锂电池电量检测电路

锂电池电量检测电路

LTC 具温度 电压和电流测量功能的多节电池电量测量芯片

LTC2943 - 具温度、电压和电流测量功能的多节电池电量测量芯片 特点 ?可测量累积的电池充电和放电电量 ?至 20V 工作范围可适合多种电池应用 ?14 位 ADC 负责测量电池电压、电流和温度 ?1% 电压、电流和充电准确度 ?±50mV 检测电压范围 ?高压侧检测 ?适合任何电池化学组成和容量的通用测量 ?I2C / SMBus 接口 ?可配置警报输出 / 充电完成输入 ?静态电流小于120μA ?小外形 8 引脚 3mm x 3mm DFN 封装 典型应用 描述 LTC2943可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达20V的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子和负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流和温度利用一个内部14位无延迟增量累加(No Latency ΔΣTM) ADC来测量。测量结果被存储于可通过内置I2C / SMBus接口进行存取的内部寄存器中。 LTC2943具有针对所有4种测量物理量的可编程高门限和低门限。如果超过了某个编程门限,则该器件将采用SMBus警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 ?电动工具 ?电动自行车 ?便携式医疗设备 ?视频摄像机

程序: #include <> #include <> #include "" #include "" #include "" #include "" #include "" #include <> 00; Check I2C Address."; Shared between loop() and restore_alert_settings() .\nPlease ensure I2C lines of Linduino are connected to the LTC device"); } } (ack_error); (F("*************************")); print_prompt(); } } } *\n")); (F("* Set the baud rate to 115200 and select the newline terminator.*\n")); (F("* *\n"));

(整理)蓄电池性能检测装置详细资料

蓄电池性能检测系统锂电池充放电柜SBCT-3030TS 一、概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。 《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池检测方案 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成一个局部电池, 通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。 因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

汽车蓄电池容量的检测方法详解

汽车蓄电池容量的检测方法详解 汽车蓄电池是汽车启动时的唯一电源,在汽车发电机不工作时,它可以在一段时间内向汽车的用电设备供电(1~2h);在发电机正常发电时,它将发电机供给用电器后多余的电能转化成化学能储存起来,供下次启动或其它用电。 蓄电池的工作能力随其规格型号不同而不同,也随其生产的年代、厂家牌号有较大区别。同一个蓄电池,由于不同的使用维护水平,其剩余的工作力也不同。加上蓄电池自身的自行放电,极板硫化等不可避免的因素作用,也会使蓄电池的工作能力逐渐削弱以至报废。因此,在必要时对蓄电池的工作能力进行检测就成为汽车维护与保养的重要工作之一。 一、蓄电池的容量指标及其测定 蓄电池的工作能力用“容量”来衡量,它是在规定的端电压范围内,蓄电池对负载供给一定电流所能持续的时间(t),即衡量蓄电池电能做功的能力A=UIt(瓦秒)。在实际运用中,蓄电池的容量指标Q常用安培小时(Ah)来表示: Q=I·t(A·h) I—放电电流(A);t—放电时间(h) 由于电流单位安培(A)=库伦/秒,所以容量的单位安培小时(Ah)=库伦/秒×3600秒=3600库伦(3.6kC)。 库伦是电荷量单位,1库伦=6.24×1018(624亿亿)个电子所带的电量,所以容量与电池的物质量(正负极板数、总面积、电解液密度)有关。对于标准正、负极板组而言,每片正极板的额定容量为15Ah,每个单格电池中负极板数总是比正极板多1片,因此可以算出一定容量的单格电池中正负极板的准确片数,如3-QA-60Ah蓄电池,其额定容量为60Ah,正极板数=60(Ah)/15(Ah)=4;负极板数=4+1=5。如果蓄电池的额定容量不是15Ah 的整数倍数,则极板的尺寸、厚度及材料就会有所区别。 蓄电池的常用容量指标有“额定容量”、“储备容量”和“启动容量”三种。 1. 额定容量 根据GB5008-91规定,额定容量是:将充足电的新蓄电池在电解液温度为25±5℃条件下以20h率的放电电流(即0.05Q20)连续放电至单格电池平均电压降到1.75V时输出的电量。

