偶然误差的统计规律三

合集下载

第二章 误差分布与精度指标

第二章  误差分布与精度指标
2 2


DXX E X E( X )X E( X )

T

§2.1

正态分布
正态分布曲线的性质:
1、曲线关于 x=u 对称; 成反比; 2、当x=u时,f(x)具有最大值,且与 3、当X离 u越远,f(x)的值越小; 4、曲线x=u± 处有拐点; 5、 越小,曲线顶点越高,曲线形状越陡峭
§2.4 方差—协方差阵
三、互协方差阵:
Y X 观测值向量 n 关于 的互协方差阵: 1 n1
nm

DXY E X E ( X )Y E (Y ) E X Y
T


T

x1 y 2 x2 y2 xn y 2 x1 y m x2 y m xn ym
逆矩阵的性质:
(1)( AB) B A (2)( A ) A 1 T 1 1 T (3)( I ) I (4)( A ) ( A ) (5)对称矩阵的逆仍为对称矩阵。 (6)对角矩阵的逆仍为对角矩阵且:
1 1 1
1 1
A (diag (a11, a22 , ann )) 1 1 1 diag ( , ) a11 a22 ann



x2
xn

§2.4 方差—协方差阵
观测值向量 X的自协方差阵DXX:
n1
DXX特点: 对称可逆方阵 主对角线上元素为 对应观测值的方差; 非主对角线上元素 为对应两个观测值 的协方差
E (2x1 ) E ( x1 x2 ) E (2x2 ) E ( x2 x1 ) E ( x x ) E ( x x ) n 1 n 2

《测量平差》教案 第二章 误差分布与精度指标 (武汉大学版)

《测量平差》教案 第二章 误差分布与精度指标  (武汉大学版)

《测量平差》教案第二章误差分布与精度指标第一节正态分布一、一维正态分布绘一维正态分布图,列出分布函数,讲解,强调两个分布参数的含义。

二、n维正态分布讲解绘n维正态分布图,列出分布函数,讲解,强调两个分布参数的含义。

第二节偶然误差的规律性一、偶然误差分布1、描述误差分布的三种方法(1)列表法(通过实例列表讲解)(2)绘图法(通过实例绘图讲解)(3)密度函数法(通过实例绘图讲解)二、偶然误差的分布特性(1) 在一定的观测条件下,误差的绝对值不会超过一定的限值。

(界限性) (2) 绝对值较小的误差比绝对值较大的误差出现的概率要大。

(小误差占优性)(3) 绝对值相等的正负误差出现的概率相等。

(对称性)三、两个重要概念(1) 由偶然误差的界限性,可以依据观测条件来确定误差限值(2) 由偶然误差的对称性知观测量的期望值就是其真值。

小结:偶然误差有其统计规律,研究偶然误差的分布规律是为了更好的研究偶然误差的处理问题。

第三节衡量精度的指标;第四节精度、准确度与精确度;第五节测量不确定度一、精密度指标(一)观测量的精密度指标1、观测条件与精密度配合误差分布曲线讲解精密度的定义和观测条件与精密度的关系。

2、几种常用的精密度指标(1)方差与标准差推导相应公式,给出其估值公式,讲解应用实例(2) 极限误差分析误差出现在某一范围内的概率的大小,给出极限误差定义公式(3) 相对误差给出相对精度的定义,用实例讲解其应用范围。

(4) 平均误差与或然误差给出平均误差和或然误差的定义,讲解其在国际上应用的范围和地区,以及其与中误差的关系。

(二)观测向量的精度指标1、n维随机向量的方差阵导出n维随机向量的方差阵表达形式,指出该阵是对称矩阵,并讲解矩阵中各元素的含义,同时给出当n维随机向量中各随机变量不相关时的矩阵形式。

