矿井通风阻力测定及对几个问题的分析

矿井通风阻力测定及对几个问题的分析
矿井通风阻力测定及对几个问题的分析

矿井通风阻力测定及对几个问题的分析

程绍仁1

,程建军

2

(1 晋城市煤炭工业局,山西晋城048000;

2 晋城泽泰安全评价中心,山西晋城048000)

[摘 要] 矿井通风阻力是衡量矿井通风状况的主要指标。影响矿井通风阻力大小的因素很多,而矿井通风阻力测定则是矿井通风技术管理的一项基础工作。介绍了矿井通风阻力的测定方法,对矿井通风阻力测定中的几个问题进行了分析,并提出了改进意见。

[关键词] 通风阻力;测定方法;问题分析[中图分类号]TD72

[文献标识码]B

[文章编号]1006 6225(2006)01 0072 03

M ensuration ofM ine Ventilation Resistance and Analysis of Several Proble m s

[收稿日期]2005-08-29

[作者简介]程绍仁(1945-),男,山西晋城人,高级工程师,现任晋城市煤炭工业局副总工程师。

矿井通风阻力是衡量矿井通风状况的主要指标,矿井通风阻力测定是矿井通风技术管理工作的主要内容。 煤矿安全规程 规定,!新矿井投产

前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定?。

晋城市500余个地方煤矿在近1年多的时间里,普遍进行了1次矿井通风阻力测定,由于测定单位的技术力量不等和技术水平不齐,测定中存在问题不少,测定结果误差很大。1 矿井通风阻力测定方法1 1 测定仪器

矿井通风阻力测定现已淘汰繁琐的、操作麻烦的、测量精度低的毕托管、倾斜压力(U 型压力计)加长距离软管的测量方法,而采用气压计法,使用精密气压计,配以通风干湿球温度计、风表、秒表、皮尺等测量计具。精密气压计具有体积小、重量轻,不需要拉软管,操作简便、快速、省人、省力、省时等特点,配以所测风速和空气的干湿球温度计算出的空气动压、位压值而求得通风阻力。但需要注意,在测定前要对同时使用2台或多台精密气压计、通风干湿球温度计、风表进行校正,修正其互相之间误差值。1 2 测定方法

(1)同步法 用2台同型号规格的气压计在测量风路的相邻两测点同时读数,由此测算出前后两测点风流的静压差,再用风表和通风干湿球温度计测算出两测点的动压、位压参数,从而计算出该

测段的通风阻力。逐段通风阻力相加,即为长距离的通风阻力;按风流路线从矿井的进风井口逐段测至矿井主要通风机的吸风口处的通风阻力之和,即为全矿井的通风阻力。

(2)基点法 用2台同型号规格的气压计,1台气压计放在基点(进风井口外10m 左右处),从计时钟表的整5m i n (或整10m in)的倍数开始,并以5m i n (或10m in)为间隔,记录气压计读数,用来测定地面大气压力的变化值,以便对井下的另1台气压计读数值进行校正。而另1台气压计沿预定的测定路线、测点进行测定、读数。井下气压计的读数一定要待指示数值稳定后再读数,如超过原设定整5m i n (或整10m i n )时限,可待下一整5m i n (或整10m i n )或其倍数时读数,以便和基点同时的气压值校正。

(3)基点 同步法 此法是上两种方法的结合法,用3台同型号规格的气压计,1台固定在进风井口外的基点上,作为大气压力变化的校正用,将另外2台气压计携至井下沿预定的测点,结合上两种方法按时钟的整5m i n (或整10m in)的倍数同时读数,以求得通风阻力。这种方法测定精度高,适用测定时间长、通风路线长的大型矿井。

在沿1条主风路测量通风阻力的同时,其他各条并联风路的风量也应测出,以便计算风阻和校核风量。

1 3 测定方法的选择

矿井通风阻力测定方法的选择,应根据矿井通风路线的长短、测点布置的多少而选用。当然第3种方法基点 同步法最好,测量精度高,适用各种

72

第11卷第1期(总第68期)

2006年2月煤 矿 开 采CoalM i n i ng T echno l ogy V o1 11N o 1(Ser i es N o 68)

