人教版八年级数学上册分式的加减 (2)
八年级上第二章数学知识点

八年级上第二章数学知识点概述八年级上册第二章是数学知识点较多的一个章节,主要讲解了分式的乘除、分式的加减、分式的化简、分式方程、正比例函数、反比例函数等重要知识点。
这些知识对于学生掌握数学基础知识,尤其是在日常生活中运用数学的过程中非常重要。
一、分式的乘除分式是数学知识的一个重要部分,它在数学中有着广泛的应用。
在乘除分式的运算中,我们需要把分母相乘或相除,然后把分子相乘或相除,最后对结果进行合理化简。
这样可以得到我们所需要的简单分式。
在运算过程中,我们需要注意分母是否为零,以及如何简化分式使得答案更加准确。
二、分式的加减分式的加减是我们在日常生活中应用最多的运算,例如在购物、比价以及账户余额计算等方面都需要运用到分式的加减运算。
在分式的加减中,我们需要首先找到所有的公因数,然后对分子进行化简,最后得到运算结果。
在具体计算的时候,还需要注意分母是否为零的情况。
三、分式的化简分式的化简在求解数学问题时也是非常重要的一个环节。
在化简过程中,我们需要把分子、分母的公因式约掉,从而使得分数的形式简单化。
同时,在化简运算时,还需要注意约分的原则和方法。
四、分式方程分式方程在数学中也是一个非常基础的知识点。
在分式方程中,我们需要把一个分式的值与一个已知的数或其他分数相等,然后通过分式的加减、乘除运算把变量求出来。
在计算分式方程的过程中,我们需要注意多种情况的处理,例如分母为零的情况、公因式处理等。
五、正比例函数和反比例函数正比例函数和反比例函数是八年级上册第二章中的重点内容之一。
这两种函数可以解决很多实际问题,例如距离、体积、面积等计算。
正比例函数的特点是变量之间成正比例关系,而反比例函数的特点是变量之间成反比例关系。
在解决问题的过程中,我们需要首先确定函数的性质,然后运用相应的解题方法,最后得出问题的答案。
综上所述,八年级上册第二章数学知识点是一个十分重要的知识点。
学生应该仔细阅读、认真理解,并在课堂上积极参与讨论,加强对这些知识点的掌握。
八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时

= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x
y x
c x
m y x
c
(2)
m 2abc
n 2bca
d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式
1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4
a
1
2
a2 -4 能分解 :
解:原式
(a
2a 2)(a
2)
(a
a2 2)(a
2)
2a (a 2) (a 2)(a 2)
2a a 2 (a 2)(a 2)
人教版八年级数学上册15.分式的加减课件(2)

a b a b, cc c
a c ad bc ad bc . b d bd bd bd
分式的减法法则:
同分母的分式相减,分母不变,把分子相减;
异分母的分式相减,先通分,变为同分母的
分式,再相减.
思路:
异分母 分式相 减
通分
同分母 分式相 减
分母不变 分子 (整式)
相减
初中数学
新课讲授
S3 -S2 S2
,
2010年的森林面积增长率是 S2 -S 1 .
S1
初中数学
解: S3 -S2 - S2 -S 1
S2
S1
= S(1 S3 -S2)- S(2 S2 -S1)
S1S2
S1S2
= S1S3 -S1S2 -S22 +S1S2 S1S2
S1S3 -S22 . S1S2
初中数学
或:
xy
xy
解:原式= (x y)2 (x y)2
xy
= (x2 2xy y2) (x2 2xy y2) xy
= 4 xy xy
= 4;
初中数学
练习 计算: (2) 1 1 .
x3 x3
解:原式 x 3 x 3
(x 3)(x 3) (x 3)(x 3)
(x 3) (x 3)
2(2a 3) 3(2a 3) 2a 15 (2a 3)(2a 3)
4a 6 6a 9 2a 15 (2a 3)(2a 3)
0.
初中数学
分式的加、减法法则: 同分母分式相加减,分母不变,把分子相加减; 异分母分式相加减,先通分,变为同分母的分式, 再加减.
a c
y x (x y) xy(x y)
2y 2x xy(x y)
人教版-数学-八年级上册-人教数学 分式的加减乘除混合运算 教案