2、两随机向量的互协方差阵导出两个随机向量互协方差阵表达形式,并讲解矩阵中各元素的含义,同时给出当维随机向量不相关时的矩阵形式。

偶然误差

偶然误差
2、 产生的原因-----观测条件
(1)测量仪器:
仪器构造上无法达到理论上的要求;例如水准ห้องสมุดไป่ตู้量时 , 水准仪的视准轴不水平,会对水准测量结果影响等. (2)观 测 者: 人的感官上的局限性、操作技能、工作态度; 仪器的安置\瞄准\读数 (3)外界条件:观测时所处的外界环境,如风力、温度、 日照、湿度、气压、大气折光等。
长度小0.006m,这种误差的大小与所量的直线长度
成正比, 而且正负号始终一致.
数字测图原理及方法
系统误差
二、误差的种类
测量误差根据其性质不同,可分为系统误差、偶然误差、粗差。 1.系统误差:在相同观测条件下,对某一观测量进行多次观测, 若各观测误差在大小、符号上表现出系统性,或者具有一定的规 律性,或为一常数,这种误差就称为系统误差。 例如:2)、定线误差: 传统的距离测量中,距离较长,需要进行分 段丈量. 必须进行直线定线. LAB-SAB>0 系统误差
二、误差的种类
测量误差根据其性质不同,可分为系统误差、偶然误差、粗差。 2.偶然误差: 在相同观测条件下,对一观测量进行多次观测,若 各观测误差在大小和符号上表现出偶然性,即单个误差而言,该 误差的大小和符号没有规律性,但就大量的误差而言,具有一定 的统计规律,这种误差就称为偶然误差。
Δ
例如: 1)、距离测量 D
数字测图原理及方法
水准仪I角对测量高差的影响---系统误差
a1 a
视准轴 水准管轴
i
i
b1 b B
A
SA
SB
hAB ( a1 b 1 )

i
S A
SB

SA=SB时,△hAB=0
总结:系统误差具有积累性,可以利用其规律性对 观测值进行改正或者采用一定的测量方法加以抵消 或消弱.

误差基本知识

误差基本知识
• 在实际工作中,某些未知量不可能或不便于直接进行观 测,而需要由另一些直接观测量根据一定的函数关系计 算出来,这些未知量即为观测值的函数。
• 例如,在水准测量中,两点间的高差h=a-b,则h是直接 观测值a和b的函数;在三角高程测量的计算公式中,如 h=D×tanδ+i-L,高差h就是观测值i和δ的函数
10
0.32
20
0.22
50
0.14
本章小结:
• 误差产生的根源,观测条件 • 系统误差,偶然误差及其特点(难点) • 中误差的两种计算公式及应用条件(重点
) • 相对误差,允许(极限)误差(难点) • 常用函数的中误差计算公式(重点) • 算术平均值中误差计算
课后作业(书70页):
• 第2题. • 第3题. • 第4题. • 第6题:(1)(2)
• 限差是偶然误差的限制值,用作观测成果取舍的标 准。如果观测值的偶然误差超过限差,则认为该观 测值不合格,应舍去不用。
• 测量上常取三倍或两倍中误差作为极限误差Δ限, 也称允许误差,即:
容 3m或2m
5-5误差传播定律
• 能直接观测的量,经过多次观测后,可通过真误差或改 正数计算出观测值的中误差,作为评定观测值精度的标 准。
mZ
k12mx21
k
2 2
mx22
...
k
2 n
mx2n
1.量得某圆形建筑物得直径D=34.50m,其中误差mD 0.01m ,求建 筑物得圆周长及其中误差。
解:圆周长 P D 3.1416 34.50 108.38
中误差mP mD 3.1416 (0.01) 0.03m
分布离散, 误差就大, 精度就低。
• 中误差及其计算 • 1 中误差的定义 • 在相同的观测条件下,对同一未知量进行n次观测,

随机误差统计规律分布特点

随机误差统计规律分布特点

随机误差统计规律分布特点
随机误差(也称为观测误差)是指在测量过程中出现的偶然性误差,它是由于测量条件难以完全控制而引起的不可避免的误差。

随机误差的分布规律通常符合“正态分布”(也称为高斯分布)的特点,即在概率密度函数上表现为一条钟形曲线,其峰值位于均值处,标准差越小,曲线越陡峭,反之曲线越平缓。

正态分布具有以下特点:
1.对称性:分布函数两侧的曲线相对称。

2.峰度(尖峰度):高峰陡峭,翼部较平缓。

3.均值与中位数相等。

4.标准差越小,分布曲线越陡峭。

5.曲线下方的面积为1。

正态分布是自然界和社会现象中广泛存在的一种分布形式,它的出现是由于众多随机变量的叠加作用所导致的。

在测量界中,正态分布被广泛应用于误差分析、可靠性评价、质量管理等方面。

5第五章误差基本知识

5第五章误差基本知识

观测值的精度好坏,可以用一组误差接近于零的密集程度来表示。这可以用误差 分布图来表示,也可用数字来表示 。



一、中误差
1.观测值中误差的定义: 在相同观测条件下,对某量进行了一系列的观测,其观测值为,L1 , L2 , , Ln 1 , 2 , , n 相应的真误差为 , 则该组各个观测值得中误差m为:
Z x1 x2
Z kx
2
F 2 mn x n
2
xn
mz km
kn xn
2 2 mz k12 m12 k2 m2 2 2 kn mn
Z k1x1 k2 x2
因此,应用误差传播定律求观测值函数的精度(中误差) ,可按下述步骤进行: (1)按问题性质列出函数式:
容=m 的个数为
§5-5 误差传播律

