整式的乘除经典教案(含知识点和例题较难)

合集下载

整式的乘除教案

整式的乘除教案

整式的乘除教案一、教学目标:1. 了解整式的定义和性质;2. 掌握整式的乘法和除法运算方法;3. 运用整式的乘法和除法解决实际问题。

二、教学重点:1. 整式的乘法运算方法;2. 整式的除法运算方法。

三、教学难点:1. 运用整式的乘法和除法解决实际问题。

四、教学过程:1. 导入新知识(5分钟)教师出示一个简单的整式(如3x+2y)并请学生回答这是什么式子。

引导学生了解整式的定义,即只包含数与字母的四则运算式。

2. 整式的乘法运算(15分钟)(1)教师出示一个整式乘法题(如2x × 3y),演示如何进行计算。

强调同类项的概念。

(2)学生进行练习,完成若干道整式乘法题。

3. 整式的除法运算(15分钟)(1)教师出示一个整式除法题(如4x^2y / 2xy),演示如何进行计算。

解释整式除法的概念与步骤。

(2)学生进行练习,完成若干道整式除法题。

4. 运用整式解决实际问题(15分钟)(1)教师给出一个实际问题(如某物品的价格为3x+5,购买了5件,求总价),引导学生用整式的乘法解决问题。

(2)教师给出一个实际问题(如某物品的总价是15,已知单价是3x+5,求购买的件数),引导学生用整式的除法解决问题。

5. 小结与作业布置(10分钟)(1)教师对整节课的内容进行小结,强调整式的乘法和除法运算方法以及运用整式解决实际问题的步骤。

(2)布置作业:完成课本上相关练习题。

五、教学反思:整式的乘法和除法运算是初中代数的基本内容,也是后续学习的基础。

本节课针对不同的整式运算方法设置了相关的练习题,并引导学生运用整式解决实际问题,既锻炼了学生的运算能力,又培养了学生的应用能力。

同时,整节课的设计充分利用了教学时间,使学生能够在实践中学会运用整式进行乘除运算。

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标:1. 知识与技能:(1)理解整式乘除的概念和意义;(2)掌握整式乘除的运算方法和相关性质;(3)能够熟练地进行整式乘除的计算。

2. 过程与方法:(1)通过实例演示和练习,培养学生的观察、分析、推理能力;(2)运用归纳总结的方法,让学生掌握整式乘除的运算规律;(3)注重培养学生运用整式乘除解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、共同进步的良好习惯。

二、教学内容:1. 整式乘法:单项式乘单项式、单项式乘多项式、多项式乘多项式。

2. 整式除法:单项式除以单项式、多项式除以单项式、多项式除以多项式。

3. 整式乘除的运算法则和性质。

三、教学重点与难点:1. 教学重点:整式乘除的运算方法和相关性质。

2. 教学难点:整式乘除的运算规律和灵活应用。

四、教学过程:1. 导入新课:通过生活实例或数学故事,引出整式乘除的概念和意义。

2. 讲解与演示:运用多媒体课件或板书,讲解整式乘除的运算方法,并进行示范性计算。

3. 练习与交流:学生独立完成练习题,教师选取典型答案进行讲解和交流,引导学生发现和总结整式乘除的运算规律。

4. 拓展与应用:布置一些实际问题,让学生运用整式乘除进行解决,提高学生的应用能力。

5. 总结与反思:对本节课的内容进行归纳总结,强调整式乘除的运算方法和注意事项。

五、课后作业:1. 完成课后练习题,巩固整式乘除的基本运算方法。

2. 举一反三,运用整式乘除解决实际问题,提高学生的应用能力。

六、教学评价:1. 评价目标:本节课主要评价学生对整式乘除的概念理解、运算方法和应用能力的掌握程度。

2. 评价方法:(1)课堂问答:通过提问,了解学生对整式乘除概念和运算方法的理解情况;(2)练习批改:检查学生课后作业完成情况,评估其运算能力和应用水平;七、教学反思:1. 教学内容:回顾本节课的教学内容,梳理整式乘除的概念、运算方法和应用实例;2. 教学过程:反思教学过程中的亮点和不足,如课堂问答、练习与交流、拓展与应用等环节;3. 学生反馈:根据学生课堂表现、作业完成情况和学习感悟,了解学生的学习效果和需求;4. 改进措施:针对教学中的不足和学生反馈,调整教学策略和方法,为后续教学做好准备。

整式的乘除教案

整式的乘除教案

整式的乘除教案教案:整式的乘除一、教学内容本节课的教学内容选自人教版小学数学五年级上册第三单元《整式的乘除》。

本节课主要内容包括:1. 整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。

2. 整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式。

二、教学目标1. 理解整式乘除的概念,掌握整式乘除的计算方法。

2. 能够运用整式乘除解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

三、教学难点与重点1. 教学难点:整式的乘除运算规则,以及如何运用这些规则解决实际问题。

2. 教学重点:整式乘除的计算方法,以及如何将这些方法应用到实际问题中。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:假设有一块长方形的地,长为8米,宽为6米,求这块地的面积。

