阻和电池构成串联电路,用交流注入法对蓄电池注入微弱正弦波信号,通过对输出响应进行一系列的放大、幅相检测、AD转换和采集,然后根据测量到的电压比来推算电池内阻。试验结果表明:该方法能够被有效地用于铅酸电池内阻测量,测量结果稳定有效。 [关键词]幅相检测;AD转换;单片机;电池内阻

目录 1引言 (1) 1.1研究背景 (1) 1.2蓄电池研究现状 (1) 1.3蓄电池的性能指标 (2) 1.4蓄电池性能的判断因素 (3) 2测试方法研究 (4) 2.1内阻参数的相对性与绝对性 (4) 2.2蓄电池内阻与容量的关系 (5) 2.3蓄电池等效电路 (5) 2.4方案的探讨 (6) 2.5交流法 (7) 3硬件电路的设计 (8) 3.1总体框架 (8) 3.2主处理器模块 (10) 3.3探测电路 (12) 3.4差分放大电路 (13) 3.4.1INA321芯片简化图 (13) 3.4.2INA2321电路图 (14) 3.5幅相检测电路 (14) 3.5.1AD8302介绍 (14)

3.5.2AD8302电路图 (15) 3.6模数转换模块设计 (16) 3.6.1模数转换芯片AD0809 (16) 3.6.2ADC0809与单片机的接口电路 (17) 3.7液晶显示 (18) 3.7.1LCD1602介绍 (18) 3.7.2LCD1602与单片机的接口电路 (20) 4软件部分 (21) 4.1主程序 (21) 4.2A/D转换子程序 (22) 4.3LCD1602初始化部分 (23) 结束语 (25) 参考文献 (26) 致谢 (27)

电池电量检测芯片

For personal use only in study and research; not for commercial use 电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路

VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。 HDQ/SDA 和SCL 引脚均为开漏器件,二者都要求有一个外部上拉电阻。这种电阻应该位于主机侧或主应用侧上,以使电池电量监测计的睡眠功能在电池组与便携式设备的连接断开后能够被激活。推荐上拉电阻器值为10 kΩ。 电池组验证 便携式设备的可充电电池必须在设备寿命结束之前得到更换。这就给那些提供便宜的替代电池的厂商打开了一个巨大的市场,而这些电池可能并没有原始设备制造商要求的安全和保护电路。 因此,除了电池电量监测计功能以外,电池组可能还包括验证特性(请参见图2)。主机将验证包含计算循环冗余码校验(CRC) IC(TI的bq26150)的电池组。这种CRC 基于这种身份验证以及在IC 中秘密定义的CRC 多项式之上。主机还对CRC 进行计算,并对各种值进行比对,以确定是否成功获得了验证。如果没有,那么主机将决定是再进行一次验证还是不允许该电池的系统供电。一旦电池通过验证,那么bq26150 将接收到一个命令,以确保所有通过数据线的通信在主机和电池电量监测计之间得到传输。 就此来看,主机可以继续利用电池电量监测计的功能。在断开电池以及重新连接至 电池时,都必须重复进行整个验证过程。

做个简单电路检测手机电池容量

做个简单电路检测手机电池容量 前不久的事,网购一部华为荣耀3C手机。习惯相信卖家都是诚实的,看到卖家的“宝贝详情”网页上介绍得有模有样,又大大的优惠,各种承诺也有板有眼,好评颇多而且头头是道,就下手了。然而使用中就发现,标称2800mAh的电池,原配500mA的充电器,充电不到3个小时就满。这样粗算电池容量500mA*3个小时该是1500mAh,相差甚远,于是心起疑惑,做了这个简单电路检测电池的容量。果不其然,实测容量不到1300mAh,比我那老金立手机的标称1300mAh的电池的实测容量还低。老金立手机的电池用了好多年了,实测容量还超过1300mAh。假货!于是立马退货。还好,卖家给卖了运费险的,不需要扯皮,保险给了12元退货运费,实际退货运费10元,赚了两元,算是对费去神力的一点补偿。看来在淘宝上淘宝还是不能轻信卖家的宣传,好评也是可以通过“水军”刷出来的。 1、电路图 2、原理 检测电池容量的原理是很简单的,就是对充满电的电池用恒定的电流让电池放电,记放电的时间,当电池电压下降到下限时停止放电,用放电电流乘以时间就是电池的容量。 R10、U2、C4构成基准电压电路,在U2(TL431)的阴极得到约2.5V的基准电压。U1A、Q1及外围元件构成可调恒流源电路,基准电压经R5、W1分压,给U1A的同相端提供参考电压。R1是放电电流取样电阻,取样电压经R4送到U1A的反相端,当电流达不到设定值时,U1A反相端电压低于同相端电压,U1A输出电压升高,Q1电流增大。当电流超过设定值时,U1A反相端电压高于同相端电压,U1A输出电压降低,Q1电流减小。这种负反馈使Q1电流恒定。调整W1可改变参考电压,也就改变放电电流。 U1B、Q2及外围元件构成电池下限电压识别和充电状态锁定电路。U1B作为电压比较器,2.5V基准电压接至U1B的同相端。电池电压经R8、W2、R9分压,接至U1B的反相端。当电池电压高于下限电压时,U1B的反相端电压高于同相端电压,U1B输出低电平,D1反偏截止,恒流电路独立工作,同时Q2截止,D1、D2无电流,不影响识别电路和Q3为核心的石英钟供电电路的正常工作。当电池电压降到低于下限电压时,U1B的反相端电压低于同相端电压,U1B输出高电平,一路通过ZD1、D1将U1A的反相端电压提高,使其高于同相端的参考电压,促使U1A输出低电平,Q1截止,停止放电。另一路经R6、R7

