高二数学经典例题 (5)

高二数学经典例题 (5)

高中数学例题:离散型随机变量的期望、方差、正态分布

1.[2019河南洛阳联考]已知随机变量X~B(2,p),Y~N(2,σ2),若P(X≥1)=0.64,P(04)=________.

答案:0.1解析:因为随机变量X~B(2,p),Y~N(2,σ2),P(X≥1)=0.64,

所以P(X≥1)=P(X=1)+P(X=2)

=C12p(1-p)+C22p2=0.64,

解得p=0.4或p=1.6(舍去),

所以P(0

P(Y>4)=1

2×(1-0.4×2)=0.1.

第1 页共1 页

高中数学必修5经典题型

高中数学必修5经典题型 时量:120分钟 班级: 姓名: 计分: (说明:《必修5》共精选13题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修 5》精选) 1. 在△ABC 中,若cos cos a A b B =,判断△ABC 的形状. (☆P 6 3) 2. 在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,且a 2+b 2=c 2 ab . (1)求C ; (2)若 tan 2tan B a c C c -=,求A . (☆P 6 8) 3. 如图,我炮兵阵地位于A 处,两观察所分别设于C ,D ,已知△ACD 为边长等于a 的正三角形.当目标出现于B 时,测得∠CDB =45°,∠BCD =75°,试求炮击目标的距离AB . (☆P 8 8) 4. 已知数列{}n a 的第1项是1,第2项是2,以后各项由12(2)n n n a a a n --=+>给出. (1)写出这个数列的前5项; (2)利用上面的数列{}n a ,通过公式1n n n a b a +=构造一个新 的数列{}n b ,试写出数列{}n b 的前5项. (◎P 34 B3) 5. 已知数列{}n a 的前n 项和为212 n S n n =+ ,求这个数列的通项公式. 这个数列是等差数列 吗?如果是,它的首项与公差分别是什么?(◎P 44 例3) 6.(09年福建卷.文17)等比数列{}n a 中,已知142,16a a ==. (☆P 38 8) (1)求数列{}n a 的通项公式; (2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和 n S . 7. 若一等比数列前5项的和等于10,前10项的和等于50,那么它的前15项的和等于多少?(◎P 58 2)

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学必修二-知识点、考点及典型例题解析

高中数学必修二各章知识点总结完整版 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222 c b a l ++=;正方体的对角线长 a l 3= 3、球的体积公式:3 3 4  R V π=,球的表面积公式: 24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:2 2 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积;l r S ??=π2侧面 ⑵圆锥侧面积:l r S ??=π侧面 典型例题:

★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 4 2倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱 ★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

专题复习:高中数学必修5基本不等式经典例题

基本不等式 知识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则22 2b a ab +≤??(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2?(2)若* ,R b a ∈,则ab b a 2≥+?(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1 1 22-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2 a b a b a b b a b a b a +≥+≥+≤即或 ( 当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+错误! (2)y =x+错误! 解:(1)y =3x 2+1 2x 2 ≥23x 2·\f (1,2x 2) =错误! ∴值域为[错误!,+∞) (2)当x >0时,y =x+\f(1,x) ≥2错误!=2; 当x <0时, y=x+\f(1,x) = -(- x-错误!)≤-2错误!=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x <,求函数1 4245y x x =-+-的最大值。

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题 【知识概述】 线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题. 解决线性规划的数学问题我们要注意一下几点 1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题; 2.解决线性规划问题需要经历两个基本的解题环节 (1)作出平面区域;(直线定”界”,特“点”定侧); (2)求目标函数的最值. (3)求目标函数z=ax+by最值的两种类型: ①0 b>时,截距最大(小),z的值最大(小); ②0 b>时,截距最大(小),z的值最小(大); 【学前诊断】 1.[难度] 易 满足线性约束条件 23, 23, 0, x y x y x y +≤ ? ?+≤ ? ? ≥ ? ?≥ ? 的目标函数z x y =+的最大值是() A.1 B.3 2 C.2 D.3 2.[难度] 易 设变量,x y满足约束条件 0, 0, 220, x x y x y ≥ ? ? -≥ ? ?--≤ ? 则32 z x y =-的最大值为( ) A.0 B.2 C.4 D.6