February 2006

类型的大中小矿井,但是对于测定路线短、测点少、测定时间短、地面气压变化又不太大的中、小型乡镇煤矿来讲,采用基点法比较简便、省时、省力,可满足测定精度要求。

2 几个问题的分析

2 1 测定路线

测定路线应为所有并联各风路中选择通风路线最长、通过风量最大、且通过回采工作面的和具有较多井巷类型及支护形式的主风流路线。也就是说,从矿井进风井口、进风井、井底车场、主运输大巷、运输大巷###运输巷(或采区运输巷、工作面运输巷)、工作面、排风巷(或排风巷、采区排风巷)###排风巷、总排风巷、排风井、风硐、主要通风机吸入口。

在实际通风阻力测定中,对于一些排风井为立井的矿井,由于乡镇小矿风硐无检查门不便测量,往往把排风立井、风硐甩掉不测,只测量至矿井的总排风巷和排风立井交点,这样所测数据就会和矿井的通风阻力相差太大,又反映不出矿井防爆盖、风硐的漏风状况和排风井、风硐的通风阻力,而这一段风路往往是消耗矿井风压不可忽视的部分。

2 2 测点布置

在风流的分风点或汇风点、在井巷断面的扩大或缩小处、在不同支护形式的接合处、在不同运输方式的转载点均应布置测点。

测点前后3m长的地段内,支架应完好,并不得有堆积物。局部阻力前的测点与局部阻力的距离不得小于井巷宽的3倍,而局部阻力后的测点,不得小于井巷宽的8倍。

在此要特别强调的是,对于排风井为立井的矿井,在排风立井和风硐交点无法布置测点时,至少也应在主要通风机的吸风口处,也就是说一定要在矿井负压计(或负压传感器)安装处布置通风阻力测定的最后1个测点,只有这样测定所得矿井通风阻力才是全矿井的通风阻力。因为风硐往往是矿井通风阻力比较大、消耗矿井通风压力也比较大的部位。对于没有检查门的风硐的小矿井,可在安装负压计的主要通风机吸风口处,打 30mm左右的孔洞,用毕托管配合其压力计测定静压、动压,从而计算求得风速、风量和风阻、摩擦阻力系数、通风阻力。测定时毕托管周围孔隙缠以毛巾布,不用时用皮塞堵塞,以防止漏风。再者,可研制矿井风硐风量、风压、空气温度智能测试仪,尽快应用于实践,提高测试精度。2 3 测定数据的整理

根据气压计、通风干湿球温度计、风表、皮尺所测量的数据,最后应求出各段风路长L(m)、标准状态下摩擦阻力系数a(N?s2/m4)、风阻R (N?s2/m8)、百米风阻R100(N?s2/m8)、阻力h (Pa)、漏风量和漏风率、有效风量和有效风量率、矿井等积孔A(m2)。

2 4 测定误差检验

矿井的负压计读数反映了矿井所在地的大气压力与负压计测点处的空气绝对静压差,即负压计测点处空气相对静压的绝对值。根据抽出式通风机的工作原理及有关流体力学的基本理论,可以认为矿井通风阻力为负压计的读数与负压计测定处的动压差及通风系统的位压和。

矿井通风阻力的测定是一项技术性较强的工作,对于测定精度的影响因素较多,除通风系统瞬间变化、读数误差外,测点布置、测点数量的多少等都会产生误差。所以测定结果应和矿井通风机房的负压计所求得矿井理论通风阻力校对。实际上,很难做到完全一致,一般误差不超过%10%为满足测定精度要求。但有的矿井通风阻力测定结果和通过矿井负压计所推算的理论通风阻力差值很大,表1是其中一些实测矿井负压值和矿井通风阻力测定结果的比较。

表1 实测矿井负压值与矿井通风阻力测定结果比较

矿井负压/Pa通风阻力/Pa矿井负压/Pa通风阻力/Pa 祥和7501629 02龙顶山560752

东进470931 64东山480325 26

苗匠700211 2北山550375

窑沟428672 9杨坡500655 1

四候300454 81王报460322 9

南村380249 36马坪头10001273 94

由于一些矿井未求得负压计测定处的动压、位压值,没有推算出矿井的理论通风阻力,所以只能列出其负压值。从表1可以看出,所测矿井的通风阻力测定值和矿井负压值均相差较大,有的误差度竟然达一倍以上。

如果误差过大,那就要考虑测定路线的选择、测点布置、读数的精度、计算的正确与否,或者对矿井通风的负压计安装正确与否进行检验,找出问题所在,进行修正。

2 5 矿井通风阻力的分布状况

通过对全矿井通风阻力分布的分析,能够了解矿井各区段的风压消耗,为矿井通风系统的合理性优化提供指导性意见,而一些矿井通风阻力测定未拿出各通风区段的阻力值,使矿井通风阻力测定大

