工程电磁场基本知识点讲课教案

工程电磁场基本知识点讲课教案
工程电磁场基本知识点讲课教案

工程电磁场基本知识

第一章矢量分析与场论

1 源点是指。

2 场点是指。

3 距离矢量是,表示其方向的单位矢量用表示。

4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。

5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。

6 方向导数与梯度的关系为。

7 梯度在直角坐标系中的表示为u?=。

8 矢量A在曲面S上的通量表示为Φ=。

9 散度的物理含义是。

10 散度在直角坐标系中的表示为??=

A。

11 高斯散度定理。

12 矢量A沿一闭合路径l的环量表示为。

13 旋度的物理含义是。

14 旋度在直角坐标系中的表示为??=

A。

15 矢量场A在一点沿

e方向的环量面密度与该点处的旋度之间的关

l

系为。

16 斯托克斯定理。

17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , ,

18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , ,

。 19 221111''R R R R R R

?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????g g

第二章 静电场

1 点电荷q 在空间产生的电场强度计算公式为 。

2 点电荷q 在空间产生的电位计算公式为 。

3 已知空间电位分布?,则空间电场强度E = 。

4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点

P 处的电位P ?= 。

5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R

?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。

8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。

10处于静电平衡状态的导体,电荷分布在导体的 。

11 无限长直导线,电荷线密度为τ,则空间电场E= 。

12 无限大导电平面,电荷面密度为σ,则空间电场E= 。

13 静电场中电场强度线与等位面。

14 两等量异号电荷q,相距一小距离d,形成一电偶极子,电偶极

子的电偶极矩p= 。

15 极化强度矢量P的物理含义是。

16 电位移矢量D,电场强度矢量E,极化强度矢量P三者之间的关

系为。

17 介质中极化电荷的体密度

ρ=。

P

18介质表面极化电荷的面密度

σ=。

P

19 各向同性线性介质,电场强度矢量为E,介电常数ε,则极化强

度矢量P=。

20 电位移矢量D,电场强度矢量E之间的关系为。

21 电介质强度指的是。

22 静电场中,电场强度的旋度等于。

23 静电场中,电位移矢量的散度等于。

24 静电场中,电场强度沿任意闭合路径的线积分等于。

25 静电场中,电位移矢量在任意闭合曲面上的通量等于。

26 静电场中,电场强度的分界面条件是。

27 静电场中,电位移矢量的分界面条件是。

28 静电场中,电位满足的泊松方程是。

29 静电场中,电位满足的分界面条件是。

30 静电场中,电位在两种介质分界面上的法向导数满足。

31 静电场中,电位在两种介质分界面上的切向导数满足。

32 静电场中,电位在导体介质分界面上的法向导数满足。

33 静电场中,电位在导体介质分界面上的切向导数满足。

34 静电场边值问题中第一类边界条件是。

35 静电场边值问题中第二类边界条件是。

36 静电场边值问题中第三类边界条件是。

37 元电荷dq在空间产生的电场强度计算公式为。

38 元电荷dq在空间产生的电位计算公式为。

39 静电场基本方程的微分形式为。

40 静电场边值问题是指。

第三章恒定电场

1 体电流密度的单位是。

2 面电流密度的单位是。

3 体电流密度与电荷速度间的关系为。

4 面电流密度与电荷速度间的关系为。

5 电流密度与电场强度间的关系为。

6 局外电场定义是。

7 电源电动势的定义为。

8 电流连续性方程积分形式的数学表达式为。

9 电流连续性方程微分形式的数学表达式为 。

10 恒定电场中电流连续性方程积分形式的数学表达式为 。 11 恒定电场中电流连续性方程微分形式的数学表达式为 。 12 恒定电场基本方程是 。

13 恒定电场辅助方程是 。

14 欧姆定律的微分形式为 。

15 恒定电场电场强度与电位关系为 。

16 电源外恒定电场电位满足的方程为 。

17 恒定电场中两导电媒质分界面上,电流密度的分界面条件

是 。

18 恒定电场中在已知导电媒质电导率的情况下,在分界面上,电位

的法向导数满足的分界面条件是 。

第四章 恒定磁场

1 体电流元、面电流元和线电流元分别表示为 、 、 。

2 线电流元d I l 在空间产生的磁感应强度d B 。

3 线电流元d I l 在外磁场B 中受力d F = 。

4 线电流元22d I l 受到线电流元11d I l 产生磁场的作用力为d F 21= 。

5 电荷q 在空间运动速度为v ,电荷在空间产生的磁感应强度为

B = 。