3. [难度] 中 设1m >,在约束条件1y x y mx x y ≥??≤??+≤? 下,目标函数z x my =+的最大值小于2,则m 的取 值范围为( ) A .(1,1 B .(1)+∞ C .(1,3) D .(3,)+∞ 【经典例题】 例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =+的最大值为( ) A.5 B.4 C.1 D.8 例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为( ) A.4 B.3 C.2 D.1 例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥??--≤??≥≥? ,若目标函数(0,0)z abx y a b =+>>的最小 值为8,则a b +的最小值为____________. 例4. 在约束条件下0,0,,24, x y x y s x y ≥??≥??+≤??+≤?当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )

(完整版)高中数学必修一必修二经典测试题100题

A C P B 高中数学必修一必修二经典测试题100题(二) 一、填空题:本题共25题 1、设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =I ,则:a= b= 2、对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的 倍 3. 已知函数2log (0)()3 (0)x x x f x x >?=?≤?,则1 [()]4f f 的值是 4. 设1,01,x y a >><<则下列关系正确的是 ○ 1a a y x -->○2 ay ax <○3y x a a <○4 y x a a log log > 5. 函数()23x f x =-的零点所在区间为: 6. 函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在(,)a b 上是 函数(增或减) 7. 在x 轴上的截距为2且倾斜角为135°的直线方程为 8. 设点M 是Z 轴上一点,且点M 到A (1,0,2)与点B (1,-3,1)的距离相等,则点M 的坐标是 9、如图所示,阴影部分的面积S 是h (0)h H ≤≤的函数,则该函数的图象 是 . 10. 将直线:210l x y +-=向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为 11. 函数2 ()lg(21)5 x f x x -= +++的定义域为 12. 已知0>>b a ,则3,3,4a b a 的大小关系是 13.函数3 ()3f x x x =+-的实数解落在的区间是 14.已知(1,2),(3,1),A B 则线段AB 的垂直平分线的方程是 15. 下列条件中,能判断两个平面平行的是 a 一个平面内的一条直线平行于另一个平面; b 一个平面内的两条直线平行于另一个平面; c 一个平面内有无数条直线平行于另一个平面; d 一个平面内任何一 条直线都平行于另一个平面 16. 如图,在Rt △ABC 中,∠ABC=900 ,P 为△ABC 所在平面外一点 PA ⊥平面ABC ,则四面体P-ABC 中共有 个直角三角形。 17.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于 18 .在圆2 2 4x y +=上,与直线43120x y +-=的距离最小的点的坐标为 19.用符号“∈”或“?”填空

数学必修4典型例题

数学必修4基础知识与典型例题 三角函数 角的概念1.①与α终边相同的角β的集合:__________________________ ②第一象限角的集合:_____________________________ 2.角度与弧度的互换关系:______________________ 3.弧长公式:____________ 扇形面积公式:_____________ 例1.已知α为第三象限角,则 2 α 所 在的象限是( ) (A)第一或第二象限 (B)第二或第三象限 (C)第一或第三象限 (D)第二或第四象限 三角函数的定义1.三角函数定义:在角α终边上任取一点(,) P x y(与原点不重合),记 2 2y x r+ =,则= α sin____,= α cos____,= α tan____ 2.各象限角的三角函数值符号: 一全二正弦,三切四余弦 α sinα cosα tan 1.同角三角函数基本关系:_________________________________ 2.诱导公式: 公式(一)公式(二) = +) 2 sin(x kπ_______; = -) sin(x_________; = +) 2 cos(x kπ_______; = -) cos(x________; = +) 2 tan(x kπ_______; = -) tan(x_________; 公式(三)公式(四) = +) sin(x π_________; = -) sin(x π_________; = +) cos(x π_________; = -) cos(x π_________; = +) tan(x π_________; = -) tan(x π_________; 例 2.已知角α的终边经过点 )3 ,4(- P,求α αcos sin 2+的值. 例 3.若θ是第三象限角,且 cos cos 22 θθ =-,则 2 θ 是( ) (A)第一象限角(B)第二象限角 (C)第三象限角(D)第四象限角 例4.若cos0, θ>sin20, θ< 且 θ 则角的终边所在象限是() (A)第一象限(B)第二象限 (C)第三象限(D)第四象限 例5.化简:① 440 sin 12 - ② ) 2 5 sin( ) 4 tan( ) tan( ) 2 3 cos( ) sin( α π α π α π α π α π + - - - - - ③α αsin 3 cos+ 例 6.已知点P(cos,sin) θθ在直线 20 x y -=上,试求下列各三角函数 式的值:

高二数学典型例题一

典型例题一 例1 若b a //,A c b = ,则a ,c 的位置关系是( ). A .异面直线 B .相交直线 C .平行直线 D .相交直线或异面直线 分析:判断两条直线的位置关系,可以通过观察满足已知条件的模型或图形而得出正确结论. 解:如图所示,在正方体1111D C B A ABCD -中,设a B A =11,b AB =,则b a //. 若设c B B =1,则a 与c 相交.若设c BC =,则a 与c 异面. 故选D . 说明:利用具体模型或图形解决问题的方法既直观又易于理解.一般以正方体、四面体等为具体模型.例如,a ,b 相交,b ,c 相交,则a ,c 的位置关系是相交、平行或异面.类 似地;a ,b 异面,b ,c 异面,则a ,c 的位置关系是平行、相 交或异面.这些都可以用正方体模型来判断. 典型例题二 例2 已知直线a 和点A ,α?A ,求证:过点A 有且只有一条直线和a 平行. 分析:“有且只有”的含义表明既有又惟一,因而这里要证明的有两个方面,即存在性和惟一性. 存在性,即证明满足条件的对象是存在的,它常用构造法(即找到满足条件的对象来证明);惟一性,即证明满足条件的对象只有..一个,换句话说,说是不存在第二个满足条件的对象. 因此,这是否定性... 命题,常用反证法. 证明:(1)存在性. ∵ a A ?,∴ a 和A 可确定一个平面α, 由平面几何知识知,在α内存在着过点A 和a 平行的直线. (2)惟一性 假设在空间过点A 有两条直线b 和c 满足a b //和a c //.根据公理4,必有c b //与A c b = 矛盾, ∴ 过点A 有一条且只有一条直线和a 平行. 说明:对于证明“有且只有”这类问题,一定要注意证明它的存在性和惟一性. 典型例题三

高中数学必修5知识点总结及经典例题

必修5知识点总结 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。) ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD 有无交点: 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解 注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状:设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > . 正余弦定理的综合应用:如图所示:隔河看两目标A 、B,

高二数学不等式练习题及答案(经典)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21, g (n ) = n 12 --n , n ∈N ,则 ( ) (A ) f (n )

高一数学必修5数列经典例题(裂项相消法)

2.(2014?成都模拟)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6, (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和. 解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6有a32=9a42,∴q2=. 由条件可知各项均为正数,故q=. 由2a1+3a2=1有2a1+3a1q=1,∴a1=. 故数列{a n}的通项式为a n=. (Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣, 故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣, ∴数列{}的前n项和为﹣. 7.(2013?江西)正项数列{a n}满足﹣(2n﹣1)a n﹣2n=0. (1)求数列{a n}的通项公式a n; (2)令b n=,求数列{b n}的前n项和T n. 解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0, 可有(a n﹣2n)(a n+1)=0 ∴a n=2n. (2)∵a n=2n,b n=, ∴b n===, T n===. 数列{b n}的前n项和T n为. 6.(2013?山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n. (Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解: 解有a1=1,d=2. ∴a n=2n﹣1,n∈N*. (Ⅱ)由已知++…+=1﹣,n∈N*,有: 当n=1时,=, 当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合. ∴=,n∈N* 由(Ⅰ)知,a n=2n﹣1,n∈N*.

高一高二高三数学经典错题大合集

高一高二高三数学经典错题大合集:解三角形常见的八种失分需谨慎高中数学提分容易么,说老实话,有时候很容易,有时候很难!其实有点智商方面的关系!但最重要的还是方法!当然首当其冲的是兴趣!每个同学都有自己对应的病灶,找准,抓住,杀掉,成绩自然上来。而错题集是学生进行提高自我成绩的一个非常好的途径!然而很多学生弄了,也没提高多少,主要是没找对方法!错题本重点是总结!然后分析!下一次再做!再错,再总结!如此循环,这一类题就基本能吃透提高了!当然,错题本还得系统,到位!清北学霸高考必备资料库中,我们的师哥师姐就整理了,将近800 来道的高中数学错题集!我们的错题集不是单纯只是把学生容易错的题拉上来,而是收集了近三年来学生针对这个考点容易失分点,容易错的进行错题集分析!非常的全面而实用!有学生在解三角形的道路上经常错。下面就给大家分析下解三角形的常见的8 种是失分,丢分的! 现在有个福利告诉同学家长,同学家长可以添加学长微信 2475026381 即可参与清华、北大的小伙伴们发起的助学活动,免费领取我们精心打造《应试攻略》系列课程及《直击高考漏洞》电子书,以我们的经历、成功,告诫大家:考试百分百技术活,想要成为尖子生,先要跳出中等生苦学的思维?? 还有高中九科目提分笔记免费领取 【标题01】不能灵活运用正弦定理进行推理解答