73

程绍仁等:矿井通风阻力测定及对几个问题的分析2006年第1期

打折扣,未达到预期目的。

矿井进风段、用风段、排风段阻力分布应合理。一般来说,进风段井巷保证提升、运输、行人、通风比较容易实现,在日常的管理中只要保证井巷不失修、减少堆积物就可以了,因改变提升井位、运输路线投资较大、工期较长,阻力测定只要提供准确的阻力值就可以了。

矿井用风段,特别是工作面进、排风巷受采动的影响容易变形,所以要特别注意保证工作面进、排风巷的断面尺寸,满足使用要求。

矿井排风段,特别是排风大巷,风路长、断面小,再加上小煤矿排风巷人去的又少,维修跟不上,所以失修严重,通风阻力过大,消耗风压大。矿井排风段通风阻力占矿井通风总阻力的比例不可大于35%,否则,就需对排风区段进行改造,降低通风阻力,以保证其合理、稳定可靠。

2 6 矿井风量分配状况及漏风分析

矿井风量分配状况和矿井漏风情况也是矿井通风阻力测定需拿出的结论。通过矿井风量分配状况和漏风情况的分析,可以衡量矿井风量分配是否合理,风速是否超限,可以看出矿井通风管理是否到位,可以发现矿井通风管理存在的问题,找出矿井通风的薄弱环节。

2 7 矿井通风阻力的测定时间选择

矿井通风阻力测定时间应选在晴朗的白天、井下非生产班,此时大气压力比较稳定、井下人员活动少、风门和运行设备开启、运转影响小,有利于提高测定精度。

2 8 矿井通风系统改进建议

通过矿井通风阻力测定,可以了解矿井阻力分布情况,发现阻力较大区段和地点,可以了解矿井风量的分配状况,了解矿井通风能力和潜力。所以,测定报告要对井巷的维修、通风设施的管理、风量的合理调配、通风阻力分布和风压消耗、降阻以及如何满足矿井的生产需要,保证矿井通风系统经济、合理运行提出合理化建议。但有的测定报告得不出以上结论,未对矿井通风管理、风量分配和矿井通风系统的合理、可靠运行提出建议,没有达到矿井通风阻力测定的目的。

3 结束语

矿井通风阻力的测定要根据矿井规模、通风系统合理地确定测定路线、布置测点,正确地选择测定方法。计算所求得的项目要全面,测定报告要给出测定结论。通过分析,要对矿井通风阻力分布、风量分配、漏风状况、通风设施的设置、管理指出存在的问题,提出合理化建议,以达到矿井通风系统降阻减耗的目的,保证通风系统的经济、合理、可靠运行。

[参考文献]

[1]黄显东,刘志梅,陈世龙,等 矿井通风阻力测定方法及应

用[J] 煤矿安全,2004(8):13 15

[2]肖桂荣,沈斐敏,陈伯辉 闽南小煤矿通风系统分析及对策

[J],煤炭技术,2001(1):29 31

[3]江仁川,朱锦良 试论矿井通风系统综合评价指标[J] 煤

炭科学技术,1994(8):44 46

[责任编辑:邹正立]

(上接49页)

工作面两巷超前替棚前,提前对机、风巷顶板及两帮进行煤层浅孔注水,增加了煤层颗粒间的黏合力,从而抑制了片帮、漏顶。在两巷超前抹帽中,机、风巷均超前煤壁5 0m卸U型钢替棚。抹帽为木梁单体,顺山棚,一梁四柱,棚距为0 4m。采用800mm& 50mm塘柴配合2 0m&1 6m的双抗网过顶,采用1 6m&1 6m的竹质大笆配合塘柴背帮。因两巷压力大,巷道变形严重,原U型钢棚宽度只剩3 2m左右,同时工作面前、后输送机的电机都放在(走向)机巷上帮、风巷下帮,必须对机巷上帮、风巷下帮进行撕帮抹帽,撕帮宽度?300mm,所有抹帽棚的高度都必须?2 3m(工作面排头架的高度控制在2 0m)。超前抹帽所用的木梁规格为3 8m& 220mm的圆木,柱为DZ25型单体支柱。并在机巷靠电机上帮、风巷靠电机下帮采用DZ25型单体支柱配合4 0m 型钢梁对棚支护,两梁八柱,保证了工作面上、下端头的高度、宽度。再在抹帽棚梁下架设4排走向铰接挑棚,并打齐打牢水平销,梁为HD J A 1000型金属铰接顶梁(限位梁)。机、风巷所有支柱都必须穿鞋,并确保支柱初撑力?50k N。

