物理竞赛静电场h

南师附中物理竞赛讲义 11.4静电场的能量

静电场的能量 一、电容器的静电能 研究电容器的充电过程。 一开始电容器的电势差很小,搬运电荷需要做的功也很小,充电后两 板间电势差增加,搬运电荷越来越困难,需要做的功变多。可以看成 是一个变力(变电势差)做功问题。 图像法用面积表示做功。 画Q -U 图像还是U -Q 图像 2 2111222Q E QU CU C === 电容器充电过程中,电荷和能量均由电源提供。 在电源内部,可以看成是正电荷从负极移动到正极。由于电源电动势(即电压)不变,克服电场力做功为: W QU = 在电容器充电过程中电源消耗的能量和电容器增加的静电能不相等! 思考:两者是否一定是两倍的关系 多余的电能消耗在电路中(定性解释) 例1、极板相同的两个平行板电容器充以相同的电量,第一个电容器两极板间的距离是第二个电容器的两倍。如果将第二个电容器插在第一个电容器的两极板间,并使所有极板都相互平行,问系统的静电能如何改变。 例2、平行板电容器C 接在如图所示电路中,接通电源充电,当电压达到稳定值U 0时,就下列两种情况回答,将电容C 的两极板的距离从d 拉到2d ,电容器的能量变化为多少外力做功各是多少并说明做功的正负 (1)断开电源开关. (2)闭合电源开关.

例3、图中所示ad为一平行板电容器的两个极板,bc是一块长宽都与a板相同的厚导体板,平行地插在a、d之间,导体板的厚度bc=ab=cd.极板a、d与内阻可忽略电动势为E的蓄电池以及电阻R相连如图.已知在没有导体板bc 时电容器a、d的电容为C0 ,现将导体板bc抽走,设已知抽走导体板bc的过程中所做的功为A,求该过程中电阻R上消耗的电能. 例4、如图所示,电容器C可用两种不同的方法使其充电到电 压U=NE。(1)开关倒向B位置,依次由1至2至3??????至N。 (2)开关倒向A位置一次充电使电容C的电压达到NE。试求 两种方式充电的电容器最后储能和电路上损失的总能量。(电 源内阻不计)

高中物理竞赛教程:1.5《静电场的能量》

§1、5 静电场的能量 1.5.1、 带电导体的能量 一带电体的电量为Q ,电容为C ,则其电势C Q U =。我们不妨设想带电体上 的电量Q ,是一些分散在无限远处的电荷,在外力作用下一点点搬到带电体上的,因此就搬运过程中,外力克服静电场力作的功,就是带电 体的电能。该导体的电势与其所带电量之间的函数关系如 图1-5-1所示,斜率为C 1 。设每次都搬运极少量的电荷 Q ?,此过程可认为导体上的电势不变,设为i U ,该过程中搬运电荷所做的功为Q U W i i ?=,即图中一狭条矩形的面积(图中斜线所示)因此整个过程中,带电导体储存的能量为 ∑∑?==Q U W W i i 其数值正好等于图线下的许多小狭条面积之和,若Q ?取得尽可能小,则数值就趋向于图线下三角形的面积。 2 221221CU C Q QU Q U W i ===?=∑ 上述带电导体的静电能公式也可推广到带电的电容器,因为电容器两板间的电势差与极板上所带电量的关系也是线性的。 1.5.2、 电场的能量 由公式2 21CU W =,似乎可以认为能量与带电体的电量有关,能量是集中在 电荷上的。其实,前面只是根据功能关系求得带电导体的静电能,并未涉及能量 的分布问题。由于在静电场范围内,电荷与电场总是联系在一起的,因此电能究 图1-5-1