磷酸铁锂电池测试方法

低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

蓄电池在线监测装置-蓄电池维护

LXJZ-D蓄电池在线监测装置 使用说明书 保定市领新科技有限公司

引言 蓄电池作为直流系统的电源是系统中十分关键的设备,必须对其进行规范合理、真实有效的日常维护。对于富液式铅酸蓄电池,可以通过测量电池的电压、电解液的比重和温度,查看电解液的颜色、极板表面的颜色、极板是否弯曲断裂、极板有效物质是否脱落等来判断电池的性能。而阀控式密封铅酸蓄电池(VRLA),因其密封,无法通过以上手段进行检测。另外,由于蓄电池数量多,情况各异,人工维护蓄电池组的工作量很大,只能定期测试,不能解决蓄电池性能的突变问题,出现大量的测试盲点;随着VRLA蓄电池的大量应用,铅酸蓄电池的在线实时监测、早期故障诊断技术的创新与发展已经迫不及待。 “蓄电池在线监测系统”是利用国家重大科技产业工程“电动汽车”项目中“电动汽车车载充电器、电池管理系统及剩余电量计的研制”专题的研究成果,深入研究了站用阀控式铅酸蓄电池组容量特性原理,并结合当今国际、国内在蓄电池容量组监测领域共同认可的方法,建立了一套完整的容量计算模型,真正解决了蓄电池组容量在线监测和单体电池故障早期诊断的难题。经过长期的研究和实践,研制出了适用于发电厂、变电站、微波机站、UPS机房等行业部门的蓄电池在线监测系列产品,该产品系列具有国内领先、国际先进水平,并已通过了有关部门的测试和认证。

第一章产品概述 1.1 产品特点 蓄电池在线监测装置具有以下优越的特点: 独特的蓄电池组剩余电量监测方法 单体电池内阻测量 监测过程实时进行 信号采集过程安全、可靠 信号采集精度高 蓄电池组网络化监测 1.2 产品用途 蓄电池在线监测装置主要应用于发电厂、供电局等电力直流系统,通信机房和基站,铁路供电变电站,金融、化工、企事业单位的UPS机房等后备电源使用场合,监测大容量蓄电池组的电池内阻、剩余电量、基本参数等,为蓄电池组的日常维护提供重要的依据,保证蓄电池组的可靠运行。 1.3型号说明 1.3.1系统命名规则: LXJZ—□□□□ 电池路数0~110 电池类型2/6/12V 电池容量 20~2500Ah 产品型号A/B/C/D 产品简称 1.3.2系统配置

电池电量检测方法

锂离子电池是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、mp3等。 锂聚合物电池是一种新型的二次锂电池,具有更大的容量;内阻较低,允许10C充放电电流。它和锂离子电池一样需要精确的充放电控制。目前,锂聚合物电池主要用于一些需要大电流充放电的应用中,如动力/模型汽车等。 充电电池容量估算方法 在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。 图1 简化的电池电量计框图 最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。 另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法对流入/流出电池的总电流进行积分,得到的净电荷数即为剩余容量。电池容量可以预置,也可在后续的完整充电周期中进行学习。在补偿电池自放电、不同温度下的容量变化等因素后,这种方法可以获得令人满意的精度,因此广泛运用于笔记本电脑等高端应用中。

ltc2943-具温度、电压和电流测量功能的多节电池电量测量芯片

特点 可测量累积的电池充电和放电电量 至 20V 工作范围可适合多种电池应用 14 位 ADC 负责测量电池电压、电流和温度 1% 电压、电流和充电准确度 ±50mV 检测电压范围 高压侧检测 适合任何电池化学组成和容量的通用测量 I2C / SMBus 接口 可配置警报输出 / 充电完成输入 静态电流小于120μA 小外形 8 引脚 3mm x 3mm DFN 封装 典型应用 描述 LTC?2943 可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达20V 的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子和负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流和温度利用一个内部14位无延迟增量累加(No Latency ΔΣTM) ADC 来测量。测量结果被存储于可通过内置I2C / SMBus 接口进行存取的内部寄存器中。 LTC2943 具有针对所有 4 种测量物理量的可编程高门限和低门限。如果超过了某个编程门限,则该器件将采用SMBus 警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943 仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 电动工具 电动自行车 便携式医疗设备 视频摄像机