上节介绍了衡量多次直接观测值的精度问题。但在实际工作中,许多未知 量经常不能直接测定,必须由直接观测值间接推算出来。例如,矩形的面 积A=长×宽,直接观测量是长度和宽度,面积是根据长和宽计算出的。 由于测量长和宽时有误差,因此,计算面积时一定会有误差,那么面积的 误差如何估计,计算出的面积精度(质量)如何?
(k ) f n xn
2 n 2 n n
[Z ] f [x ] f [x ]
2 2 1 2 1 2 2 2 2
f [x ] fi f j [xi x j ]
i , j 1 i j
2 [xi x j ] [xn ] n f fi f j k k i , j 1 2 n i j
求中误差时,应注意几点:



(1)各个观测值必须是等精度的(即“在相同观 测条件下”);如果观测值是不等精度的,则不 能直接使用(5-4)式。 (2)观测值的真值必须可知,真误差才可求得。 (3)根号前的“”号表示误差的偶然性质,所 以不能省去。 (4)所谓“观测值”可以是直接观测值,也可以 是由直接观测值推算出来的函数值(如一组观测 值的平均值)。

工程测量误差测量理论例题和习题(专题复习)

工程测量误差测量理论例题和习题(专题复习)

测量误差理论一、中误差估值(也称中误差):Δi (i=1,2,…,n ) (6-8)【例】 设有两组同精度观测值,其真误差分别为:第一组 -3″、+3″、-1″、-3″、+4″、+2″、-1″、-4″; 第二组 +1″、-5″、-1″、+6″、-4″、0″、+3″、-1″。

试比较这两组观测值的精度,即求中误差。

解:"22222219.2841243133±=+++++++±=m"222223.3813046151±=+++++++±=m由于m 1<m 2,可见第一组观测值的精度比第二组高。

同时,通过第二组观测误差的分布情况可看出其误差值的波动幅度较大,因而也可判断出第二组观测值的稳定性较差,则精度较低。

另外,由以上分析可知,中误差仅代表了一组观测值的精度,并不表示某个观测值的真误差。

二、相对误差:观测值中误差m 的绝对值与相应观测值S 相比,并化为分子为1、分母为整数的形式,即mS Sm K 1==(6-10) 三、误差传播定律【例】 丈量某段斜距S =106.28 m ,斜距的竖角038'︒=δ,斜距和竖角的中误差分别为cm 5m s ±=、"20m ±=δ,求斜距对应的平距D 及其中误差D m 。

解:平距 105.113m 30'cos8106.28cos =︒⨯=⋅=δS D由于δcos ⋅=S D 是一个非线性函数,所以,对等式两边取全微分,化成线性函数,并用“∆”代替“d ”得δδδ∆⋅⋅-∆⋅=∆sin cos S S D再根据(6-29)式,可以直接写出平距方差计算公式,并求出平距方差值n m ] [∆∆ ±=2""2222"2222)(477.24)20626520()'308sin 28.106(5)'308(cos )()sin ()(cos cm m S m m SD=⋅︒⋅+⋅︒=⋅⋅+⋅=ρδδδ因此,平距的中误差为:m D =±5 cm 。

偶然误差的特性.

偶然误差的特性.