竟与电荷还是与电场联系在一起,尚无法确定。以后学习了麦克斯韦的电磁场理论可知,电场可以脱离电荷而单独存在,并以有限的速度在空间传播,形成电磁波,而电磁波携带能量早已被实践所证实。因此我们说,电场是电能的携带者,电能是电场的能量。下面以平行板电容器为例,用电场强度表示能量公式。 k Sd E d E kd S CU W πεπε8421212222=?== 单位体积的电场能量称为电场的能量密度,用ω来表示 k E V W πεω82 == 上式是一个普遍适用的表达式,只要空间某点的电场强度已知,该处的能量密度即可求出,而整个电场区的电场能量可以通过对体积求和来求得。 1.5.3、电容器的充电 如图1-5-2所示,一电动势为U 的电源对一电容为C 的电容器充电,充电完毕后,电容器所带电量 CU Q = 电容器所带能量 2 21CU W = 而电源在对电容器充电过程中,所提供的能量为 W CU QU W 22===' 也就是说,在充电过程中,电容器仅得到了电源提供的一半能量,另一半能量在导线和电源内阻上转化为内能,以及以电磁波的形式发射出去。 例7、用N 节电动势为ε的电池对某个电容器充电,头一次用N 节电池串联后对电容器充电;第二次先用一节电池对电容器充电,再用两节串联再充一次,

中学物理竞赛讲义静电场例题

11.6静电场例题 例1、在惯性系S中有匀强电场E,其方向如图所示.在电场中与E平行的一条几何直线上,有两个静止的小球A和B.两小球的质量均为m,A球所带电量为Q(Q>0),B球不带电,开始时两球相距为l.在电场力的作用下,A球开始沿直线运动,并与B球发生弹性正碰撞,从而使B球也参与运动.设在各次碰撞过程中,A、B球之间并无电量的转移,设万有引力可略去不计.试证明A、B球相邻的两次碰撞之间的时间间隔相同,并求出该时间间隔T. 例2、半径为R的带电金属球被沿与球心相距为h的平面分成两部分(图).求这两 部分排斥力.球的总电量为Q. 例3、如图所示,A'ACBB'是一根无限长的均匀带电细线.其中ACB是半径为R半圆弧,AA’平行于BB',AA'、BB'水平,而且整个线框置于竖直平面内.O是一个质量为m、带电量为q的小球(可视为点电荷),它在四根伸直的、互相垂直的绝缘细线的约束下静止于圆弧ACB的圆心处.已知A'ACBB'带电总量为Q,求

四根约束O球的绝缘线上的张力最小值. 和R3,内有同心放置的半径 例4、一带电量为Q的金属球壳,其内外半径分别为R 为R1的接地导体球.(1)求小球的带电量q;(2)讨论Q为正电荷时q的正负,并求出此时球壳与小球间的电势差;(3)导体球壳与同心接地导体球的电容为多少?若R2=R3=R.则情况又如何? 例5、半径为R的均匀带电半球面,电荷面密度为σ。求球心处的电场强度.

例6、如图所示,两个同心导体半球面,相对共底面的半径R1>R2,R1面均匀带电密度为σ1,R2面均匀带电密度为σ2,问大半球底面的直径AOB上电势是如何分布的? 例7、如图所示,正四面体ABCD各面均为导体,但又彼此绝缘.已知带电后四个面的静电势分别为φ1、φ2、φ 和φ4,求四面体中心O点的电势φ.

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

高中物理竞赛:电场

高中物理竞赛:电场 一、知识网络或概要: 1、 库仑定律、电荷守恒定律 2、 电场强度、电场线、点电荷场强、场强叠加、均匀带电球壳内外场强 3、 电场中导体、静电屏蔽 4、 电势、电势差、等势面、点电荷电场电势公式、电势叠加原理、电势能 5、 电容、电容器的连接、平行板电容器的电容公式,电容器充电后的电能、电介质的 极化、介电常数 二、知识点剖析与训练 一、221r q q k F =库仑定律描述的是真空中的两个点电荷间的相互作用力。当带电体不可以看作点荷时,应把带电体“分割”成许多小的部分(每一小部分可看作点电荷),对每一小部分应用库仑定律求出静电力,最后求各小部分所受静电力的合力。 库仑定律中的r 是两个“电荷”中心间的距离。若两带电小球中心间的距离r 不是远大于球的半径,则球上的电荷分布不均匀,那么带电小球不能看作点电荷,就不能用库仑定律计算库仑力的大小,是讨论此时的库仑力与能看作点电荷算出的库仑力是偏大还是偏小? 二、只要有电荷存在,在电荷的周围就存在着电场。静止电荷在真空中产生的电场,叫静电场。该电荷称为真空中静电场的场源电荷,电场对放入电场中的电荷有力的作用。 在点电荷组成的电场里,任一点的场强等于各个点电荷单独存在时各自在该点产生的场强的矢量和,这就是场强叠加原理。 三、几种典型电场的场强: (1)点电荷电场:2 r Q k E = (2)均匀带电球壳内外的电场: 设有带电量为Q ,半径为R 有均匀带电球壳。由电场线的分布可知,只要球壳内没有电荷,壳内就没有电场线分布,即内部的场强E 内=0(r<=R ) 对于球壳外,电场线分布与点电荷Q 在球心处的电场线一样。因此壳外的场强E 外为:2 r Q k E =(r>R )