程序: #include <> #include <> #include "" #include "" #include "" #include "" #include "" #include <>

00; Check I2C Address."; Shared between loop() and restore_alert_settings() .\nPlease ensure I2C lines of Linduino are connected to the LTC device"); } } (ack_error); (F("*************************")); print_prompt(); } } } *\n")); (F("* Set the baud rate to 115200 and select the newline terminator.*\n")); (F("* *\n"));

开题报告——基于单片机的锂离子电池电量检测系统毕业设计论文

(此文档为word格式,下载后您可任意编辑修改!) 南昌工程学院 09 级毕业(设计)论文开题报 告 机械与电气工程学院系(院)电气工程及其自动化专 业 题目基于单片机的锂离子电池电量检测系统设计 班级09电气工程及其自动化(1)班 学号 指导教师饶繁星

日期2013 年 1 月 4 日 南昌工程学院教务处订制

题目:基于单片机的锂离子电池电量检测系统设计 一、选题的依据及课题的意义 随着手机、数码相机、摄像机、手提电脑、音频视频播放器等便携式电子设备的迅猛发展,由于其便携性的特点,便携式设备必须由电池来进行供电。目前,便携式仪表的主流供电电池有铅酸电池,镍镉电池,镍氢电池,锂电池和锂聚合物电池等。与其它主流可充电电池相比,具有高单体电池电压、高功率密度、长循环寿命、无记忆效应、低自放电率等优点。锂电池是指以锂为负极材料的化学电池的总称,大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,该类电池具有较高能量质量比和能量体积比。 为了提高电池的使用率及全面掌握电池的状态,大多数设备在应用场合需要显示电池组的剩余电量信息,以供使用者明确电池组的工作状态,及时对电池组进行充电。在电池放电过程中,电池电压与剩余电量、工作时间之间并不是线性关系,所以并不能简单地采用电压采样、函数计算剩余电量。针对该要求,设计了一种基于单片机的锂离子电池电量检测系统,该检测系统的设计对全面掌握锂离子电池的电量状态,提高其利用率具有现实意义。本设计的研究成果若能广泛应用于便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

二、研究概况及发展趋势综述 锂电池常用的电量检测方法有两种,一种是利用库仑计,根据电池工作的电流与时间进行计算出电池的实际容量,此种检测方法是最准确的检测方法,一般用的芯片有TI,美信等电池管理芯片,但是成本太高,调试复杂。另一种方法是利用电池工作的电压曲线来分析出电池的容量,这种方式比较简单,成本也低,由于直接采用比较器如LM339,LM324等,检测精度低,检测相对很不准确,温漂大,功耗大。 在满足要求的前提下,本设计尽可能采用简单的锂离子电池电量检测方案,提出的基于单片机的锂离子电池电量检测方案,抗干扰能力强,并且可以实现对锂离子电池电量的高精度检测。 在本设计方案中,没有考虑电池老化等复杂因素对电量检测精度产生的负面影响,所以检测结果稍有误差。未来在要求更高精度的锂离子电池电量检测应用中,该检测系统必须考虑这些复杂问题对检测精度的影响,还需要做进一步的改进,让检测精度提高一个水平。