2. 例题讲解:(1) 单项式乘以单项式:例如,3x × 4x = 12x²。

(2) 单项式乘以多项式:例如,2x × (x + 3) = 2x² + 6x。

(3) 多项式乘以多项式:例如,(x + 2) × (x + 3) = x² + 3x+ 2x + 6 = x² + 5x + 6。

(4) 单项式除以单项式:例如,12x² ÷ 4x = 3x。

(5) 多项式除以单项式:例如,(x² + 5x + 6) ÷ x = x + 5 +6/x。

(6) 多项式除以多项式:例如,(x² + 5x + 6) ÷ (x + 2) = x+ 3。

3. 随堂练习:a. 3x × 4xb. 2x × (x + 3)c. (x + 2) × (x + 3)a. 12x² ÷ 4xb. (x² + 5x + 6) ÷ xc. (x² + 5x + 6) ÷ (x + 2)4. 板书设计:整式的乘法:a. 3x × 4x = 12x²b. 2x × (x + 3) = 2x² + 6xc. (x + 2) × (x + 3) = x² + 5x + 6整式的除法:a. 12x² ÷ 4x = 3xb. (x² + 5x + 6) ÷ x = x + 5 + 6/xc. (x² + 5x + 6) ÷ (x + 2) = x + 35. 作业设计:a. 4y × 5yb. 3x × (2x 3)c. (2x + 4) × (3x 2)a. 15x² ÷ 5xb. (x² 5x + 6) ÷ xc. (x² 5x + 6) ÷ (x + 3)六、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,使学生能够更好地理解整式的乘除概念。

七年级数学下册《整式的乘除知识结构》教案、教学设计

七年级数学下册《整式的乘除知识结构》教案、教学设计
3.加强对符号处理的训练,设计专门的习题,让学生在练习过程中注意符号的变化,培养严谨的计算习惯。
4.教学过程中,注重以下设想:
a.情境创设:结合生活实际,创设有趣的问题情境,激发学生学习兴趣,引导学生主动参与课堂讨论。
b.分层教学:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将采用以下方法:
1.利用生活实例:通过展示实际生活中的问题,如房屋面积计算、购物优惠等,引导学生发现整式乘除在生活中的应用,从而引出整式的乘除知识结构。
2.复习旧知识:简要回顾上节课所学的整式加减法,为新课的学习做好铺垫。
3.提出问题:向学生提问:“我们已经学会了整式的加减,那么整式的乘除法则是怎样的呢?”引发学生思考,激发学习兴趣。-计算某长方形的面积和体,给出长方形的长度、宽度和高度;
-根据购物打折问题,计算原价、折后价以及节省的金额;
-利用整式乘除法则解决简单的行程问题。
3.提高题:针对学有余力的学生,布置一些难度较大的整式乘除题目,培养学生的高级思维能力和解决问题的深度。
-涉及多项式乘以多项式的复合运算题;
-含有未知数的整式乘除问题;
3.教师引导:在讨论过程中,适时给予提示和引导,帮助学生更好地理解和掌握整式乘除法则。
(四)课堂练习
在课堂练习阶段,我将设计以下环节:
1.基础练习:针对整式乘除法则,设计基础习题,让学生独立完成,巩固所学知识。
2.提高练习:设计具有一定难度的练习题,让学生在解决问题的过程中,提高整式乘除运算能力。
3.答疑解惑:针对学生在练习中遇到的问题,进行解答和指导,帮助学生掌握整式乘除法则。
1.对整式乘除法则的理解不够深入,容易混淆不同乘除法则的使用场景。

第一章整式的乘除第二讲(教案)