高中物理竞赛辅导--电场

高中物理竞赛热学电学教程 第四讲物态变化 第一讲 电场 电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持不变。 我们熟知的摩擦起电就是电荷在不同物体间的转移,静电感应现象是电荷在同一物体上、不同部位间的转移。此外,液体和气体的电离以及电中和等实验现象都遵循电荷守恒定律。 1.1.2、库仑定律 真空中,两个静止的点电荷1q 和2q 之间的相互作用力的大小和两点电荷电量的乘积成正比,和它们之间距离r 的平方成正比;作用力的方向沿它们的连线,同号相斥,异号相吸 221r q q k F = 式中k 是比例常数,依赖于各量所用的单位,在国际单位制(SI )中的数值为: 229/109C m N k ??=(常将k 写成041 πε= k 的形式,0ε是真空介电常数, 22120/1085.8m N C ??=-ε) 库仑定律成立的条件,归纳起来有三条:(1)电荷是点电荷;(2)两点电荷是静止或相对静止的;(3)只适用真空。 条件(1)很容易理解,但我们可以把任何连续分布的电荷看成无限多个电荷元(可视作点电荷)的集合,再利用叠加原理,求得非点电荷情况下,库仑力的大小。由于库仑定律给出的是一种静电场分布,因此在应用库仑定律时,可以把条件(2)放宽到静止源电荷对运动电荷的作用,但不能推广到运动源电荷对静止电荷的作用,因为有推迟效应。关于条件(3),其实库仑定律不仅适用于真空,也适用于导体和介质。当空间有了导体或介质时,无非是出现一些新电荷——感应电荷和极化电荷,此时必须考虑它们对源电场的影响,但它们也遵循库仑定律。 1.1.3、电场强度 电场强度是从力的角度描述电场的物理量,其定义式为 q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为

物理竞赛题:《电场》

物理竞赛练习题《电场》 班级____________座号_____________姓名_______________ 1、半径为R的均匀带电半球面,电荷面密度为σ,求球心处的电场强度。 2、有一均匀带电球体,半径为R,球心为P,单位体积内带电量为ρ,现在球体内挖一球形空腔,空腔的球心为S,半径为R/2,如图所示,今有一带电量为q,质量为m的质点自L点(LS⊥PS)由静止开始沿空腔内壁滑动,不计摩擦和质点的重力,求质点滑动中速度的最大值。

3、在-d ≤x ≤d 的空间区域内,电荷密度ρ>0为常量,其他区域均为真空。若在x =2d 处将质量为m 、电量为q (q <0)的带电质点自静止释放。试问经多长时间它能到达x =0的位置。 4、一个质量为M 的绝缘小车,静止在光滑水平面上,在小车的光滑板面上放一个质量为m 、带电量为+q 的带电小物体(可视为质点),小车质量与物块质量之比M :m =7:1,物块距小车右端挡板距离为l ,小车车长为L ,且L =1.5l 。如图所示,现沿平行于车身方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,之后与小车右挡板相碰,碰后小车速度大小为碰前物块速度大小的1/4。设小物块滑动过程中及其与小车相碰过程中,小物块带电量不变。 (1)通过分析与计算说明,碰撞后滑块能否滑出小车的车身? (2)若能滑出,求由小物块开始运动至滑出时电场力对小物块所做的功;若不能滑出,求小物块从开始运动至第二次碰撞时电场力对小物块所做的功。