电池电量检测方法及原理 pdf

FUEL GAUGE 电池电量检测方法及原理锂电池具有高存储能量、寿命长、重量轻和无记忆效应等优点,已经在现行便携式设备中得到了广泛的使用,尤其是在手机、多媒体播放器、GPS终端等消费类电子设备中。这些设备不但单纯地只是支持单一的通讯功能,还支持流媒体播放和高速的无线发送和接收等等功能。随着越来越多功能的加入且要获得更长单次充电的使用时间,便携式设备中锂电池的容量也不断地增大,以智能手机为例,主流的电池容量已经800mAH增长到现在1500mAH,并且还有继续增长的趋势。 随着大容量电池的使用,如果设备能够精确的了解电池的电量,不仅能够很好地保护了电池,防止其过放电,同时也能够让用户精确地知道剩余电量来估算所能使用的时间,及时地保存重要数据。因此,在PMP和GPS中,电量计不断加入到设备中,并且电量计也在智能手机中得到了应用,尤其是在一些Windows Mobile操作系统的智能手机中,如图1所示,电池电量的显示已由原来的柱状图变为了数字显示。 本文介绍和比较三种种不同电量计的实现方法,并且以意法半导体的STC3100电池监控IC为例,在其Demo实现了1%精度的电池精度计量。 (a)柱状图电量显示(b)数字精确电量显示 图1 Windows Mobile 手机中电量计量 1,电量计的实现方法和分类。 据统计,现行设备中有三种电量计,分别是: 直接电池电压监控方法,也就是说,电池电量的估计是通过简单地监控电池的电压得来的,尽管该方法精度较低和缺乏对电池的有效保护,但其简单易行,所以在现行的设备中得到最广泛的应用。然而锂电池本身特有的放电特性,如图2所示。不难从中发现,电池的电量与其电压不是一个线性的关系,这种非线性导致电压直接检测方法的不准确性,电量测量精度超过20%。电池电量只能用分段式显示,,如图1.a所示,无法用数字显示精确的电池电量。手机用户经常发现,在手机显示还有两格电的时候,电池的电量下降得非常快,也就是因为这时候电池已经进入Phase3。 图2 锂电池放电曲线

电池电量检测芯片

电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和 bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路 VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。

锂电池容量自测方法

锂电池容量自测方法 一.锂电池容量自测 CECT9898贴牌手机锂电池标称容量3800mAh,其电池体积与其它品牌手机1500mAh电池体积相当。本人利用手头现有的五金|工具和专业知识,自行对本人持有的CECT9898贴牌手机的电池进行一次容量测试。 根据GB/T18287-2000《蜂窝电话用锂离子电池总规范》,手机电池容量可以简单叙述为:在20±5℃温度下,将充满电的电池按五小时率放电至终止电压(2.75V)时的所提供的电量。基于此定义,自行设计、制作放电测试电路。 放电电路的主体为恒流源,3V辅助电源|稳压器采用干电池。先用另一手机电池将电路调试好,再断开干电池(恒流源的偏置断开),放电电流变为零,然后换上刚充满电的CECT9898手机锂电池,连通干电池,开始计时、测试。 测试于2007年11月23日晚进行,环境温度16℃。测试的电池(S/N:HSY07102647)已经过3次完全充放电,每次充电不少于12小时,放电至手机自动关机。电池前二天用手机自带座充充电12小时,测试前再次用手机充电二十分钟,手机显示已充满。用DT9206数字万用表自测座充充电电压4.20V,电池充满后空载电压4.17V。 由于电压从2.80V跌落到2.75V的时间太块,来不及记录,因此表中最后一分钟

数据不列入计算。根据电池容量定义,电池容量为电流-时间特性图中的斜阴影部分面积,约等于1680mAh(毫安时)。 本测试中引起误差的主要原因有: 1.放电时间(实际266分钟)略少于国家标准规定的5小时,即放电电流略偏大,考虑到电池的内阻因素,会使测试结果略偏小。 2.恒流源精度不够,低于国标要求(电流变化1%以内),主要系晶体管温度变化引起。 3.电流表精度低于国标要求(应≤0.5级精度) 4.电池充电方式与国标要求稍有区别(国标要求充电时间不能大于8小时),但满足使用中的电池最大容量条件。 基于此,此次个人检测该电池容量为1700mAh左右,远低于标称容量3800mAh。 说明,本人保证以上测试数据的真实性,但本测试仅作为个人行为,其测试原理、过程、结论仅为个人看法,不作为判断合格依据。 二.电流自测