第一章整式的乘除第二讲(教案)
最后,总结回顾环节,我觉得可以更加注重学生对知识点的内化。这次课中,虽然学生对整式乘除的概念有了基本的理解,但我认为还可以通过一些互动的方式,比如让学生自己来总结今天学到的内容,或者用他们自己的话来解释某个法则,这样有助于他们更好地记忆和应用。
五、教学反思
在上完这节课后,我思考了几个方面。首先,关于整式乘除的教学,我发现学生在理解单项式相乘的法则上相对容易,但在应用到具体问题,比如单项式乘以多项式时,分配律的应用就变得有些困难。这让我意识到,需要通过更多的实际例子和练习来强化这个概念。
其次,我观察到在小组讨论环节,学生们对整式乘除在实际生活中的应用提出了很多有趣的观点。这说明他们能够将理论知识与生活实际相结合,这是非常可贵的。但同时,我也注意到有些学生在讨论中较为被动,可能是因为他们对这个主题还不够自信。我考虑在下次课中,更多地鼓励这些学生参与到讨论中来,提高他们的自信心。
3.提升学生的数学建模素养,通过具体的数学实例,让学生掌握整式乘除的实际应用,培养将现实问题转化为数学模型的能力。
4.增强学生的数学运算素养,熟练掌握整式乘除的基本技能,提高准确性和效率,形成解决数学问题的基本策略。
三、教学难点与重点
1.教学重点
-单项式乘以单项式的法则:核心内容是理解并掌握同类项相乘时指数相加的规则,以及系数相乘的方法。
2.教学难点
-理解指数相加的规则:学生在处理指数相加时可能会出现混淆,特别是当底数相同而指数不同时。
-举例:难点在于理解x^2 * x^3 = x^(2+3) = x^5,需要通过重复练习和直观图示来加深理解。
-分配律的灵活运用:学生在将单项式乘以多项式时,可能会忘记将单项式分别与多项式中的每一项相乘。
-举例:难点如5x * (2x^2 + 3x - 1),需要学生克服只与第一项相乘的倾向,通过具体例子和练习来强化分配律的运用。

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标:1. 知识与技能:(1)理解整式的乘除概念;(2)掌握整式乘除的运算方法;(3)能够运用整式乘除解决实际问题。

2. 过程与方法:(1)通过实例演示,引导学生观察、思考整式乘除的过程;(2)运用小组合作、讨论的方式,探索整式乘除的运算规律;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动参与课堂活动的精神;(3)培养学生合作、交流的良好习惯。

二、教学重点与难点:1. 教学重点:(1)整式乘除的概念及运算方法;(2)运用整式乘除解决实际问题。

2. 教学难点:(1)整式乘除过程中的运算规律;(2)灵活运用整式乘除解决实际问题。

三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)例题及练习题;(3)教学道具或教具。

2. 学生准备:(1)预习相关知识;(2)准备好笔记本、文具等学习用品。

四、教学过程:1. 导入新课:(1)复习相关知识,如多项式、单项式等;(2)提问:同学们,你们知道如何计算两个多项式的乘积吗?今天我们将学习整式的乘除运算。

2. 教学新课:(1)讲解整式乘除的概念及运算方法;(2)通过实例演示,让学生观察、思考整式乘除的过程;(3)引导学生运用小组合作、讨论的方式,探索整式乘除的运算规律。

3. 课堂练习:(1)布置练习题,让学生独立完成;(2)挑选部分学生的作业进行点评、讲解。

4. 应用拓展:(1)让学生运用整式乘除解决实际问题;(2)鼓励学生分享自己的解题心得。

五、课后作业:1. 巩固整式乘除的基本运算;2. 运用整式乘除解决实际问题;3. 预习下一节课的内容。

六、教学评估:1. 课堂表现评估:观察学生在课堂上的参与程度、提问回答情况、小组合作表现等,了解学生的学习状态。

2. 作业评估:检查学生课后作业的完成质量,评估学生对整式乘除运算的理解和应用能力。

3. 练习题评估:通过学生完成的练习题,评估学生对整式乘除运算的掌握程度。

整式的乘除教案

整式的乘除教案

整式的乘除教案整式的乘除是初中数学中非常重要的知识点,也是高中数学的基础。

因此,在教授整式的乘除时需要引导学生深刻理解这一知识点的概念和实质,提高其思维能力和解题能力。

本文将结合本人多年的数学教学经验,分享整式的乘除教案,并通过详细的讲解和丰富的例题,帮助初中学生更好地掌握整式的乘除。

第一部分:整式的概念与分类整式是一种由变量、常数和运算符组成的多项式,其中变量的次数为正整数,运算符包括加、减、乘、除等,整式的各项之间没有其他代数式(如根式、分式等)。

整式又可分为单项式和多项式。

单项式仅包含一个项,如3x²;多项式则由多个单项式相加或相减构成,如2x³ - 4x² + 5。

在学习整式的乘除时,需要通过多个例子和练习,帮助学生充分理解整式的概念和分类。

第二部分:整式的乘法整式的乘法是将两个整式相乘的运算。

在进行整式乘法时,需要注意以下几个步骤:1. 将两个整式中的每一个单项式分别相乘;2. 对所得的所有单项式进行合并,即将同类项合并在一起;3. 最终得到的整式即为所求的积。

例如,计算(3x² + 2x)(5x - 4),可以按照下列步骤进行:(3x² + 2x)(5x - 4) = 15x³ - 12x² + 10x² - 8x= 15x³ - 2x² - 8x在进行整式乘法时,需要特别注意两个整式中各单项式之间的乘法顺序和加法顺序,以免出现错误。