6 电荷q在磁场为B的空间运动,速度为v,电荷受洛伦兹力作用,该力表示为F= 。

7 无限长直导线中电流为I,导线周围磁感应强度B= 。

8 矢量磁位与磁感应强度的关系为。

9 选无限远处为参考点,线电流元d I l在空间产生的矢量磁

d A= 。

10 库伦规范表示为。

11 曲面S上的磁通为曲面上的通量,表示为。

12 用矢量磁位计算磁通的公式为。

13 磁通连续的微分表示为。

14 磁感线方程表示为坐标形式为,表示为矢量形式

为。

15 在平行平面场中,磁感线就是。

16 磁感应强度的旋度等于。

17 半径为R的直导线通有电流I,电流均匀分布,导线内部的磁感

应强度为,外部的磁感应强度为。

18 无限大平面上有电流分布,电流面密度K为常矢量,平面两侧磁

感应强度的大小为。

19 磁偶极子是围成的面积很小的载流回路,设回路面积为S,回路

电流为I,则磁偶极子的磁偶极矩m= 。

20 磁化强度M的物理含义是。

21 磁化电流的体密度J M= 。

22 磁化电流的面密度K M= 。

23 磁场强度H,磁感应强度B,磁化强度M间的关系为。

24 对于线性、各向同性介质,磁场强度H和磁感应强度B间的关系

为。

25 恒定磁场基本方程的微分形式为。

26 恒定磁场的辅助方程为。

27 磁感应强度的分界面条件是。

28 磁场强度的分界面条件是。

29 当分界面上无自由电流时,磁场强度的分界面条件是。

30 磁场强度的旋度等于。

31 磁场强度沿任意闭合环路的线积分等于环路环绕的。

32 矢量磁位的泊松方程为。

第五章时变电磁场电场

1 法拉第电磁感应定律的实质是变化的磁场产生。

2 变压器电动势是指。

3 发电机电动势是指。

4 由变化磁场产生的电场称为感应电场,感应电场的旋度等于。

5 位移电流密度定义为J D= 。

6 有三种形式的电流,分别为,,,相应的电流密度形式分别为,,。

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

工程电磁场基本知识点讲课教案

工程电磁场基本知识 点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。 12 矢量A沿一闭合路径l的环量表示为。 13 旋度的物理含义是。 14 旋度在直角坐标系中的表示为??= A。 15 矢量场A在一点沿 e方向的环量面密度与该点处的旋度之间的关 l 系为。 16 斯托克斯定理。

17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????g g 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点 P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。

电磁场复习要点复习资料

电磁场复习要点 主要内容(章节) 1.1 1.2 1.3 1.4 1.5 1.7.1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 3.5 4.1 4.2 4.3 4.5 思考题 2.2 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.16 3.2 3.3 3.4 3.9 3.10 3.15 3.17 3.18 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 习题 1.12 1.13 1.15 1.16 1.19 1.20 1.27 1.28 2.7 2.8 2.9 2.11 2.12 2.13 2.15 2.17 2.21 2.23 3.2 3.3 3.4 3.7 3.8 3.9 3.15 3.23 4.4 4.9 4.10 4.11 选择或填空 1. 在相同场源条件下,电介质中的电场强度是真空中电场强度的( A )。 A. r ε1倍 B. r ε倍 C. 0 1ε倍 D. 0ε倍 2. 静电场中试验电荷受到的作用力与试验电荷电量成( A )关系。 A. 正比 B. 反比 C. 平方 D. 平方根 3. 两点电荷所带电量大小不等,则电量大者所受作用力( C ) A .更大 B .更小 C .与电量小者相等 D .大小不定 4. 空间电场的电场强度为z e y e e E z y x 684ρρρρ++= V/m ,点A 的坐标为(0, 2, 0),点B 的坐标为(2, 4, 0),则A 与B 两点间的电压AB U 为( B )。 A. 40 V B. 56 V C. 64 V D. 48 V 5. 平板电容器的电容量与极板面积成( B ),与板间距离成( )。 A. 正比/正比 B. 正比/反比 C. 反比/正比 D. 反比/反比 6. 线性媒质中,电位移矢量的定义为( A ) A. P E D ρρρ+=0ε B. P E D ρρρ+=ε C. P E D ρρρ+= D. P E D ρρρ0ε+= 7. 静电场保守性的积分表达形式是( C )。 A. 0=????C l d E ρρ B. ??=?S S d E 0ρρ C. ?=?C l d E 0ρρ D. ?=?b a l d E 0ρρ 8. 静电场中以D ρ表示的高斯通量定理,其积分式中的总电荷应该是( C )。 A. 整个场域中的自由电荷 B. 整个场域中的自由电荷和极化电荷 C. 仅由闭合面所包的自由电荷 D. 仅由闭合面所包的自由电荷和极化电荷