测量误差
偶然误差的特性
中误差 (数值越小, 精度越高)
测量误差
解决办法
偶然误差的特性
根据偶然误差的特性,它无法用系统误差的解决办法解决,只能用相应的 办法来减弱其对测量成果的影响:
➢改善观测条件,以缩小误差范围; ➢增加观测次数,以减小偶然误差对测量成果的影响; ➢取多次观测值的算术平均值作为观测结果。
地形测量
测绘基准
主讲人:赵柯柯 黄河水利职业技术学院
测量误差
偶然误差的特性
测量误差
偶然误差的特性
测量误差
偶然误差的特性
➢绝对值最大不超过某一限值(1.6秒);
➢绝对值小的误差比绝对值大的误差出现的个数多;
➢绝对值相等的正、实践证明,在其它测量结果中,也都显示出上述同样 的统计规律。
偶然误差的特性
观测成果精度的评定标准
评定精度的标准
中误差 容许误差(极限误差) 相对误差
THANKS 谢谢聆听
主讲人:赵柯柯 黄河水利职业技术学院
测量误差
偶然误差的特性
测量误差
偶然误差的特性
偶然误差的分布规律(特性)
(1)在一定观测条件下,偶然误差的绝对值不会超过一定界限(有界性); (2)绝对值相等的正、负误差出现的概率相等(对称性); (3)绝对值小的误差比绝对值大的误差出现的概率大(聚中性); (4)同一量的等精度观测,其偶然误差的算术平均值,随着观测次数的无限增加 而趋于零(抵偿性)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
3、密度函数法
(1)当样本个数无限增加,区间无限缩小,直方图中折线就 变成光滑曲线,如图所示。该曲线被称为概率密度曲线或者误 差分布密度曲线,它接近于正态分布。
(2)可用如下函数表示,其中 为
f( )
数学期望, 2为方差。
偶然误差的统计规律
提纲: 一、偶然误差分布的三种描述方法 二、偶然误差的统计规律 三、由偶然误差特性引出的两个测量依据
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
通过前面的学习我们发现,采用一定观测程序或模型改正 的方法可以将系统误差消除或减弱,使偶然误差起主导作 用,而偶然误差没有规律性可言,而且很难采用上述方法 予以减弱。但是研究发现根据统计学的相关理论,偶然误 差有较强的统计规律。
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
2、绘图法
(1)以误差△的数值为横 坐标,(μ/n)/d△为纵坐标 (2)误差较小的长方形较高 ,面积较大,即出现的相 对个数较多;反之,误差 较大的长方形其面积较小 ,即出现误差的相对个数 较少。正负误差的个数基

本相同。
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
1、列表法
误差区间单位 (″)
0.0~0.5 0.5~1.0Biblioteka 为负的真误差 △个数 μi
相对个数μ i/n
123
0.158
99
0.127
为正的真误差 △
个数 μ i
相对个数μ i/n
116
0.149
98
0.125
1.0~1.5
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
在相同的观测条件下,对测区781个三角形的内角进行观 测,并按照下式求出三角形内角和的真误差为:
i 180 (L1 L2 L3)i , (i 1,2,,781)
式中:180°为三角形内角和的真值,三角形内角和的观 测值为L1+L2+L3,角标i表示第i个三角形,假设各个三角 形的偶然误差相互独立(即不存在相关性,大小和符号等 不相互影响)。
误差理论与测量平差
测绘工程系
偶然误差的统计规律
一、偶然误差分布的三种描述方法
为研究其统计规律,假设对n个量进行了观测,观测值为

L1、L2、、Ln其相应的真值分别为L~1、L~2、、L~n 令 i L~i Li
i 即真误差。由于假定测量平差所处理的观测值只含偶
然误差,所以真误差就是偶然误差。用向量形式表述为:
误差理论与测量平差
测绘工程系
偶然误差的统计规律
三、由偶然误差特性引出的两个测量依据
制定测量限差的依据 (有界性) 判断系统误差(粗差)的依据 (对称性和抵偿性)
偶然误差的数学期望等于真值,若误差的理论平均值不为 0且值较大,可以判断包含系统误差或者粗差。
误差理论与测量平差
测绘工程系
偶然误差的统计规律

L1
L


L2

n1

Ln

L~
n1


L~1 L~2
..L~n

1



2

则有:

L~
L
n1 .
n1
n1

n

注意:在下面的学习过程中若不加说明,即没有下标说明的向量都
是列向量,若表示行向量则加以转置符号表示,如:LT 、AT 、B T
谢 谢!
误差理论与测量平差
测绘工程系
f (x)
1
e
(
xa)2 2 2
2
误差理论与测量平差
0
测绘工程系
偶然误差的统计规律
二、偶然误差的统计规律
通过上述分析可以发现偶然误差有以下4点统计规律: 有界性:在一定条件下,超过一定限值的误差出现的概率
为0 聚中性:绝对值小的误差比绝对值大的误差出现的概率大 对称性:绝对值相等的正负误差出现的概率相等 抵偿性:偶然误差的数学期望等于0
72
0.092
74
0.095
1.5~2.0
51
2.0~2.5
22
2.5~3.0
16
3.0~3.5
10
3.5以上
0

393
0.065 0.028 0.020 0.013
0 0.503
48
0.061
27
0.035
16
0.020
9
0.012
0
0
388
0.497
d△表示误差区间为0.5″,统计各个区间个数μ i,及各区间出现的频率μ i/n 。绝对值较小的个数多,绝对值相等的正负误差个数接近,误差在3.5″以内
相关文档
最新文档