4 结束语

通过对(824-2综放工作面两巷从支护设计优化到超前管理,不仅解决了制约软煤层综放工作面开采中的两巷顶板管理问题,为职工提供了一个很好的工作环境,创造了良好的经济和社会效益,也为其他矿井类似问题的解决提供了一定的经验。

[责任编辑:邹正立]

74

总第68期煤 矿 开 采2006年第1期

通风阻力测试报告

四川大业矿业集团有限 公司陈家岭煤矿 矿井通风阻力测定报告 二〇一七年十一月

煤矿矿井通风阻力 测定报告 测定单位:中煤科工集团重庆设计研究院矿井名称:四川大业矿业集团有限公司测定类别:矿井通风阻力测定 测定日期:2017年11月23日

通风阻力测定报告

测定人员签字表 测定仪器设备环境一览表

1.矿井概况 1.1 测定目的 1.1.1四川大业矿业集团有限公司陈家岭煤矿现采矿许可证(证号C5100002010091120075941)根据根据《煤矿安全规程》(2016年版)第156条规定,新井投产前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 我院受委托和四川大业矿业集团有限公司陈家岭煤矿联合编制《四川大业矿业集团有限公司陈家岭煤矿矿井通风阻力测定报告》,其目的是为矿山企业合理开发利用其矿产资源,并为矿井通风设计提供依据。 1.1.2矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于: ①了解矿井通风系统的阻力分布情况; ②为生产矿井通风系统优化和合理配风提供基础资料和参考; ③为矿井井下灾害防治和风量调节提供必要的基础资料; ④为保证矿井的正常生产和增产提效提供依据; ⑤为矿井通风能力核定提供基础依据。 1.1.2生产开拓状况 矿井西部边界附近布置有陈家岭平硐(+566m主平硐),东部布置有尚武平硐(+552m平硐)、尚武进风斜井(+553m进风斜井)和+648m尚武风井。 矿井划分为三个水平,一水平标高+370m、二水平标高+190m,三水平标高+100m。

矿井通风阻力测定报告.doc

耒阳市马康煤业公司炭山煤矿 矿井通风阻力测定报告

2018年3月 会审表 编制审核编制时间2018年3月6日 姓名职务会审意见签名会审时间胡召祥矿长 候井德总工程师 胡秋元安全副矿长 刘爱明生产副矿长 钟金良机电副矿长 尹小平通风副总 刘仁仕测量技术员 刘腊宝采掘技术员

刘显智地质技术员 熊俊机电技术员 刘世云探水队长 为了确保矿井安全生产,保证矿井通风正常,根据《煤矿安全规程》规定,我矿于 2017 年 4 月 28 日矿井通风系统风阻进行一次测定。 一、组织领导小组 组长:胡召祥 副组长:王德华 成员:尹小平(通风技术员)、刘爱明(生产副矿长)、曹国金(安全副矿长)、刘仁仕(采煤技术员)、雷群松(地质技术员)、

欧学明(机电技术员)、候井德(掘进技术员) 1、概述 矿井通风系统现状生产布置及风量分配情况: 主(副)斜井→运输石门→运输巷→采煤工作面→回风巷→回风→ 回风斜井→引风道→地面。 2、通风阻力实际测定、计算及分析 、通风阻力测定的目的矿井通风阻力测定是矿井通风技术管理 的一项重要内容,其主要目的在于 (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数; (3)为矿井井下灾害防治和风流调节提供必要的基础资料; (4)为保证矿井的正常生产和增产提效提供依据; (5)为矿井通风能力核定提供基础参 数。、通风阻力测定的技术依据及方法 、测定的技术依据《煤矿安全质量标准化标准及考核评级办法》《矿井通风阻力测定方法》 MT/T 440-1995MT/T440-1995 《煤矿安全规程》第119 条规定:“新井投产前必须进行次通风