工程电磁场复习提纲及考点

第一部分:电磁场的数学工具和物理模型 来源:工程电磁场原理教师手册 场的概念;场的数学概念;矢量分析; 数学工具:在不同坐标系下的数学描述方法;巩固标量场梯度的概念和数学描述方法;掌握散度在直角坐标系下的表达形式;掌握旋度在直角坐标系下的表达形式;强调几个矢量分析的恒等式:0=???V (任何标量函数梯度的旋度恒等于零);0)(=????A (任意矢量函数旋度的散度恒等于零);() A A A 2?-???=????;?????+??=??A A A )(; V V 2?=???。 亥姆霍兹定理推导出:无旋场(场中旋度处处为零),但散度不为零;无散场(无源场):场中散度处处为零,但其旋度不为零;一般矢量场:场中散度和旋度均不为零。无限空间中的电磁场作为矢量场)(r F 按定理所述,其特性取决于它的散度和旋度特性,而用公式可以表示为:)()()(r A r r F ??+-?=?,其中标量函数?-??= V dV r r r F r '') '('41)(π?,矢量函数?-??= V dV r r r F r A '' ) '('41)(π,由此可见,无限空间中的电磁场)(r F 唯一地取决于其散度和旋度的分布。 散度定理——高斯定理;旋度定理——stokes 定理 第二部分:静态电磁场——静电场 掌握电场基本方程,并理解其物理意义。 电场强度E 与电位?的定义以及物理含义;理解静电场的无旋性,及电场强度的线积分与路径无关的性质,以及电场强度与电位之间的联关系。 掌握叠加原理,对自由空间中的静电场,会应用矢量分析公式计算简单电荷分布产生的电场强度与电位;对于呈对称性分布的特征的场,能熟练地运用高斯定理求解器电场强度与电位分布。 了解媒介(电介质)的线性、均匀和各向同性的含义;了解电偶极子、电偶极矩的概念及其电场分布的特点。了解极化电荷、极化强度P 的定义及其物理意义。连接通过极化电荷求极化电场分布的积分形式。 理解电位移矢量D 的定义,以及D 、E 和P 三者之间的关系。对电介质中的静电场,会求解其相应对称的场的分布。

电磁场公式总结

电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的 一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的. 单位电荷在空间12 02 14q q r r πε 某点处单位体积 12 2r ? 均匀磁化:M = ∑不均匀磁化: m m P p +?∑ ISn = L ) 电力线 磁力线 静电场的等势面就是一簇假想的曲线,

电位差(电压):单位正电荷的电位能差.即:B AB AB AB A W A U Edl q q = == ?. 0P n δ=? P E χε=(各向同性介质)e 1r εχ=+ 0r εεε==D E E H M μ= - M j n =? 1r m μχ=+ 0H r B H μμμ== (1)分析自由电荷分布的对称性求出磁场感应强度矢量

e δ. d d S t ?? d d I L t - 1 d d I M t =- 12 d I ε 静电场恒定磁场

t ???? ??∑= ?ε q dS E ???d d L H l I I t ?=+=??? ?? z H ??? ??d t - ??=?I dS J E 和H 的振幅都正比于

电场和磁场的本质及内在联系: 静电场问题求解 基础问题 1.场的唯一性定理: ①已知V 内的自由电荷分布 ②V 的边界面上的φ值或n ??/φ值, 则V 内的电势分布,除了附加的常数外,由泊松方程 ερφ/2 -=? 及在介质分界面上的边值关系 σφ φ ε εφφ-=??-??=)()(,n n j i j i 唯一的确定。 两种静电问题的唯一性表述: ⑴给定空间的电荷分布,导体上的电势值及区域边界上的电势或电势梯度值→空间的电势分布和导体上的面电荷分布(将导体表面作为区域边界的一部分) ⑵给定空间的电荷分布,导体上的总电荷及区域边界上的电势或电势梯度值→空间的电势分布和导体上的面电荷分布(泊松方程及介质分界面上的边值关系) 2.静电场问题的分类: 分布性问题:场源分布E ?ρ电场分布 边值性问题:场域边界上电位或电位法向导数→电位分布和导体上电荷分布 3.求解边值性问题的三种方法: 分离变量法 电荷 电场 磁场 电流 变化 变化 运动 激发 激发