(1)(x+y)2· +
(2)
(3)
(4) - ·
教学设计:
教学
环节
教学活动过程
思考与
调整
活动内容
师生行为
预习
交流
通过回顾分式的加法、减法、乘法和除法法则,帮助学生回顾这些法则的得出过程,为本节的混合运算奠定基础,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
学习重点
分式的加、减、乘、除混合运算的顺序。
学习难点
1、分式的加、减、乘、除混合运算。
2、分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
3、灵活运用添括号,去括号法则
教具学具
小黑板、三角板等
预习作业
1.分式的乘除法法则是
2.分式的加减法法则是
3.回顾小学所的数的混合运算的顺序是:先,再,然后,遇有括号,先算。从而类比得到分式的混合运算法则。
展示例题,让学生动手计算,教师巡视、指导、及时纠正错误。
在独立探究Байду номын сангаас基础上,学生分组交流与研讨,并汇总解决问题的方法。
学生观察、思考、交流,教师深入学生当中,参与活动,倾听学生交流并适时的进行点拨。
检测
反馈
1.计算:
(1)
(2)
2.计算 ,并求出当 -1的值.
3.课堂上,李老师出了这样一道题:
已知 ,求代数式 的值。
例3:已知x+ =3,求下列各式的值:
(1)x2+ ;(2 。
分析:观察已知条件和所求式,可将所求的式进行分解因式,将已知条件整体代入,第(2)题是先求它的倒数值,可以将x2+ =7直接代入,求得它的值。此外对于已知条件x+ =3,可以变形为x2-3x+1=0,也可以变形为 =1,在后两种表达形式下,要能熟练地将它转化为x+ =3。
人教版八年级数学上册说课稿15.2分式的运算

人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
八年级上数学分式知识点

八年级上数学分式知识点一、分式的概念分式也叫有理数,是数的一种表现形式,其中分子和分母都是整数,分母不能为0。
分式可以写成a/b的形式,a为分子,b为分母。
二、分式的化简1.因式分解法将分子和分母进行因式分解,然后将公因式约掉。
例如:(6a^2b)/(9ab^2) = (2a)/(3b)2.通分化简法将两个分母的最小公倍数作为分母,分子分别乘以分母的倍数,然后约掉公因式。
例如:(3/4) + (1/6) = (9/12) + (2/12) = (11/12) 3.除法化简法将除法转换成乘法,分子不变,分母倒过来。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)三、分式的加减1.通分后合并分子例如:(2/3) + (1/4) = (8/12) + (3/12) = (11/12) (1/2) - (1/3) = (3/6) - (2/6) = (1/6)2.需要先找到一个公因式例如:(1/4x) + (3/5) = (5/20x) + (12/20) = (5+12)/20x = (17/20x) (1/2y) - (2/3x) = (3/6y) - (4/6x) = (3x-4y)/6xy四、分式的乘法将分子相乘,分母相乘,然后约掉公因式。
例如:(3/4) × (2/5) = (6/20) = (3/10)五、分式的除法将除号转为乘号,然后取倒数,分子同分母约掉公因式。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)六、分式的绝对值分式的绝对值是分子分母的绝对值之商,如果分子分母符号相同,结果为正,如果符号不同,结果为负。
例如:|-2/3| = 2/3|-2/-3| = 2/3七、分式的倒数将分数的分子和分母交换位置,得到一个新的分数,即原分数的倒数。
例如:倒数是 4/5 的分数为 5/4以上就是八年级上数学分式知识点的详细介绍,希望同学们在学习数学的过程中能够掌握这些知识点,并且通过练习提高自己的数学水平。
人教版数学八年级上册15.2.2分式的加减(第2课时)教学设计

在学生掌握了分式加减法的基本知识后,我会设计一些课堂练习题,让学生独立完成。这些练习题将涵盖不同难度层次,以便满足不同学生的学习需求。
在学生完成练习题后,我会挑选部分学生的答案进行展示和讲解,针对共性问题进行解答,帮助学生巩固所学知识。
(五)总结归纳
课堂最后,我会组织学生进行总结归纳。首先,让学生回顾本节课所学的分式加减法的运算规则,总结通分、简化分式等关键步骤。然后,我会提问学生:“通过本节课的学习,你们觉得自己在哪些方面有了提高?还有哪些疑问和困惑?”
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握分式加减法的运算规则。
-能够将复杂分式简化为最简形式,并进行加减运算。
-学会根据实际问题构建分式加减模型,解决具体问题。
这些重点内容是学生形成分式加减知识体系的基础,也是提高学生数学能力的关键。
2.教学难点:
-异分母分式的加减运算,特别是通分过程中的技巧和方法。
-分式的简化,尤其是含有复杂多项式的分式的化简。
-将实际问题转化为分式加减运算的过程,需要学生具备较强的抽象思维和数学建模力。
针对难点内容,教学中需要设计梯度性、层次性的教学活动,帮助学生逐步突破。
(二)教学设想
1.创设情境,激发兴趣:
-通过生活中的实例,如购物时计算折扣、比较不同物品的价格等,引出分式加减运算的实际意义,激发学生的学习兴趣。
5.总结反思,形成策略:
-在课堂结束前,组织学生进行自我反思,总结分式加减运算的技巧和方法,形成自己的解题策略。
6.创新评价,鼓励进步:
-采用多元化的评价方式,如口头提问、书面作业、小组展示等,全面评估学生的学习效果,鼓励学生的进步。
人教八年级数学上册《分式的加减 第1课时:分式的加减法法则》精品教学课件