第三部分:整式的除法整式的除法是将一个整式除以另一个整式的运算,在进行整式除法时,需要注意以下几个步骤:1. 判断被除式和除式是否为单项式或多项式;2. 利用“短除法”,即将被除式中次数最高的单项式与除式中次数最高的单项式相除,得到商式;3. 将所得到的商式乘以除式,并将结果减去被除式,得到余项;4. 将所得到的商式和余项组合在一起,即得到最终结果。

例如,计算(4x³ - 20x² + 16x + 8)÷(2x - 4),可以按照下列步骤进行:4x³ - 20x² + 16x + 8 | 2x - 4���2x²�� x ���� 6________________________4x³ - 8x²4x³ - 20x²_________12x² + 16x12x² - 24x__________40x + 840x - 80_________88因此,原式的商式为2x² + x + 6,余项为88/(2x - 4)。

整式的乘除教案

整式的乘除教案

整式的乘除教案教学目标:1. 理解整式的乘法和除法概念。

2. 掌握整式的乘法和除法运算方法。

3. 能够运用整式的乘除法解决实际问题。

教学重点:1. 整式的乘法运算。

2. 整式的除法运算。

教学难点:1. 运用整式的乘除法解决实际问题。

教学准备:教师准备黑板、白板、彩色粉笔、教师用书、学生用书、习题。

教学过程:一、导入新知1. 提出问题:同学们,我们今天要学习什么内容?2. 回答问题:今天我们要学习整式的乘法和除法。

3. 引入新知:回顾一下,什么是整式?如何进行整式的加减运算?二、整式的乘法1. 提问:整式的乘法是指什么意思?2. 解释:整式的乘法指的是将两个整式相乘得到一个新的整式。

3. 解答疑惑:同学们,你们对整式的乘法有什么疑问吗?三、整式的乘法运算方法1. 教师讲解:在进行整式的乘法运算时,我们需要将每一个项按照指数从大到小的顺序进行排列,并且将相同指数的项合并。

然后,使用乘法分配律将没有相同指数的项进行相乘,最后将所有项相加得到最终的结果。

2. 教师示范:我们来看一个例子:(3x^2 + 2x + 1) * (2x + 1)首先,我们将每一个项按照指数从大到小的顺序排列:3x^2 * 2x + 3x^2 * 1 + 2x * 2x + 2x * 1 + 1 * 2x + 1 * 1然后,将相同指数的项合并:6x^3 + 3x^2 + 4x^2 + 2x + 2x + 1最后,将所有项相加得到最终结果:6x^3 + 7x^2 + 4x + 13. 同学们,请你们跟着我一起做几个习题,加深对整式乘法运算方法的理解。

四、整式的除法1. 提问:整式的除法是指什么意思?2. 解释:整式的除法是指将一个整式除以另一个整式得到商式和余式的过程。

3. 解答疑惑:同学们,你们对整式的除法有什么疑问吗?五、整式的除法运算方法1. 教师讲解:在进行整式的除法运算时,我们需要按照除法的步骤,从被除式中取出与除式相同次数的项,然后进行相除,将得到的商式写在上方,得到的余式写在下方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程回顾:
1、利用旋转变换构造出全等三角形(重点)
例1、如图,已知点E、F分别在正方形ABCD的边
BC、CD上,并且∠DAF=∠EAF.
求证:BE+DF=AE
例2、如图,正方形ABCD的边BC、CD上取E、F两
点,使∠EAF=45°,AG⊥EF于G.
求证:AG=AB.
2、同底数幂的乘法
①同底数幂的乘法法则:同底数幂相乘,指数相加:
a m·a n=(m,n都是正整数)
②幂的乘法法则:幂的乘方,底数不变,指数相乘:
(a m)n=(m,n都是正整数)
课堂练习
例2、综合提高:
3、单项式的乘法
单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

4、多项式的乘法
多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

例1、当x=1时,代数式8322+-bx ax 的值为18,这时,代数式269+-a b =( ) 例2、如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要用A 、B 、C 三类卡片拼一个边长为(a+2b )的正方形,则需要C 类卡片多少张( )
(3)第N个等式是( );
(4)说明第N个等式的正确性
6、整式的化简
整式的化简应遵循先乘方、再乘除、最后算加减的顺序。

能运用乘法公式的则运用乘法公式
例1、如图所示,用该几何图形的面积可以表示的乘法公式是
例2、按下图中所示的两种方式分割正方形,你能利用面积的不同表示方法写出两个等式,并检验等式的正确性吗
例3、图①是一个边长为()
的正方形,小颖将图①中的阴影部分拼成图
m n
②的形状,
由图①和图②,能验证的式子是()
这三种,这时就有31(18)62F ==.给出下列关于()F n 的说法:(1)1(2)2
F =;(2)
3
(24)8
F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是( )
A.1 B.2 C.3 D.4 例6、
提交时间
教研组长审批 教研主任审批。

相关文档
最新文档