电磁学公式总结

大学物理电磁学公式总结 ?第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F =kq1q2 e r= r2 3.电力叠加原理:F=ΣF i , q0为静止电荷 4.电场强度:E=F q0 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3) 均匀带电无限长直线: E= ,方向垂直于带电直线 4) 均匀带电无限大平面: E=,方向垂直于带电平面 9. 电偶极子在电场中受到的力矩: M=p×E ? 第三章(电势) 1. 静电场是保守场: =0 2. 电势差:φ1 –φ2= 电势:φp =∫E 鈥r (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4. 电场强度E 与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i +j +k ) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5. 电荷在外电场中的电势能:W=q φ 移动电荷时电场力做的功:A 12=q(φ1 –φ2)=W 1-W 2 电偶极子在外电场中的电势能:W=-p?E

?第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。?第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=Q U

工程电磁场期末知识点总结

工程电磁场课程总结大作业 1. 静电场 本章研究的对象是静电场,静电场是相对于观察者静止且量值不随时间变化的电荷所产生的电场,静电场中最主要的场量是电场强度E 和标量电位?。首先是从库伦定律 1212 21204πq q R ε= ?e F 2112 =-F F 出发,注意此式适用条件:两个可视为点电荷的带电体之间的相互作用力; 且在真空中成立,真空中的介电常数 12 08.8510ε-=?F/m 。进而引入电场强度: 000 =lim q f E q → 根据此式不难推出真空中单个点电荷引起的电场强度的一般表达式: 3 0()(')4π' p q ε= --E r r r r r n 个点电荷产生的电场强度 ( 矢量叠加原理 ): 3 10() 1()4πN k k k k q ε='-='-∑r r E r r r 连续分布电荷产生的电场强度: 体电荷分布: 2 01 d 4πR V V R ρε' ' = ? E e 面电荷分布: 2 01d 4πR S S R σε' ' = ? E e 线电荷分布: 2 1d 4πR l l R τε' ' = ? E e 由上面公式可以看出,当电荷分布不具有规律时,此时求电场的分布是非常困难的,所以这个时候就要寻求一种新的求解电场的方法,根据亥姆霍兹定理可以知道,从旋度和散度的角度去求电场可以使得问题变得简单。

首先从静电场的环路定律,在静电场沿任何一条闭合路径做功为零,即:0 l Edl =?这样由Stokes’定理,静电场在任一闭合环路的环量: d ()d 0l s ?=???≡??E l E S 0??=E 此式说明了静电场中电场强度的旋度等于0,即电场力作功与路径无关,静电场是保守场,是无旋场。又根据数学知识知,标量函数的梯度的旋度等于0, φ=-?E 因此可以用一个标量函数的负梯度来表示电场强度,即静电场的标量电位或简称电位,E 就是φ的最大减小率,负号表示电场强度的方向从高电位指向低电位。又由上面推导不难看出,φ与 E 的积分关系---电位差,设P0为电位参考点,即0 P φ=,则P 点电位 为: d P P P φ=??E l d d ()()Q Q P P E l P Q φφφ?=-=-? ? 由上式可以看出,P 、Q 两点间的电位差等于电场力将单位正电荷从P 点移至Q 点所做的功,电场力使单位正电荷由高电位处移到低电位处。电位参考点是非常重要的,工程上一般取大地为参考点,理论上取无穷远为参考点。另外,也可以根据上面的计算可以得到点电荷周围的电位为: 0()4π' q C φε= +-r r r 接下来是静电场中的高斯定律,真空中的高斯定律为: 1 1 d n i S i q ε=?= ∑? E S (') ()ρε??= r E r 由于实际生活中,总存在某种介质,故为了计算当有介质存在时,对已有电场的影响,引入了电极化强度P 和D ,这样只需考虑电介质中的高斯定律即可:

高中物理电场公式总结

高中物理电场公式总结 高中物理电场公式 1. 两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C); 带电体电荷量等于元电荷的整数倍 2. 库仑定律:F=kQ1Q2/r2( 在真空中){F: 点电荷间的作用力(N) ,k: 静电力常量k=9.0×109N m2/C2,Q1、Q2: 两点电荷的电量(C) ,r: 两点电荷间的距离(m) ,方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3. 电场强度:E=F/q( 定义式、计算式){E :电场强度(N/C) ,是矢量(电场的叠加原理),q:检验电荷的电量(C) } 4. 真空点( 源) 电荷形成的电场E=kQ/r2 {r :源电荷到该位置的距离(m) , Q:源电荷的电量} 5. 匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V), d:AB 两点在场强方向的距离(m)} 6. 电场力:F=qE {F: 电场力(N) ,q: 受到电场力的电荷的电量(C) ,E: 电场强度(N/C) } 7. 电势与电势差:UAB=φA-φB , UAB=WAB/q=-ΔEAB/q 8. 电场力做功:WAB=qUAB=Eqd{WA带电体由A到B时 电场力所做的功(J) , q:带电量(C) , UAB:电场中A、B两点间的电势差(V)( 电场力做功与路径无关),E: 匀强电场强度,d:两点沿场强方向的

距离(m)} 9. 电势能:EA=qφA {EA:带电体在A点的电势能(J), q:电量 (C) , φA:A 点的电势(V) } 10. 电势能的变化ΔEAB=EB-EA { 带电体在电场中从A位置到B位置时电势能的差值} 11. 电场力做功与电势能变化ΔEAB=-WAB=-qUAB ( 电势能的增量等于电场力做功的负值) 12. 电容C=Q/U(定义式,计算式){C:电容(F) ,Q:电量(C), U:电压(两极板电势差)(V) } 13. 平行板电容器的电容C=εS/4πkd(S: 两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器 14. 带电粒子在电场中的加速(Vo=0) :W=ΔEK 或 qU=mVt2/2,Vt=(2qU/m)1/2 15. 带电粒子沿垂直电场方向以速度Vo进入匀强电场时 的偏转(不考虑重力作用的情况下) 类平抛垂直电场方向: 匀速直线运动L=Vot( 在带等量异种电荷的平行极板中:E=U/d) 平抛运动平行电场方向: 初速度为零的匀加速直线运 动d=at2/2 ,a=F/m=qE/m 注: (1) 两个完全相同的带电金属小球接触时, 电量分配规律: 原带异种电荷的先中和后平分, 原带同种电荷的总量平

工程电磁场教案-国家精品课华北电力学院崔翔-第4章(倪光正主编教材)

第四章 准静态电磁场 4.1 准静态电磁场 1.电准静态场 由麦克斯韦方程组知,时变电场由时变电荷和时变磁场产生的感应电压产生。时变电荷产生库仑电场,时变磁场产生感应电场。在低频情况下,一般时变磁场产生的感应电场远小于时变电荷产生的库仑电场,可以忽略。此时,时变电场满足 ρ =??≈??D 0E 称为电准静态场。可见,电准静态场与静电场类似,可以定义时变电位函数? ,即 ?-?=E 且满足泊松方程 ε ρ?-=?2 与电准静态场对应的时变磁场满足 0 t =????+ =??B D E H γ 2.磁准静态场 由麦克斯韦方程组知,时变磁场由时变传导电流和时变电场产生的位移电流产生。在低频情况下,一般位移电流密度远小于时变传导电流密度,可以忽略。此时,时变磁场满足 0=??≈??B J H c 称为磁准静态场。可见,磁准静态场与恒定磁场类似,可以定义时变矢量位函数A ,即 A B ??= 且满足矢量泊松方程 c J A μ-=?2 与磁准静态场对应的时变电场满足 ρ =????- =??D B E t

例1:图示圆形平板电容器,极板间距d = 0.5 cm ,电容 器填充εr =5.4的云母介质。忽略边缘效应,极板间外施电压 t t u 314cos 2110)(=V ,求极板间的电场与磁场。 [解]:极板间的电场由极板上的电荷和时变磁场产生。 在工频情况下,忽略时变磁场的影响,即极板间的电场为电 准静态场。在如示坐标系下,得 ()()()V/m t 31410113t 31410 501102d u z 4z 2z e e e E -?=-??=-=-cos .cos . 由全电流定律得出,即由 ()z z 20r 4S l t 31431410113d t H 2d e e S D l H ?-π??-=???=π=???ρεερφsin . 极板间磁场为 φφφρe e H t 314103352H 4sin .-?== A/m 也可以由麦克斯韦方程直接求解磁场强度,如下 t t 0r ??=??=??E D H εε 展开,得 t 314106694H 14sin .)(-?=??φρρ ρ 解得 φφφρe e H t 314103352H 4sin .-?== A/m 讨论:若考虑时变磁场产生的感应电场,则有 t t ??-=??-=??H B E 0μ 展开,得 t E z 314cos 103.231440ρμρ -??-=??- 解得 t E z 314cos 10537.428ρ-?= V/m 可见,在工频情况下,由时变磁场产生的感应电场远小于库仑电场。 图 平板电容器