12V电池电量指示电路

12V电池电量指示电路 12V电池电量指示电路 LM3914可以感知电压等级和可开10点模式或酒吧模式的LED显示屏。酒吧模式和点阵模式,可以通过外部设置多个IC可级联在一起,拿着首级扩展显示。该IC可以从一个宽电源电压(3V至25V DC)。LED的亮度可以通过一个外部电阻编程。LM3914的LED输出的是TTL和CMOS兼容。说明电路图中的发光二极管D1的toD10显示点或条形图模式电池的水平。电阻R4引脚6,7和地面之间的连接,控制LED的亮度。电阻R1和R2的壶形成一个分压器网络的POT R2可以用于校准。此处所示的电路设计,以监测10.5V至15V DC之间。可以做如下的校准电路。成立后的电路连接12V直流电源输入。现在调整的10K锅LED10发光(点模式)或发光二极管10辉光(栏模式)。现在减少的步骤和10.5伏电压只有LED1的意志焕发。开关S1可用于点模式和条形图模式之间进行选择。当S1闭合,PIN9的集成电路被连接到正电源和条形图模式被启用。当开关S1是开放的IC PIN9断开连接到正电源和显示器去点模式。随着稍加修改电路可以用来监视其他的电压范围。对于这个刚刚删除的电阻R3和连接上层的输入电压。现在调整的POT R2,直到10的LED发光(点模式)。删除上电压等级较低的水平,并连

接输入。现在连接在R3的地方高价值的锅(例如500K)和调整直至单独的LED1发光。现在删除了锅,测量直流电阻和连接电阻值相同,在R3的地方。水平显示器已经准备就绪。电池电量指标使用LM3914的电路图电池电量指示电路采用LM3914级联两个LM3914两个或两个以上的LM3914芯片可以级联在一起,得到一个扩展显示。两个LM3914集成电路cacaded合力得到了20颗LED的电压水平指示器的示意图如下所示。级联两个LM3914其他一些电池水平的相关电路,您可能会喜欢的1,简单的电池电量指示灯:该电路可用于监测3V电池的水平。电路是基于从松下MN13811G 的。MN13811G是CMOS电压检测IC,可用于各种电压监控应用。在电路中的LED D1将闪烁时候电池电压降到2.4伏以下。2,3个LED电池电量指示灯:这里显示3 LED电池电量指示灯,可用于监测12V汽车电池的电压水平。三个国家的电池,即低于11.5V之间的11.5和13.5 13.5以上,显示的LED发光。3,闪烁的电池监控:该电路可用于监测的6至12V电池的电压等级。基于晶体管的电路,并可以通过使用一个电位器来调整电压等级的LED开始闪烁。LM3914外形图一: LM3914外形图二:

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电池电量检测指示电路

電池低壓指示電路 , , 喬治查爾斯電子電路網 https://www.360docs.net/doc/e115021096.html, 在許多製作中常會使用到充電池或是一般電池來當成電源,但總不能用到沒電時才知道,到時上不了場,就出天窗了,所以收集了幾個相關的電路,供大家參考: 電池低壓指示(1): 這個簡單的電路可以偵測電池的電壓,當電壓低於由可變電阻VR1所預設的電壓時,LED會亮起,實際上VR1及相關的電阻成為Q1 (ON) 的偏壓保持Q2(OFF)使LED也是OFF的,當電池電壓逐漸降低至所預設的電壓之下,Q1成為OFF狀態,轉而使Q2成為ON,使LED亮起。這個電路可正常工作於12V以下的電池。你可先使用一個可變電源供應器,先調整你希望指示的低電壓,接上電路,調整VR1至開始亮起或關暗的臨界值。

模型遙控直升機5.2V NiCad電池低壓指示(2): 以上這個電路,當電池電壓低於預設的值時可以使低壓偵測非常明亮的指示(使用高亮度或大型LED), 由於原設計是使用在搖控直昇機上,所以可以選用在白天還是可看得到的高亮或特定顏色的LED,切斷點是由P1可變電阻來調整於4.2至5.2V之間,依照你的選用的零件來設定,但建議設在4.6至4.8V之間,唯原設計在遙控宜升機上,但你也可用在別的應用上,依原設計當LED亮的時電流約12mA,而待機時的電流約在2mA以下。 電池低壓指示(3): 以電晶體的導通來說,在B及E極上大約要0.6V左右的偏壓才成立,這個電壓就由50K的可變電阻來調整,如果這個可變電阻調至最低時,那在50K VR 上的壓降約為 1.364V (50/22*0.6),在兩個串聯的電阻上的壓降就是 1.964 (1.364+0.6),所以電路的動作臨界電壓就是1.964V+3.9V=5.864V,所以上調可變電阻可以降低臨界電壓,所以整個電路可調整的臨界電壓範圍是