矿井通风阻力计算

第三章 井巷通风阻力 本章重点和难点: 摩擦阻力和局部阻力产生的原因和测算 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 第一节 井巷断面上风速分布 一、风流流态 1、管道流 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。 (1)雷诺数-Re 式中:平均流速v 、管道直径d 和流体的运动粘性系数γ。 在实际工程计算中,为简便起见,通常以R e =2300作为管道流动流态的判定准数,即: R e ≤2300 层流, R e >2300 紊流 (2)当量直径 对于非圆形断面的井巷,Re 数中的管道直径d 应以井巷断面的当量直径de 来表示: 因此,非圆形断面井巷的雷诺数可用下式表示: γ d v e R ? =

对于不同形状的井巷断面,其周长U 与断面积S 的关系,可用下式表示: 式中:C —断面形状系数:梯形C =4.16;三心拱C =3.85;半圆拱C =3.90。(举例见P38) 2、孔隙介质流 在采空区和煤层等多孔介质中风流的流态判别准数为: 式中:K —冒落带渗流系数,m 2; l —滤流带粗糙度系数,m 。 层流,R e ≤0.25; 紊流,R e >2.5; 过渡流 0.252300,紊流 巷道条件同上,Re=2300层流临界风速: V=Re×U×ν/4S =2300×4.16×3×15×10-6/(4×9)=0.012m/s<0.15 二、井巷断面上风速分布 (1)紊流脉动 风流中各点的流速、压力等物理参数随时间作不规则变化。 (2)时均速度 瞬时速度 v x 随时间τ的变化。其值虽然不断变化,但在一足够长的时间段 T 内,流速 v x 总是围绕着某一平均值上下波动。 (3)巷道风速分布

矿井通风阻力测定(范本)

矿井通风阻力测定报告 范本

1.概述 1.1矿井通风系统现状 矿井运转主扇1台,主备扇能力相同。通风方式为中央分列式,通风方法为抽出式。主要参数见下表: 风机,矿井总进风量9600m3/min,总回风量10059m3/min。 生产布置及风量分配情况:平岗煤矿原设计能力72万吨/年,于1973年8月投产, 近年来,因销售形势好转,产量有所增加。为了满足市场需求,矿井将进一步扩大生 产规模,现已开工延深-250m生产水平。矿井生产能力经改造后将达到120万吨/年。 目前生产区域主要布置在二水平。东一采区布置一个综采面、5个掘进队,下延布置 一个采煤、6个掘进队生产。东三采区布置了一个综采队、2个掘进队生产。下延采 区总配风为2420m3/min,东一采区总配风量3583m3/min,东三采区总配风量为2212 m 3/min,中部层采区总配风为500 m3/min,首采区总配风为885 m3/min,矿井总风量 为9600m3/min,。 1.2项目实施背景 随着下延采区、东一采区的延伸和中部层采区的继续开采,使全矿井所需风量增 加,到时目前主扇将不能满足生产需要,需要在下延新建个立风井,这时全矿的通风 系统将发生变化。且随着矿井的主采水平的逐步加深,按照瓦斯梯度的原理进行推测, 瓦斯涌出量将加大;由于矿井机械化程度的进一步提高及煤炭市场的需要,矿井生产 系统经过进一步改造,矿井的产量将上一个新台阶,矿井原煤产量将提高到120万吨 /年。对矿井通风系统的改造势在必行。因此在现在必须做好前期准备工作,进行矿 井通风阻力测定。 2、平岗煤矿通风阻力实际测定、计算及分析 2.1、通风阻力测定的目的 矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于: (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数;

第七章矿井通风

第七章矿井通风与安全技术 7.1概述 凤凰山铜矿III矿体是一个板状的大理岩矿床,SiO2含量低;矿脉含硫量少,达不到自然危害性,井下最多工人190人,因此,工作面的通风应保证排尘及排除炮烟的需要,以最大可能减少矿尘危害。 根据安全规程,对凤凰山铜III矿体的矿井下通风安全做如下要求:(1)有人工作或可能有人到达的井巷,其空气成份(按体积计算)应为O2≥20%,CO2≤0.5%。空气的温度不得高于25℃,总回风流中的CO2不得超过1%。 (2)井下空气需经常保持新鲜,空气中有害气体含量不得超过规定:CO2:0.2,SiO2:0.02,H2S:0.01(按重量计算mg/升) (3)所有矿井均应实行全面机械通风,在浅部矿井,也可采用自然通风,主扇要求连续运转。 7.2矿井通风条件 凤凰山铜矿Ⅲ号矿带30线至35线间,其年产矿量13万吨,服务年限14年;采用竖井开拓,有轨运输;阶段的开采顺序采用下行式,阶段中矿块的开采顺序采用双翼开采;主要的采矿方法为分段凿岩阶段矿房法,垂直方向中深孔凿岩,每个矿房配置1台YQ-80新型钻机,井下回采的矿块数为3个,每天井下工作人数共190多人。 7.3通风方式与通风系统 7.3.1通风系统确定的依据 (1)风路短、阻力小、通风网络简单、风流容易控制,在主要人行运输坑道和工作点上污风不串联; (2)风量分配满足生产需要,漏风少; (3)通风构筑物少,便于维护管理; (4)专用通风井巷工程量少,施工方便; (5)通风动力消耗少,通风费用低。 7.3.2风井位置的确定 风井布置方式有中央对角式,中央并列式以及侧翼对角式。 根据该矿山的的实际情况、确定其它井筒的原则及所选用的通风系统,这里选用二种方案。 方案一:中央对角式布置