锂电池电量检测原理

目录 序--------------------------------------------------------------------- 错误!未定义书签。目录----------------------------------------------------------------------------------- 1第一章电池电量监测基础知识------------------------------------------------------------- 3什么是电池电量监测技术------------------------------------------------------------- 3概要介绍--------------------------------------------------------------------------- 3第一部分:电池化学成分基本知识 ----------------------------------------------------- 3电池化学容量Qmax ------------------------------------------------------------------- 4可用容量Quse ----------------------------------------------------------------------- 5电池电阻--------------------------------------------------------------------------- 5电荷状态(SOC)-------------------------------------------------------------------- 6抗阻与温度和DOD有关--------------------------------------------------------------- 7阻抗和容量随老化而改变------------------------------------------------------------- 7新电池的阻抗差异------------------------------------------------------------------- 8电池剩余容量(RM)----------------------------------------------------------------- 8电池化学成分概要------------------------------------------------------------------- 9第二章传统的电池电量监测方法---------------------------------------------------------- 11目标:充分利用可用的电池容量------------------------------------------------------ 11传统的电池包侧电量监测计---------------------------------------------------------- 11系统侧阻抗跟踪电量监测计---------------------------------------------------------- 12电量监测计有哪些功能?------------------------------------------------------------ 13如何实现电量监测计---------------------------------------------------------------- 13基于电压的电量监测计-------------------------------------------------------------- 14电池电阻-------------------------------------------------------------------------- 15

电池容量的测试方法以及放电电流的选择

电池容量的测试方法以及放电电流的选择 电池容量的大小是以该电池在规定的电流下所能持续的放电时间来衡量,例如:某12V 充满电普通铅酸电池在1A的放电电流下,由正常电压放电到放电终止电压10.5V时,持续时间为10小时则该电池的容量为10AH.(1A乘以10小时=10AH) 电池的容量在不同的放电电流下所能释放的容量值并不相同,这是电池特性。放电电流越大容量值越小。(例如:10AH的电池当你以1A电流放电,放电时间有10小时,可是当你以5A电流放电时,放电时间却只有1.5小时甚至更少,也就是说该电池在1A 电流下的容量是1A乘以10小时=10AH,在5A电流下的容量是5A乘以1.5小时=7.5AH。我们可以这样理解,当一个运动员以百米冲刺的速度跑步,估计跑个2千米就会累趴下,可当他慢跑时却能完成40千米的长跑)当我们要测试一个电池的容量时,首先要明白测试的目的,如果测试的目的是为了检验电池容量和厂家标称值是否相同,则应咨询电池厂家的测试标准(放电电流和放电终止电压),测试标准不同,结果自然无法比较。如果测试的目的是为了检验该电池在使用产品上的放电时间则应该按产品的平均工作电流设置,测出容量结果后除以所设置的放电电流则为放电时间,单位为小时。(例如:12V电动车用动力电池测试结果为12AH放电电流为5A则放电时间为2.4小时即2小时24分钟,如果电动车在该电流下的平均车速为30公里,则电动车的行驶里程为72公里) 电池容量测试仪的选择 明白了以上知识,我们也就容易理解容量测试仪的测试能力主要是看放电电流和放电终止电压的调节范围,我们选购时尽量选择放电终止电压和放电电流能自由调节的。这样检测仪的通用性强。放电终止电压的调节范围决定了测试仪测试电池组的电压伏数,也就是说1-24V调节范围的测试仪只能测试放电终止电压设定在24V以内的电池或电池组,36V的电池是无法测试的。至于放电电流范围则最好能同时兼顾电池的厂

相关文档
最新文档