高考物理新电磁学知识点之磁场难题汇编(2)

高考物理新电磁学知识点之磁场难题汇编(2) 一、选择题 1.如图所示,圆形区域内有垂直纸面的匀强磁场(图中未画出),三个质量和电荷量都相同的带电粒子a 、b 、c 以不同的速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图所示,若带电粒子只受磁场力的作用,则下列说法正确的是( ) A .a 粒子速率最大 B .c 粒子速率最大 C .c 粒子在磁场中运动时间最长 D .它们做圆周运动的周期a b c T T T << 2.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B 和2B 。一带正电粒子(不计重力)以速度v 从磁场分界线MN 上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN 成60?角,经过t 1时间后粒子进入到磁场区域Ⅱ,又经过t 2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则( ) A .ω1∶ω2=1∶1 B .ω1∶ω2=2∶1 C .t 1∶t 2=1∶1 D .t 1∶t 2=2∶1 3.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是( ) A .该束粒子带负电 B .速度选择器的P 1极板带负电 C .在B 2磁场中运动半径越大的粒子,质量越大

D .在B 2磁场中运动半径越大的粒子,比荷 q m 越小 4.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。已知重力加速度为g ,则导线框的质量为 A . 21 23F F g + B .21 2 3F F g - C . 21 F F g - D .21 F F g + 5.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B 。当通以从左到右的恒定电流I 时,金属材料上、下表面电势分别为φ1、φ2。该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a 、与磁场平行的边长为b ,金属材料单位体积内自由电子数为n ,元电荷为e 。那么 A .12I B enb ??-= B .12IB enb ??-=- C .12IB ena ??-= D .12IB ena ??-=- 6.笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a 、长为c 的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e 的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U ,以此控制屏幕的熄灭.则元件的( )

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

电磁场公式总结

精心整理 电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的. 名称电场力磁场力 库伦力安培力洛仑兹力涡旋电场力 定义式d d F I l B =?(微分式) d L F I l B =? ?(积分式) 洛仑兹力永远不对粒子做功涡旋电场对导体中 电荷的作用力 名称电场强度(场强)电极化强度矢量磁场感应强度矢量磁化强度 定义单位电荷在空间 某处所受电场力 的大小,与电荷 在该点所受电场 力方向一致的一 个矢量. 即: F E q =. 库伦定理: 某点处单位体积 内因极化而产生 的分子电矩之 和. 即:i V = ? ∑i p P 单位运动正电荷qv 在磁场中受到的最 大力m F.即:m F B qv = 毕奥-萨法尔定律: 单位体积内所有分子固有磁矩的矢 量和 m p ∑加上附加磁矩的矢量和. 用 m p ? ∑表示. 均匀磁化:m m p p M V +? = ? ∑∑ 不均匀磁化: lim m m V P p M V ?→ +? = ? ∑∑ 电偶极距: e P l =q力矩:P E ? L=磁矩: m P ISn =L IS n B =? () 电力线磁力线静电场的等势面 定义就是一簇假想的曲线,其曲线上任一点 的切线方向都与该点处的E方向一致. 就是一簇假想的曲线,其曲线上 任一点的切线方向与该点B的方 向相同. 就是电势相等的点集 合而成的曲面. 性质 (1)电力线的方向即电场强度的方向, 电力线的疏密程度表示电场的强弱. (2)电力线起始于正电荷,终止于负电 荷,有头有尾,所以静电场是有源(散) 场; (3)电力线不闭合,在没有电荷的地方, 任意两条电力线永不相交,所以静电场 是无旋场. 静电场是保守场,静电场力是保守力. (1)磁力线是无头无尾的闭合曲 线,不像电力线那样有头有尾,起 于正电荷,终于负电荷,所以稳恒 磁场是无源场. (2)磁力线总是与电流互相套合, 所以稳恒磁场是有旋场. (3)磁力线的方向即磁感应强度 的方向,磁力线的疏密即磁场的 强弱. (1)沿等势面移动电荷 时静电力不作功; (2)等势面的电势沿电 力线的方向降低; (3)等势面与电力线处 处正交; (4)等势面密处电场 强,等势面疏处电场 弱. 名称静电场的环路定理磁场中的高斯定理 定义 静电场中场强沿任意闭合环路的线积分 (称作环量)恒等于零.即:d0 L E l ?= ?. 通过任意闭合曲面S的磁通量恒等于0. 即: S B dS0 ?= ?? 说明的问题电场的无旋性磁场的无源性