矿通风系统检测报告2

**矿通风系统检测报告 为了保证井下通风安全,依据《金属非金属地下矿山通风技术规范》,本矿于2015年3月18日至3月26日对井下通风系统进行了一次全面的检测,现将检测的情况报告如下: 一、检查内容 1、矿井通风系统: ①为确保矿井的通风线路和通风效果,按照《煤矿安全规程》的要求,井下设置了必要的通风设施,主要有双向风门、调节风门、防爆风门,其具体位置详见通风系统图。 结论:按照通风质量标准,安装合格 ②矿井为了加强通风,坚持以风定产的原则,在金湘源风井安装了二台型号为FBCDZ№15/2×30 KW对旋式抽风机, 结论:经长沙市矿山设备设施安全检测中心检测合格,参见检测报告 ③按本矿现在的生产情况,按《规程》要求,矿井风量检测其风量计算: (1)计算依据 根据本矿井的相对瓦斯涌出量3~5.5 m3/t;按相对瓦斯涌出量5.5m3/t进行计算,矿尘无爆炸危险性,矿层不易自燃,无地温异常现象。 通风方式方法:通风方式为中央式,通风方法为机械抽出式 年生产能力:120kt/a。 投产时的采掘工作面个数:1个采面投产,1个岩巷掘进、1个

石墨巷掘进工作面。 矿井日产量:196t。其中1个回采工作面日产量196t。 矿井通风系数K:取1.2 矿井同时入井最多人员:115人 (2) 初期风量计算 A、按井下同时工作的最多人数计算 Q=4NK/60=4×115×1.2/60=9.2(m3/s) 式中:Q----矿井总供风量,m3/s; 4----每人每分钟供风标准,m3/min; N----井下同时工作最多人数,人; K----矿井通风系数,取1.2; B、按回采、掘进、硐室等用风点实际需风量计算 Q=(∑Q采+∑Q掘+∑Q硐+∑Q它)K ⑴12Ⅰ21回采工作面所需风量计算 ①按瓦斯涌出量计算 计算公式如下:Q采=100×q tk/1440 式中:q—CH4相对涌出量,为5.5m3/t。 t—采煤工作面日产量,按196t/d计算; k—CH4涌出不均衡系数,取1.8; Q采=100×q t k/1440 =134.75m3/min=2.25m3/s ②按工作面温度计算 采面所需风量按温度计算的公式如下: Q采i=V采i×S采i m3/s 式中:Q采i—采矿工作面实际需风量,m3/s; V采i—工作面风速,取1m/s; S采i—工作面平均控顶距时的通风断面积,

矿井通风阻力测定方法

矿井通风阻力测定方法 2007/12/14/12:53 来源:国际能源网 MT/T440—1995 中华人民共和国煤炭工业部1996—03—08批准1996—08—01 实施 1.主题内容与适用范围 本标准规定了矿井通风阻力测定用仪器、测定步骤、测定结果 计算和处理。 本标准适用于煤矿井巷通风阻力测定。 2.术语 2.1主要路线 测定矿井通风阻力时,所选定的从入风井口(或井底车场),经入风大巷、采区、回风大巷,回风井至 风峒的通风路线。 2.2次要路线 测定矿井通风阻力时,所选定的除主要路线外的通风路线。 3.仪器 以下计量器具均应检定,并在有效期内使用。 a.普通型空盒气压计: 测量范围80~107kPa(相当于600~800mmHg),最小分度值50Pa; b.倾斜压差计: 测量范围0~3000Pa,最小分度值10Pa; c.精密气压计: 测量范围83.6~114kPa,最小分度值25Pa; d.通风干湿温度计: 测量范围-25~+50℃,最小分度值0.2℃;