标题02 】在三角形中解三角正弦方程出现错误

标题03】锐角三角形的定义理解错误

标题04】解三角形时出现多解没有注意检验

标题05】忽略了等式的性质在等式两边随便乘除导致漏解

标题06】化简三角方程时忽略了角的范围和正弦函数的图像和性质标题07】求三角函数的范围时忽略了角的取值范围

高中数学必修五数列求和方法总结附经典例题和答案详解

数列专项之求和-4 (一)等差等比数列前n 项求和 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n n 项求和 ② 数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ?的求和就要采用此法. ②将数列{}n n a b ?的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列 {}n n a b ?的前n 项和. 此法是在推导等比数列的前n 项和公式时所用的方法. 例23.求和:132)12(7531--+???++++=n n x n x x x S )0(≠x 例24.求数列 ??????,2 2,,26,24,2232n n 前 n 项的和. 一般地,当数列的通项12()() n c a an b an b = ++12(,,,a b b c 为常数) 时,往往可将n a 变成两项的差,采用裂项相消法求和. 可用待定系数法进行裂项: 设1 2 n a an b an b λ λ = - ++,通分整理后与原式相比较,根据对应项系数相等得 21 c b b λ= -,从而可得 122112 11 =().()()()c c an b an b b b an b an b -++-++ 常见的拆项公式有: ① 111(1)1n n n n =-++;② 1111 ();(21)(21)22121 n n n n =--+-+

③ 1a b =-④11;m m m n n n C C C -+=- ⑤!(1)!!.n n n n ?=+-⑥]) 2)(1(1 )1(1[21)2)(1(1++-+=+-n n n n n n n …… 例25.求数列 ???++???++,1 1, ,3 21, 2 11n n 的前n 项和. 例26.在数列{a n }中,11211++???++++=n n n n a n ,又1 2+?=n n n a a b ,求数列{b n }的前n 项的和. 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组. 例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28.求数列的前n 项和:231 ,,71,41,1112-+???+++-n a a a n 如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征: 121...n n a a a a -+=+= 例29.求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 例30.求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 ⑸记住常见数列的前n 项和: ①(1) 123...;2 n n n +++++= ②2 135...(21);n n ++++-= ③22221 123...(1)(21).6 n n n n ++++= ++ ④233 33)]1(2 1[321+=+ +++n n n

高中数学经典50题附答案

高中数学题库 1. 求下列函数的值域: 解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离 地球相距m 万千米和 m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为3 2 π π 和 ,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为1 22 22=+b y a x (图见教材P132页例1)。

当过地球和彗星的直线与椭圆的长轴夹角为 3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,323 1c c c m c a m a c m =-==∴?= 代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 3. A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο 30,相距4Km , P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则 )32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(3 13+= -x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则双曲线方程为 )0(15 42 2≥=-x y x (2)。联立(1)(2),得35,8==y x , 所以).35,8(P 因此33 83 5=-= PA k ,故炮击的方位角北偏东?30。 说明:本题的关键是确定P 点的位置,另外还要求学生掌握方位角的基本概念。 4. 河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2

高一数学必修5数列经典例题(裂项相消法)

高一数学必修5数列经典例题(裂项相消法) 2、(xx?成都模拟)等比数列{an}的各项均为正数,且 2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{}的前n项和、解:(Ⅰ)设数列{an}的公比为q,由a32=9a2a6有a32=9a42, ∴q2=、由条件可知各项均为正数,故q=、由2a1+3a2=1有 2a1+3a1q=1,∴a1=、故数列{an}的通项式为an=、(Ⅱ) bn=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣ 2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣、7、(xx?江西)正项数列{an}满足﹣(2n﹣1)an﹣2n=0、(1)求数列{an}的通项公式an;(2)令bn=,求数列{bn}的前n项和Tn、解:(1)由正项数列{an}满足:﹣(2n﹣1)an﹣2n=0,可有(an﹣2n)(an+1)=0∴an=2n、(2)∵an=2n,bn=, ∴bn===,Tn===、数列{bn}的前n项和Tn为、6、(xx?山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+ 1、(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足=1﹣,n∈N*,求{bn}的前n项和Tn、解:(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1有:,解有a1=1,d= 2、∴an=2n﹣1,n∈N*、(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时

相关文档
最新文档