工程电磁场导论-知识点-教案_第一章

电磁场理论 第一章静电场1.1 电场强度电位 4 2 2 了解:定义法求解带电体电场强度和电位方法 掌握:库仑定律、电场强度、电位的定义及定义式 掌握:静电场环路定律及应用,叠加法计算电场强度和电位 知识点:库仑定律;电场强度定义;电位定义;叠加法计算;电力线;等 位线(面);静电场环路定律;电场强度与电位关系的微分表示及意义;电偶 极子定义及其在远区场的电场强度和电位. 重点:静电场环路定律,电场强度与电位关系 难点:静电场环路定律的微分表示,电场强度与电位关系的微分表示及意义 1. 从学生比较熟悉的大学物理中的电场强度和电位的积分式及意义引出 其微分式及意义;=-?? E 2. 从高等数学中的Stocks定理讲解静电场环路定律.0 ??= E 《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社) P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算 1-1-3 =-?? E的应用 上机编程:用数值积分法研究静电场场分布(2学时,地点:新实验楼B215)

电磁场理论 1.2 高斯定律 2 2 了解:静电场中导体和电介质的性质 掌握:各向同性线性电介质中,电极化强度、电通量密度与电场强度的关系掌握:高斯定律积分式、微分式及应用 知识点:静电场中导体的特点;静电场中电介质的特点;电极化强度;电通量密度;高斯定律 重点:高斯定律 难点:电极化强度、电通量密度与电场强度的关系 用高斯定律计算电场强度 1. 从高等数学中的高斯定理讲解高斯定律.??=ρ D 2. 应用高斯定律计算1.1节三个例题,和本节例1-8, 并总结均匀带电直导线、平面、球面、球体的电场强度和电位特点. 《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社) P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算 1-1-3 =-?? E的应用

电磁兼容知识点总结

填空题 1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电磁污染对人体的影响 2、电磁兼容设计方法: a.问题解决法。问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。 b.规范法。规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。 c.系统法。系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。 3、电磁干扰的三要素 1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。 骚扰源——耦合通道——敏感单元 2、电路受干扰的程度可用公式描述I WC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。 4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。 5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶

4.指形簧片 6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器) 6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地 8、电磁兼容性GB的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。 9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。电磁骚扰可以是电磁噪声、无用信号或有用信号,也可以是传播媒介自身的变化。 10、电磁干扰:由电磁骚扰引起的设备、系统或传播通道的性能下降。电磁骚扰是指电磁能量的发射过程,后者则强调电磁骚扰造成的后果。 11、谐波电流的抑制方法 1、电流侧设置LC滤波器 2、采取有源功率因数校正 3、采用PWM整流器 4、多绕组变压器的多脉整流 简答题 1】、电磁兼容研究的内容主要包括: 1、电磁干扰特性及其传播机理。因此研究电磁干扰特性及其传播耦

高等电磁场公式总结

篇一:电磁场公式总结 电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的 一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的. ??b?wabaab ????edl. 电位差(电压):单位正电荷的电位能差.即:uab 渭南师院08级物理学班刘占利 2009-9-22 1 2 渭南师院08级物理学班刘占利 2009-9-22 人生在搏,不索何获 渭南师院08级物理学班刘占利 2009-9-22 3 人生在搏,不索何获 电场和磁场的本质及内在联系: 运动 电荷 电流 激发激发 电场 静电场问题求解 基础问题 1.场的唯一性定理: ①已知v内的自由电荷分布 ②v的边界面上的?值或??/?n值, 则v内的电势分布,除了附加的常数外,由泊松方程 变化变化 磁场