e.皮托管: 校正系数0.998~1.004; f.低速风速表: 测量范围0.2~5m/s,启动风速≤0.2m/s; g.中速风速表: 测量范围0.4~10m/s,启动风速≤0.4m/s; h.高速风速表: 叶轮:测量范围0.8~25m/s,启动风速≤0.5m/s; 杯式:测量范围1.0~30m/s,启动风速≤0.8m/s; i.秒表: 最小分度值1s; j.钢卷尺: 2m钢卷尺:测量范围0~2m,最小分度值1.0mm; 30m钢卷尺:测量范围0~30m,最小分度值1.0mm; k.橡胶管(或塑胶管): 内径4~5mm; l.橡胶管接头: 内径3~4mm,外径5~6mm,长度50~80mm。 4.测定步骤 4.1测定路线选择 在通风系统图上选择测定的主要路线和次要路线。同时,要考虑一个工作班内将该路线测完;当测定 路线较长时,可分段、分组测定。 4.2测点选择 首先在通风系统图上按选定测定路线布置测点,并按顺序编号。然后再按井下实际情况确定测点位置, 并作标记。

矿井通风阻力测定报告.docx

耒阳市马康煤业公司炭山煤矿矿井通风阻力测定报告 2018年3月 会审表

为了确保矿井安全生产,保证矿井通风正常,根据《煤矿安全规程》规定,我矿于2017年4月28日矿井通风系统风阻进行一次测定。 一、组织领导小组 组长:胡召祥 副组长:王德华 成员:尹小平(通风技术员)、刘爱明(生产副矿长)、曹国金(安全副矿长)、刘仁仕(采煤技术员)、雷群松(地质技术员)、欧学明(机电技术员)、候井德(掘进技术员) 1、概述 矿井通风系统现状生产布置及风量分配情况: 主(副)斜井→运输石门→运输巷→采煤工作面→回风巷→回风→回风斜井→引风道→地面。 2、通风阻力实际测定、计算及分析 2.1、通风阻力测定的目的矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于 (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数;

(3)为矿井井下灾害防治和风流调节提供必要的基础资料; (4)为保证矿井的正常生产和增产提效提供依据; (5)为矿井通风能力核定提供基础参数。 2.2、通风阻力测定的技术依据及方法 《矿井通风阻力测定方法》MT/T 440-1995MT/T440-1995 《煤矿安全规程》第119条规定:“新井投产前必须进行次通风阻力测定,以后每年至少次,矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 采用基点法测定时两测点间的通风阻力计算 公式为:)+ Z1-Z2 g,(1) 式中:1、2――分段阻力, Pa;P1,P2――, Pa;――分段巷道起点和末点基点绝对静压, Pa;ρ1,ρ2――的空气密度,Kg/m3; V1,V2――的风速m/s; g――重力加速度m/s2; Z1,Z2――的标高,m。

通风阻力测试报告

大业矿业集团有限 公司家岭煤矿 矿井通风阻力测定报告 二〇一七年十一月

煤矿矿井通风阻力测定报告 测定单位:中煤科工集团设计研究院矿井名称:大业矿业集团 测定类别:矿井通风阻力测定 测定日期:2017年11月23日 通风阻力测定报告

测定人员签字表

测定仪器设备环境一览表 1.矿井概况

1.1 测定目的 1.1.1大业矿业集团家岭煤矿现采矿许可证(证号C75941)根据根据《煤矿安全规程》(2016年版)第156条规定,新井投产前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 我院受委托和大业矿业集团家岭煤矿联合编制《大业矿业集团家岭煤矿矿井通风阻力测定报告》,其目的是为矿山企业合理开发利用其矿产资源,并为矿井通风设计提供依据。 1.1.2矿井通风阻力测定是矿井通风技术管理的一项重要容,其主要目的在于: ①了解矿井通风系统的阻力分布情况; ②为生产矿井通风系统优化和合理配风提供基础资料和参考; ③为矿井井下灾害防治和风量调节提供必要的基础资料; ④为保证矿井的正常生产和增产提效提供依据; ⑤为矿井通风能力核定提供基础依据。 1.1.2生产开拓状况 矿井西部边界附近布置有家岭平硐(+566m主平硐),东部布置有尚武平硐(+552m平硐)、尚武进风斜井(+553m进风斜井)和+648m尚武风井。 矿井划分为三个水平,一水平标高+370m、二水平标高+190m,三水平标高+100m。 1.1.3交通位置 家岭煤矿位于地理位置及交通:矿井位于旺苍县城278°方向,直距约14km的白水镇境,矿区围的地理座标为东经106°05′32″,北纬32°14′38″。区交通方便,有广旺公路与广(元)乐(坝)铁路通过矿井南侧。矿井南至广旺公路6km,从衔接点东行4km至