E 物理竞赛练习题 《电势和电势差》 班级____________座号_____________姓名_______________ 1、两个电量均为q =3.0×10-8C 的小球,分别固定在两根不导电杆的一端,用不导电的线系住这两端。将两杆的另一端固定在公共转轴O 上,使两杆可以绕O 轴在图面上做无摩擦地转动,线和两杆长度均为l =5.0cm 。给这系统加上一匀强电场,场强E =100kV/m ,场强方向平行图面且垂于线。某一时刻将线烧断,求当两个小球和转轴O 在同一条直线上时,杆受到的压力(杆的重力不计)。 2、半径为R 的半球形薄壳,其表面均匀分布面电荷密度为σ的电荷,求该球开口处圆面上任一点的电势。 3、如图所示,半径为r 的金属球远离其他物体,通过R 的电阻器接地。电子束从远处以速度v 落到球上,每秒钟有n 个电子落到球上。试求金属球每秒钟释放的热量及球上电量。

高中物理竞赛—静电场

真空中的静电场 基 本 要 求 一、理解电场强度和电势这两个基本概念和它们之间的联系。 二、掌握反映静电场性质的两个基本定理——高斯定理和环流定 理的重要意义及其应用。 三、掌握从已知的电荷分布求场强和电势分布的方法。 内 容 提 要 一、真空中的库仑定律 )(412210 r r q q r F ? = πε 库仑定律的适用条件:1. 点电荷;2. 电荷静止(或低速)。 二、电场和电场强度 电场 电荷能够产生电场。电场是一种客观存在的物质形态。电场对外表现的性质:1. 对处于电场中的其他带电体有作用力;2. 在电场中移动其他带电体时,电场力要对它做功,这也表明电场具有能量。 电场强度的定义式

q F E = 点电荷场强公式 )(4120 r r q r E ??= πε 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加(矢量和)。 几种常见带电体的场强 1、电荷线密度为λ的无限长均匀带电直线外一点的场强 a λE 02πε= 2、电荷面密度为σ的无限大均匀带电平面外一点的场强 2εσ E = 方向垂直于带电平面。 3、带电Q 、半径为R 的均匀带电导体球面或导体球的场强分布 rR 时,02 04r E r Q πε= 4、带电Q 、体密度为ρ的均匀带电球体场强分布 r

r>R 时,02 04r E r Q πε= 三、电通量 高斯定理 电场线(电力线)画法 1. 电场线上某点的切线方向和该点场强方向一致;2. 通过垂直于E 的单位面积的电场线的条数等于该点E 的大小。 电场线的性质 1. 两条电场线不能相交;2. 电场线起自正电荷(或无穷远处),止于负电荷(或无穷远处),电场线有头有尾,不是闭合曲线。 电场强度通量 ???=s e d ΦS E 电场强度通量也可形象地说成是通过该面积S 的电场线的条数。 高斯定理 真空中静电场内,通过任意闭合曲面的电场强度通量等于该曲面所包围的电量的代数和的1/ 倍。 ε∑??= ?内 S S q d S E 高斯定理是描写静电场基本性质的基本定理,它反映了电场与形成电场的场源(电荷)之间的关系,说明静电场是有源场。

第26届全国中学生物理竞赛复赛试题及答案.doc

第26届全国中学生物理竞赛复赛试卷 一、填空(问答)题(每题5分,共25分) 1.有人设想了一种静电场:电场的方向都垂直于纸面并指向纸里,电场强度的大小自左向右逐渐增大,如图所示。这种分布的静电场是否可能存在?试述理由。 2.海尔-波普彗星轨道是长轴非常大的椭圆,近日点到太阳中心的距离为0.914天文单位(1天文单位等于地日间的平均距离),则其近日点速率的上限与地球公转(轨道可视为圆周)速率之比约为(保留2位有效数字) 。 3.用测电笔接触市电相线,即使赤脚站在地上也不会触电,原因是 ;另一方面,即使穿绝缘性能良好的电工鞋操作,测电笔仍会发亮,原因是 。 4.在图示的复杂网络中,所有电源的电动势均为E 0,所有电阻器的电阻值均为R 0,所有电容器的电容均为C 0,则图示电容器A 极板上的电荷量为 。 5.如图,给静止在水平粗糙地面上的木块一初速度,使之开始运动。一学生利用角动量定理来考察 此木块以后的运动过程:“把参考点设于如图所示的地面上一点O ,此时摩擦力f 的力矩为0,从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。”请指出 上述推理的错误,并给出正确的解释: 。 二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。已知桌腿受力后将产生弹性微小形变。现于桌面中心点O 至角A 的连 线OA 上某点P 施加一竖直向下的力F ,令c OA OP ,求桌面对桌腿1的压力F 1。 三、(15分) 1.一质量为m 的小球与一劲度系数为k 的弹簧相连组成一体系,置于光滑水平桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。试问在一沿此弹簧长度方向以速度u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。 A