LTC2943 具温度电压和电流测量功能的多节电池电量测量芯片

LTC2943 - 具温度、电压与电流测量功能的多节电池电量测量芯片特点 ?可测量累积的电池充电与放电电量 ?3、6V 至 20V 工作范围可适合多种电池应用 ?14 位 ADC 负责测量电池电压、电流与温度 ?1% 电压、电流与充电准确度 ?±50mV 检测电压范围 ?高压侧检测 ?适合任何电池化学组成与容量的通用测量 ?I2C / SMBus 接口 ?可配置警报输出 / 充电完成输入 ?静态电流小于120μA ?小外形 8 引脚 3mm x 3mm DFN 封装 典型应用

描述 LTC?2943 可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达 20V 的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子与负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流与温度利用一个内部 14位无延迟增量累加(No Latency ΔΣTM) ADC 来测量。测量结果被存储于可通过内置 I2C / SMBus 接口进行存取的内部寄存器中。 LTC2943 具有针对所有 4 种测量物理量的可编程高门限与低门限。如果超过了某个编程门限,则该器件将采用 SMBus 警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943 仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 ?电动工具 ?电动自行车

?便携式医疗设备 ?视频摄像机 程序: #include #include #include "Linduino、h" #include "LT_I2C、h" #include "UserInterface、h" #include "QuikEval_EEPROM、h" #include "LTC2943、h" #include

LTC2943 - 具温度、电压和电流测量功能的多节电池电量测量芯片教程文件

L T C2943-具温度、电压和电流测量功能的多节电池电量测量 芯片

LTC2943 - 具温度、电压和电流测量功能的多节电池电量测量芯片特点 ?可测量累积的电池充电和放电电量 ? 3.6V 至 20V 工作范围可适合多种电池应用 ?14 位 ADC 负责测量电池电压、电流和温度 ?1% 电压、电流和充电准确度 ?±50mV 检测电压范围 ?高压侧检测 ?适合任何电池化学组成和容量的通用测量 ?I2C / SMBus 接口 ?可配置警报输出 / 充电完成输入 ?静态电流小于120μA ?小外形 8 引脚 3mm x 3mm DFN 封装 典型应用

描述 LTC?2943 可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达 20V 的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子和负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流和温度利用一个内部 14位无延迟增量累加(No Latency ΔΣTM) ADC 来测量。测量结果被存储于可通过内置 I2C / SMBus 接口进行存取的内部寄存器中。 LTC2943 具有针对所有 4 种测量物理量的可编程高门限和低门限。如果超过了某个编程门限,则该器件将采用 SMBus 警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943 仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 ?电动工具 ?电动自行车 ?便携式医疗设备

?视频摄像机 程序: #include #include #include "Linduino.h" #include "LT_I2C.h" #include "UserInterface.h" #include "QuikEval_EEPROM.h" #include "LTC2943.h" #include // Function Declaration void print_title(); // Print the title block void print_prompt(); // Print the Prompt void store_alert_settings(); // Store the alert settings to the EEPROM int8_t restore_alert_settings(); // Read the alert settings from EEPROM #define AUTOMATIC_MODE_DISPLAY_DELAY 1000 //!< The delay between readings in automatic mode

蓄电池性能检测电路设计设计

基于单片机的蓄电池性能测试电路的设计 电气工程及其自动化专业] [摘要] 阀控铅酸蓄电池作为后备电源已经广泛应用于工业生产,交通、通信和军事领域。如何高效率管理这些蓄电池,提高后备电源系统的可靠性是一个很现实的重要课题。因此,本课题设计一基于单片机的船舶蓄电池性能检测系统。该系统采用精密电阻和电池构成串联电路,用交流注入法对蓄电池注入微弱正弦波信号,通过对输出响应进行一系列的放大、幅相检测、AD转换和采集,然后根据测量到的电压比来推算电池内阻。试验结果表明:该方法能够被有效地用于铅酸电池内阻测量,测量结果稳定有效。 [关键词]幅相检测;AD转换;单片机;电池内阻