?????/? 及在介质分界面上的边值关系 2 ???,? i j (i ???? )??j()??? ?n?n 唯一的确定。 两种静电问题的唯一性表述:⑴给定空间的电荷分布,导体上的电势值及区域边界上的电势或电势梯度值?空间的电势分布和导体上的面电荷分布(将导体表面作为区域边界的一部分)⑵给定空间的电荷分布,导体上的总电荷及区域边界上的电势或电势梯度值?空间的电势分布和导体上的面电荷分布(泊松方程及介质分界面上的边值关系) 2.静电场问题的分类: 分布性问题:场源分布??e电场分布 边值性问题:场域边界上电位或电位法向导数?电位分布和导体上电荷分布 3.求解边值性问题的三种方法:分离变量法 ①思想:根据泊松方程初步求解?的表达式,再根据边值条件确定其系数 电像法①思想:根据电荷与边值条件的等效转化,用镜像电荷代替导体面(或介质面)上的感应电荷(或极化电荷)格林函数法①思想:将任意边值条件转化为特定边值条件,根据单位点电荷来等价原来边界情况静电场,恒流场,稳恒磁场的边界问题: 渭南师院08级物理学班刘占利 2009-9-22 4 篇二:电磁场公式总结 电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的一部分转移到另 一部分,在任何物理过程中电荷的代数和总是守恒的. bwabaab ????edl. 电位差(电压):单

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场原理课教案

课程教案 (按章编写) 课程名称:电磁场原理 适用专业:电气工程及自动化 年级、学年、学期:2年级,学年第二学期 教材:《电磁场原理》,俞集辉主编,重庆大学出版社,2007.2参考书:《工程电磁场导论》,冯慈璋主编,高等教育出版社2000年6月《电磁场与电磁波》第三版,谢处方、饶克谨编,赵家升、袁敬闳修 订,高等教育出版社1999年6月第三版 《工程电磁场原理》倪光正主编,,高等教育出版社,2002 《电磁场》雷银照编,高等教育出版社2008年6月 《Electromagnetic fields and waves》Robert R. G. 等编著,Higher Education Press, 2006 任课教师:汪泉弟俞集辉何为李永明张淮清杨帆徐征编写时间:2010年1月 学时分配: 矢量分析:6学时; 静电场:12学时; 恒定电场:4学时; 恒定磁场:10学时; 时变场:12学时; 平面电磁场:8学时; 导行电磁波:6学时; 电磁能量辐射与天线:6学时。

第1章矢量分析 一、教学目标及基本要求 1.通过课程的介绍,知道“电磁场原理”课程的学习内容、作用;课程的特点、已具 有的基础;学习的重点、难点和解决的办法;教材、参考书和教学时间安排;本课程学习的基本要求等等。 2.对矢量分析章节的学习,要建立起标量场和矢量场的概念,掌握梯度、散度和旋度 等“三度”运算,以及此基础上的场函数的高阶微分计算。 3.掌握矢量的基本运算法则和相应的微分、积分方法,学会按矢量场的散度和旋度分 析场的基本属性。 4.掌握矢量微分算符的基本应用以及高斯散度定理和斯托克斯定理,了解场的赫姆霍 兹定理、两个特殊积分定理的推导和圆柱坐标系与球坐标系中矢量微分算符的情况。 二、教学内容及学时分配 1.1矢量代数与位置矢量(0.5学时) 1.2标量场及其梯度(1学时) 1.3矢量场的通量及散度(1学时) 1.4矢量场的环量及旋度(1学时) 1.5场函数的高阶微分运算(1学时) 1.6矢量场的积分定理(0.5学时) 1.7赫姆霍兹定理(0.5学时) 1.8圆柱坐标系与球坐标系(0.5学时) 三、教学内容的重点和难点 重点 1.场概念的建立 2.标量场的梯度、矢量场的散度和旋度的定义及计算。 难点 1.微分矢量算符 的理解和直角坐标系中的应用 2.散度、旋度概念的理解及检源的作用 四、教学内容的深化与拓宽 介绍本课程与电磁学的区别和联系,电磁场理论借助数学表述的准确、精炼关系。应强调学习知识和解决问题的能力培养是相辅相成的。 五、教学方式与手段及教学过程中应注意的问题 采用多媒体手段利用电子课件进行教学,在教学过程中应注意: a.讲数学内容,应联系后面电磁场的物理实际; b.既要讲清数学概念和定理,更要重视它们的应用,在应用中巩固对概念和定理的认识; c.运用多媒体教学手段,要更加重视课内讲授的方式,在必要的地方应辅以粉笔板书。

相关文档
最新文档