最新整理高中物理竞赛—静电场只是分享

精品文档 真空中的静电场 基 本 要 求 一、理解电场强度和电势这两个基本概念和它们之间的联系。 二、掌握反映静电场性质的两个基本定理——高斯定理和环流定 理的重要意义及其应用。 三、掌握从已知的电荷分布求场强和电势分布的方法。 内 容 提 要 一、真空中的库仑定律 )(41 2210r r q q r F ?=πε 库仑定律的适用条件:1. 点电荷;2. 电荷静止(或低速)。 二、电场和电场强度 电场 电荷能够产生电场。电场是一种客观存在的物质形态。电场对外表现的性质:1. 对处于电场中的其他带电体有作用力; 2. 在电场中移动其他带电体时,电场力要对它做功,这也表明电场具有能量。 电场强度的定义式 q F E = 点电荷场强公式 )(4120r r q r E ??=πε 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加(矢量和)。

精品文档 几种常见带电体的场强 1、电荷线密度为λ的无限长均匀带电直线外一点的场强 a λE 02πε= 2、电荷面密度为σ的无限大均匀带电平面外一点的场强 2εσE = 方向垂直于带电平面。 3、带电Q 、半径为R 的均匀带电导体球面或导体球的场强分布 rR 时,0204r E r Q πε= 4、带电Q 、体密度为ρ的均匀带电球体场强分布 rR 时,0204r E r Q πε= 三、电通量 高斯定理 电场线(电力线)画法 1. 电场线上某点的切线方向和该点场强方向一致;2. 通过垂直于E 的单位面积的电场线的条数等于该点E 的大小。 电场线的性质 1. 两条电场线不能相交;2. 电场线起自正电荷(或无穷远处),止于负电荷(或无穷远处),电场线有头有尾,不是闭合曲线。 电场强度通量 ???=s e d ΦS E 电场强度通量也可形象地说成是通过该面积S 的电场线的条

高中物理竞赛讲义之程稼夫篇

精心整理 电磁学 静电学 1、 静电场的性质 静电场是一个保守场,也是一个有源场。 F dl o ?=?u r u u r ?高斯定理 静电力环路积分等于零o s q E ds E ?=∑??u u r u u r ò 电场强度与电势是描述同一静电场的两种办法,两者有联系 a b E dr U U ?=-∑u r r ① 过程E dr dU ?=-u r r 一维情况下x dU E dx dx =- x dU E dx =- ② 2、 几个对称性的电场 (1) 球对称的电场 场源 E U 点电荷 均匀对电球面 均匀带点球体 例:一半径为1R 的球体均匀带电,体电荷密度为ρ,球内有一半径为2R 的小球形空腔,空腔中心与与球心相距为a ,如图 (1) 求空腔中心处的电场E u r (2) 求空腔中心处的电势U 解:(1)在空腔中任选一点p , p E u u r 可以看成两个均匀带电球体产生的电场 强度之差, 即() 1212333p o o o E r r r r E E E ρρρ=-=-u u r u r u r u r u r 令12a o o =r u u u u r 这个与p 在空腔中位置无关,所以空腔中心处23o o E a E ρ=u u u r r