目录 1引言 (1) 1.1研究背景 (1) 1.2蓄电池研究现状 (1) 1.3蓄电池的性能指标 (2) 1.4蓄电池性能的判断因素 (3) 2测试方法研究 (4) 2.1内阻参数的相对性与绝对性 (4) 2.2蓄电池内阻与容量的关系 (5) 2.3蓄电池等效电路 (5) 2.4方案的探讨 (6) 2.5交流法 (7) 3硬件电路的设计 (8) 3.1总体框架 (8) 3.2主处理器模块 (10) 3.3探测电路 (12) 3.4差分放大电路 (13) 3.4.1INA321芯片简化图 (13) 3.4.2INA2321电路图 (14) 3.5幅相检测电路 (14) 3.5.1AD8302介绍 (14)

3.5.2AD8302电路图 (15) 3.6模数转换模块设计 (16) 3.6.1模数转换芯片AD0809 (16) 3.6.2ADC0809与单片机的接口电路 (17) 3.7液晶显示 (18) 3.7.1LCD1602介绍 (18) 3.7.2LCD1602与单片机的接口电路 (20) 4软件部分 (21) 4.1主程序 (21) 4.2A/D转换子程序 (22) 4.3LCD1602初始化部分 (23) 结束语 (25) 参考文献 (26) 致谢 (27)

做个简单电路检测手机电池容量

做个简单电路检测手机电池容量 前不久的事,网购一部华为荣耀3C手机。习惯相信卖家都是诚实的,看到卖家的“宝贝详情”网页上介绍得有模有样,又大大的优惠,各种承诺也有板有眼,好评颇多而且头头是道,就下手了。然而使用中就发现,标称2800mAh的电池,原配500mA的充电器,充电不到3个小时就满。这样粗算电池容量500mA*3个小时该是1500mAh,相差甚远,于是心起疑惑,做了这个简单电路检测电池的容量。果不其然,实测容量不到1300mAh,比我那老金立手机的标称1300mAh的电池的实测容量还低。老金立手机的电池用了好多年了,实测容量还超过1300mAh。假货!于是立马退货。还好,卖家给卖了运费险的,不需要扯皮,保险给了12元退货运费,实际退货运费10元,赚了两元,算是对费去神力的一点补偿。看来在淘宝上淘宝还是不能轻信卖家的宣传,好评也是可以通过“水军”刷出来的。 1、电路图 2、原理 检测电池容量的原理是很简单的,就是对充满电的电池用恒定的电流让电池放电,记放电的时间,当电池电压下降到下限时停止放电,用放电电流乘以时间就是电池的容量。 R10、U2、C4构成基准电压电路,在U2(TL431)的阴极得到约2.5V的基准电压。U1A、Q1及外围元件构成可调恒流源电路,基准电压经R5、W1分压,给U1A的同相端提供参考电压。R1是放电电流取样电阻,取样电压经R4送到U1A的反相端,当电流达不到设定值时,U1A反相端电压低于同相端电压,U1A输出电压升高,Q1电流增大。当电流超过设定值时,U1A反相端电压高于同相端电压,U1A输出电压降低,Q1电流减小。这种负反馈使Q1电流恒定。调整W1可改变参考电压,也就改变放电电流。 U1B、Q2及外围元件构成电池下限电压识别和充电状态锁定电路。U1B作为电压比较器,2.5V基准电压接至U1B的同相端。电池电压经R8、W2、R9分压,接至U1B的反相端。当电池电压高于下限电压时,U1B的反相端电压高于同相端电压,U1B输出低电平,D1反偏截止,恒流电路独立工作,同时Q2截止,D1、D2无电流,不影响识别电路和Q3为核心的石英钟供电电路的正常工作。当电池电压降到低于下限电压时,U1B的反相端电压低于同相端电压,U1B输出高电平,一路通过ZD1、D1将U1A的反相端电压提高,使其高于同相端的参考电压,促使U1A输出低电平,Q1截止,停止放电。另一路经R6、R7