2
p
1
3q
-
2
1 p-3q
.
解:(1)
2
p
1
3q
2
1 p-3q
=
(2
p
2 p-3q 3q)(2 p-3q)
(2
p
2 p 3q 3q)(2 p-3q)
2 p-3q 2 p 3q (2 p 3q)(2 p-3q)
(2 p
4p 3q)(2 p-3q)
通分
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
1
8 a2 4
8(a2 4) 8(a2 1) (a2 1)(a2 4) (a2 1)(a2 4)
8(a2 4) 8(a2 1)
(a2 1)(a2 4)
8(a2 4 a2+1) (a2 1)(a2 4)
(a2
24 1)(a 2
4)
.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
3q2 p
3q
3q
2p
6q
3q2 p
3q
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
异分母分式相加减的一般步骤: (1)通分:将异分母分式转化为同分母分式; (2)加减:写成分母不变、分子相加减的形式; (3)合并:若分子有括号,则先去括号、再合并同类项; (4)约分:分子、分母约分,将结果化成最简分式或整式.
1+ 1 两队共同工作一天完成这项工程的__n___n___3_.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
问题2:2019年、2020年、2021年某地的森林面积 (单位:km2) 分别是S1,S2,S3,2021年与2020年相比,森林面积增长率提高了 多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考再现
21
思维导图
分式的混合 运算
分式的混合运算法则: 分式的化简求值:
22
蓦然回首
对自己说,你有什么收获? 对同学说,你有什么温馨提示? 对老师说,你还有什么困惑?
23
作业布置
1.课本第142页练习以及习题15.2第6题; 2.《能力》;
24
学以致用
1.化简
的结果是( A )
A.
B.
2.化简:
C. x+1
D. x-1 1
13
知识点一:分式的混合运算
学以致用
3.计算:
x+1 xBiblioteka 2x 2 x+1
-
1 x-1
-
1 x+1
.
14
知识点一:分式的混合运算
合作探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;
15
知识点一:分式的混合运算
7
知识点一:分式的混合运算
学以致用
3.计算:
8
知识点一:分式的混合运算
合作探究
先独立完成导学案互动探究1,再同桌相互交 流,最后小组交流;
9
知识点一:分式的混合运算
典例讲评
解:原式
10
知识点一:分式的混合运算
典例讲评
解:原式
11
知识点一:分式的混合运算
归纳总结
12
知识点一:分式的混合运算
重点难点
重点:熟练地进行分式的混合运算. 难点:熟练地进行分式的混合运算.
4
知识点一:分式的混合运算
典例讲评
解:原式 这道题的运算顺序是怎样的?
先乘法, 再乘除, 然后加减.
5
知识点一:分式的混合运算
新知归纳
6
知识点一:分式的混合运算
学以致用
1.化简
A.
B.
C.
2.化简2-
的结果是( C ) D.a
第十五章 分式
分式的加减
11
复习备用
同分母分式相加减, 不变,把 相加减; 异分母分式相加减,先 ,变为同分母的分式,再加减.
2
问题引入
问题 有理数的混合运算的顺序是什么?你能将它们 推广,得出分式的混合运算顺序吗?
分式的混合运算顺序:
3
学习目标 1.会进行简单分式的混合运算.
2.理解分式混合运算的算法原理. 3.会解决一些简单的实际问题.
的值
是( D )
A. 48 B.
3.若ab= -1,m=
C. 16
D. 12
,则-m2020的值是( C )
A.2020 B.-2020 C.-1 D.1
18
知识点二:分式的化简与求值
学以致用
4.先化简,再求值:2-
,其中x=3,y=-4.
19
知识点二:分式的化简与求值
合作探究
先独立完成导学案互动探究3、4,再同桌相 互交流,最后小组交流;
合作探究
先独立完成导学 案互动探究5,再同桌 相互交流,最后小组 交流;
16
知识点二:分式的化简与求值
典例讲评
其中 x= -1.
17
知识点二:分式的化简与求值
学以致用
1.若a=2019,b= -2020,则1+
的值是( B )
A.2018 B. 0 C.-2019 D. 4039
2.已知x+y= ,x-y= ,则