(2)求空腔中心处的电势 电势也满足叠加原理 p U 可以看成两个均匀带电球体产生电势之差 即()()()22222 2212123303666o o o o U R a R R R a E E E ρ ρ ρ??= -- -= --? ? 假设上面球面上,有两个无限小面原i j s s V V ,计算i s V ,受到除了i s V 上电荷之处,球面 上其它电荷对i s V 的静电力,这个静电力包含了j s V 上电荷对i s V 上电荷的作用力. 同样j s V 受到除了i s V 上电荷以外,球面上其它电荷对j s V 上电荷的作用力,这个力同样包含了i s V 对j s V 的作用力. 如果把这里的i j s s V V 所受力相加,则,i j s s V V 之间的相互作用力相抵消。 出于这个想法,现在把上半球面分成无限小的面元,把每个面元上所受的静电力(除 去各自小面元)相加,其和就是下半球面上的电荷对上半球面上电荷的作用力。 求 法:2 2 222 2=f 224o o o R Q F R R E E R σππππ??=?== ??? g L 再观察下,均匀带电球面上的电场强度=? 通常谈论的表面上电场强度是指什么? 电力?o f = 例:求均匀带电球面(),Q R ,单位面积受到的静解:令()R R R R R →+≤V V 过程无限缓慢 得出此过程中静电力做功的表达式: 或者算出2o o f E E E σ σ =?= 表面表面 而且可以推广到一般的面电荷()σ 在此面上电场强度()121 2 E E E = +表面 例:一个半径为R,带电量为Q 的均匀带电球面,求上下两半球之间的静电力? 解:原则上,这个作用力是上半球面上的电荷受到来自下半球面的电荷产生的电场强 度的空间分布,对上半球面上各电荷作用力之和,由于下半球面上电荷所产生的电场强度分布,所以这样计较有困难. 例:求半径为R,带电量为Q 的均匀带电球面,外侧的静电场能量密度. 解:静电场(真空)能量密度21 2 o E E ω=

全国高中物理竞赛静电场训练题答案

1、一半圆均匀带电,电荷线密度为>0,试求该半圆圆心处的场强。 解:我们采用微元法,如图所示,设半圆半径为,微元所对圆心角为,在点的场强为 而 则 根据对称性,半圆上各个微元在点场强的y轴方向分量互相抵消。点处场强为各个在x轴上分量的和 也可表为 2、证明:在静电场中没有电荷分布的地方,如果电场线相互平行,则电场强度的大小必处处相等。 解:电场线的性质都可由高斯定理和安培环路定理推 出,故此处,可考虑用这两个定理。 先证明同一场线上不同地方的场强相同。 如图(a),取一圆柱面形高斯面,其轴与平行,长, 截面积足够小,则可认为上各点电场相同。 因空间无电荷,由高斯定理 得 其中,分别为圆柱两端面上的场强。 再证明不同电场线上的场强相同。

如图(b),取安培环路为。、均垂直于电力线,且、的长度足 够小,则可认为、段上的场强为定值,分别为,。由安培环路定理 得 综上,即可得题中所述场确定为匀强场。 注意,若场区有电荷存在,则即使电场线平行,也不会为匀强场。电场线可在电荷处中断。如图(c)。 3、在点电荷的电场中,放入一个半径为的接地导体球,从到导体球球心的距离为,求导体球对的作用力。 解:如图所示,根据对称性,肯定在或其延长线上,设到的距离为,对导体球表面上任意一点A而言,它的电势应该由和 的电势叠加而成,由因为导体接地,所以有 设为原点,为轴,A点的坐标为,则有 因为A点位于球心在原点的球面上,、的一次项及常数项都应该是零,于是有 可解得和 而“电像”和感应电荷是等效的。这样,就可以很容易地用库仑定律求得感应电荷对作用力(即导体球对的作用力)的大小为 方向指向方向。

2021年高中物理竞赛—静电场

2021.03.07 真空中的静电场 欧阳光明(2021.03.07) 基本要求 一、理解电场强度和电势这两个基本 概念和它们之间的联系。 二、掌握反映静电场性质的两个基 本定理——高斯定理和环流定 理的重要意义及其应用。 三、掌握从已知的电荷分布求场强和电势分布的方法。 内容提要 一、真空中的库仑定律 *欧阳光明*创编 2021.03.07

2021.03.07 库仑定律的适用条件:1. 点电荷;2. 电荷静止(或低速)。 二、电场和电场强度 电场电荷能够产生电场。电场是一种客观存在的物质形态。电场对外表现的性质:1. 对处于电场中的其他带电体有作用力;2. 在电场中移动其他带电体时,电场力要对它做功,这也表明电场具有能量。 电场强度的定义式 点电荷场强公式 场强叠加原理电场中某点的场强等于每个电荷单独在该点产生的 *欧阳光明*创编 2021.03.07