一种基于MAX471芯片的锂电池充电电量显示与监控电路

一种基于MAX471芯片的锂电池充电电量监测电路的设计与实现 ----------------三峡电力职业学院刘远明 摘要:本文提供了一种基于MXA471芯片的锂电池充电监测电路,通过该芯片实时检测电路对锂电池的充电电流值,配合充电管理芯片,实现了对充电电流,充电电压,充电电量,电池温度等的实时检测和显示,当电池温度、充电电压等方式异常时,电路会及时报警,避免充电事故的发生,本文对电路原理,方法,相关器件都做了详细介绍。 引言:随着便携式电器设备的普及,锂电池的使用已随处可见,从手机到平板,从各种便携式仪器仪表到学生的各种科技活动,使用的电源基本都选择了锂电池。但,使用锂电池就离不开充电器,一个好的,功能完备的充电器对正确,安全使用锂电池及其重要。在对锂电池充电时,经常因为电池或充电器的原因,充电充了很长时间,取下电池使用时,电池还是没电,或一会又没电了,有的电池,在充电过程中,电池发热甚至发生爆炸事故,因此,在充电过程中,对电池的充电情况进行实时监测,出现问题时能及时发现,确保充电过程有效,安全得进行。这里提供一种基于MAX471芯片的充电监测电路,可以较好的实现锂电池充电的安全、有效的目标。 1、MAX471芯片介绍: 1.1 MAX471芯片性能特点 MAX471 是美国Maxim 公司向市场推出的一种新型的、高精度的电流检测放大器,主要用于笔记本电脑、手机、便携式测量仪、能源管理系统等中的电流监测单元在电流测量技术中。在电流测量中,为了减少测量电路对被测电流的影响, 通常采用在被测电路中串联一只小阻值的取样电阻进行I-V 转换, 再经过差分放大电路实现小电压放大的方法来测得电路中的电流值,测量精度要求越高, 线路就越复杂。MAX471内部有一个35mΩ的电流采样电阻, 可以测量±3A的电流。MAX471 有一个电流输出端, 只需外接一个电阻, 将电流转换成对地电压, 就可组成高精度的电流监测电路。它的工作电压和被测电路电流范围宽, 因此得到广泛的应用。 1.2 MAX471内部结构及工作原理 图1是MAX471内部结构示意图,主要包括两个运算放大器A1,A2, 内部电流采样电阻R SENSE跨接在两个运算放大器的输入脚之间,当被测电流 经过RS+至RS-流过采样电阻R SENSE时(实际可以是任意方向),放大器A1 工作,输出电流使VT1导通,此时,忽略三极管的导通压降,A1正端的电 压为:V CC–I OUT R G1。因A2此时输出低电平,VT2不导通,因而A1负端电压 为:V CC -R SENSE I LOAD ,根据放大器虚短,虚断的原理,两输入端电阻无限大, 而电位相等,就有:I OUT R G1 = R SENSE I LOAD 即I OUT/ I LOAD = R SENSE/ R G1这里,I OUT/ I LOAD称为电流比,其大小由芯 片内部的电阻R SENSE、 R G1的大小决定的,MAX471内部的电阻已经固定,其 比值为0.0005。这样,I OUT=0.0005I LOAD 如果在OUT输出端接入一个负载电阻R OUT ,就可以根据电阻上的电压,计算出被检测电流的大小来: V OUT=I OUT R OUT = 0.0005I LOAD R OUT 即;I LOAD = V OUT/0.0005R OUT (A) 给定一个负载电阻R OUT值,测出电压V OUT值,电流I LOAD的大小就知道了,特别,当电阻R OUT的值为2K时, 电流: I LOAD=1V OUT(A ) 1.3 MAX471管脚功能 图2是MAX471的管脚图,其管脚功能如下: 1, SHDN :休眠端。接地时处于工作状态。接高电平时, 休眠状态, 耗电电流小于18μA。 2, 3 RS + :内部取样电阻的电源端。“ +”仅表示SIGN输出端的电流方向。 4 GND :地或电池负端。 5 SIGN :OC 门输出端。低电平表示被测电流由RS-流向RS+。当SHDN 为高电平时, SIGN端呈高阻抗。不使用SIGN 时, 可将该端悬空。 6, 7 RS - 内部取样电阻的负载端。“ -”仅表示SIGN输出端的电流方向。 8 OUT:电流输出端, 它与经过RSENSE的电流大小成比例。该端对地接一个2k 的电阻时, 其转换因子为1V/ 1A(被测电流) SHND RS+ RS+ GND OUT RS- RS- SING 图2 MAX471引脚图 图1 MAX471内部结构示意图 I LOAD

相关文档
最新文档