2021.03.07 *欧阳光明*创编 2021.03.07 场强的叠加(矢量和)。 几种常见带电体的场强 1、电荷线密度为λ的无限长均匀带电直线外一点的场强 2、电荷面密度为σ的无限大均匀带电平面外一点的场强 方向垂直于带电平面。 3、带电Q 、半径为R 的均匀带电导体球面或导体球的场强分布 rR 时,0 204r E r Q πε= 4、带电Q 、体密度为ρ的均匀带电球体场强分布

2021.03.07 *欧阳光明*创编 2021.03.07 rR 时,0204r E r Q πε= 三、电通量 高斯定理 电场线(电力线)画法 1. 电场线上某点的切线方向和该点场强方向一致;2. 通过垂直于E 的单位面积的电场线的条数等于该点E 的大小。 电场线的性质 1. 两条电场线不能相交;2. 电场线起自正电荷(或无穷远处),止于负电荷(或无穷远处),电场线有头有尾,不是闭

物理竞赛电学讲义全

静电场 一、电场强度 1、实验定律 a 、库仑定律:[内容]条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr )。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b 、电荷守恒定律 c 、叠加原理 2、电场强度 a 、电场强度的定义(使用高斯定理) 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b 、不同电场中场强的计算:决定电场强弱的因素有两个,场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出—— ⑴点电荷:E = k 2 r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强 ⑵均匀带电环,垂直环面轴线上的某点P :E = 2 322) R r (kQr +,其中r 和R 的意义见图。 ⑶均匀带电球壳 内部:E 内 = 0 外部:E 外 = k 2 r Q ,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):E = 23 1 3r R r k 34-πρ ,其 中ρ为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3 433-πρ即为图中虚线以内部分的总电量〕。 ⑷无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸无限大均匀带电平面(电荷面密度为σ):E = 2πkσ 二、电势 1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即U = q W 参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W 则为电荷的电势能。 2、典型电场的电势 a 、点电荷 以无穷远为参考点,U = k r Q b 、均匀带电球壳 以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加:由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。 4、电场力对电荷做功 W AB = q(U A - U B )= qU AB

高中物理竞赛精品讲义之—程稼夫篇

电磁学 静电学 1、 静电场的性质 静电场是一个保守场,也是一个有源场。 F dl o ?=? u r u u r ? 高斯定理 静电力环路积分等于零 i o s q E ds E ?=∑??u u r u u r ò i v q dv ρ?? → ??? ∑??? 电场强度与电势是描述同一静电场的两种办法,两者有联系 b a b a qE d r w w ?=-∑u r r a b E dr U U ?=-∑u r r ① 过程 E dr dU ?=-u r r 一维情况下 x dU E dx dx =- x dU E dx =- ② 2、 几个对称性的电场 (1) 球对称的电场

3 14o Q r r R E R π≤ ()22 3 1342o Q Q R r r R E r R π-≤ 3 3 342o 143o R r R E r E r πρρπ??= ??? 例:一半径为1R 的球体均匀带电,体电荷密度为ρ,球内有一半径为2R 的小球形空腔,空腔中心与与球心相距为a ,如图 (1) 求空腔中心处的电场E u r (2) 求空腔中心处的电势U 解:(1)在空腔中任选一点p , p E u u r 可以看成两个均匀带电球体产生的电场强度之 差, 即 () 1212333p o o o E r r r r E E E ρρρ=-=-u u r u r u r u r u r 令12a o o =r u u u u r 3p o E a E ρ=u u r r 这个与p 在空腔中位置无关,所以空腔中心处23o o E a E ρ=u u u r r (2)求空腔中心处的电势 电势也满足叠加原理 p U 可以看成两个均匀带电球体产生电势之差 即 ()()()22222 2212123303666o o o o U R a R R R a E E E ρ ρ ρ??= -- -= --? ? 假设上面球面上,有两个无限小面原i j s s V V ,计算i s V ,受到除了i s V 上电 荷之处,球面上其它电荷对i s V 的静电力,这个静电力包含了j s V 上电荷对i s V 上电荷的作用力. 同样j s V 受到除了i s V 上电荷以外,球面上其它电荷对j s V 上电荷的作用力,

高中物理竞赛静电场习题

高中物理竞赛——静电场习题 一、场强和电场力 【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。 【模型分析】这是一个叠加原理应用的基本事例。 如图7-5所示,在球壳内取一点P ,以P 为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元ΔS 1和ΔS 2 ,设球面的电荷面密度为σ,则这两个面元在P 点激发的场强分别为 ΔE 1 = k 21 1r S ?σ ΔE 2 = k 22 2r S ?σ 为了弄清ΔE 1和ΔE 2的大小关系,引进锥体顶部的立体角ΔΩ ,显然 2 11r cos S α? = ΔΩ = 2 2 2r cos S α ? 所以 ΔE 1 = k α ?Ωσcos ,ΔE 2 = k α ?Ωσcos ,即:ΔE 1 = Δ E 2 ,而它们的方向是相反的,故在P 点激发的合场强为零。 同理,其它各个相对的面元ΔS 3和ΔS 4 、ΔS 5和ΔS 6 … 激发的合场强均为零。原命题得证。 【模型变换】半径为R 的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。 【解析】如图7-6所示,在球面上的P 处取一极小的面元ΔS ,它在球心O 点激发的场强大小为 ΔE = k 2R S ?σ ,方向由P 指向O 点。 无穷多个这样的面元激发的场强大小和ΔS 激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见——由于由于在x 方向、y 方向上的对称性,Σix E ? = Σiy E ? = 0 ,最后的ΣE = ΣE z ,所以先求 ΔE z = ΔEcos θ= k 2 R cos S θ ?σ ,而且ΔScos θ为面元在xoy 平面的投影,设为ΔS ′ 所以 ΣE z = 2 R k σΣΔS ′ 而 ΣΔS ′= πR 2 【答案】E = k πσ ,方向垂直边界线所在的平面。 〖学员思考〗如果这个半球面在yoz 平面的两边均匀带有异种电荷,面密度仍为σ,那么,球心处的场强又是多少?

高中物理竞赛—静电场

高中物理竞赛—静电场 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

真空中的静电场 基 本 要 求 一、 理解电场强度和电势这两个基本概念和它们之间 的联系。 二、掌握反映静电场性质的两个基本定理——高斯定理和环流定 理的重要意义及其应用。 三、掌握从已知的电荷分布求场强和电势分布的方法。 内 容 提 要 一、 真空中的库仑定律 )(412210 r r q q r F ? = πε 库仑定律的适用条件:1. 点电荷;2. 电荷静止(或低速)。 二、电场和电场强度 电场 电荷能够产生电场。电场是一种客观存在的物质形态。电场对外表现的性质:1. 对处于电场中的其他带电体有作用力;2. 在电场中移动其他带电体时,电场力要对它做功,这也表明电场具有能量。 电场强度的定义式 0q F E = 点电荷场强公式 )(4120 r r q r E ??= πε

1 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加(矢量和)。 几种常见带电体的场强 1、电荷线密度为λ的无限长均匀带电直线外一点的场强 a λE 02πε= 2、电荷面密度为σ的无限大均匀带电平面外一点的场强 2εσE = 方向垂直于带电平面。 3、带电Q 、半径为R 的均匀带电导体球面或导体球的场强分布 rR 时,02 04r E r Q πε= 4、带电Q 、体密度为ρ的均匀带电球体场强分布 rR 时,02 04r E r Q πε= 三、电通量 高斯定理

08物理竞赛讲义——静电场

第八部分静电场 第一讲基本知识介绍 在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。 如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。 一、电场强度 1、实验定律 a、库仑定律 内容; 条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr)。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b、电荷守恒定律 c、叠加原理 2、电场强度 a、电场强度的定义 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b、不同电场中场强的计算 决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出—— Q ⑴点电荷:E = k 2 r 结合点电荷的场强和叠加原理,我们可以求出任何电 场的场强,如—— ⑵均匀带电环,垂直环面轴线上的某点P:E = ,其 中r和R的意义见图7-1。 ⑶均匀带电球壳 内部:E内= 0

相关文档
最新文档