矿井通风阻力参数及其计算复习思考题

第四章矿井通风阻力参数及其计算复习思考题 1、矿井风流以层流为主还是以紊流为主?为什么? 2、阻力和风阻是不是一回事? 3、尼古拉茨实验研究提示了井巷粗糙度、雷诺数与λ系数之间的什么关系? 4、由测定得知,某梯形巷道断面5m2,长500m,当通过的风量为25m2/s时,压差为3.75mmH2O,分别按工程单位制和法定单位制,求算譔巷道的摩擦阻力系数。 5、影响摩擦的因素有哪些? 6、假若井筒直径D=4m,摩擦阻力系数α=0.04N?s2/m4,深度L=325m,通过的风量为3000m3/min,问井筒的风阻有多大?压差有多大? 7、风流以240m/min的速度从断面为10m2的巷道突然进入断面为4m2巷道,问引起的能量损失为多少? 8、某通风巷道的断面由2m2,突然扩大到10m2,若巷道中渡过的风量为20m3/s,巷道的摩擦阻力系数为0.016N?s2/m4,示巷道突然扩大处的通风阻力。 9、为什么要降低矿井风阻?用什么方法? 10、何谓矿井等积孔? 11、矿井风阻特性曲线表示什么?作风阻为1.962N?S2/m8的风阻特性曲线。 12、对某巷道经过实测获得如下资料:

(1)如图3-1,两支皮托管间距为200m,倾斜压差计的倾斜系数为0.4,在压差计上的读数为第一次16.5mm、第二次16.2mm、第三次16.3mm。 (2)巷道断面如图3-2,a=3m、b=3.5m、c=2.4m、d=2.3。 图3-1用倾斜压差计测压差图3-2巷道断面 表3-1测风记录 顺序风表顺序读数(格)风表测风时间 零点读数6039 - 1 6545 1min55s 2 7130 2min10s 3 7590 1min40s (3)用翼式风表测风(侧身法)记录如表3-1。 (4)风表按图3-3校正。 (5)该巷道的气温为150C,气 压750mmHg,相对湿度80%。根据 以上数据,求标准状况下该巷道的 摩擦阻力系数、摩擦风阻、等积孔, 并作出风阻特性曲线。图3-5

通风阻力测定报告

新密市xxxx有限公司 通风阻力测定报告 河南理工大学 二00八年四月

新密市xxxx有限公司 通风阻力测定报告

目录 引言 (1) 1矿井概况 (3) 2矿井通风阻力测定 (5) 2.1测定路线的选择与测点布置 (5) 2.1.1测定路线的选择原则 (5) 2.1.2测定路线的确定 (5) 2.1.3测点布置 (5) 2.2测定方法与仪器仪表 (6) 2.3测定数据的整理与计算 (6) 2.3.1井巷断面尺寸的计算 (6) 2.3.2空气密度计算 (7) 2.3.3测点风速风量计算 (7) 2.3.4测定段位压差及矿井自然风压计算 (8) 2.3.5通风阻力计算 (8) 2.3.6巷道风阻值计算 (9) 2.3.7巷道摩擦阻力系数计算 (9) 2.3.8测定结果整理计算表 (10) 3通风阻力测定结果分析与建议 (11) 3.1阻力测定精度的评价 (11) 3.2矿井通风阻力分布状况 (12) 3.3矿井等积孔与风阻 (12) 3.4矿井风量分配 (13) 3.5通风阻力测定结论 (14) 3.6存在问题及建议 (14)

附件1——矿井通风阻力测算表 (20) 附件2——矿井通风系统图和网络图 (20)

引言 煤矿井下生产包括采煤、掘进、提升、运输、通风、排水等多个生产环节,通风是整个生产环节中保障矿井安全生产的一个重要环节。 众所周知,受生产条件的制约,矿井井下自然灾害严重,伤亡事故较多。而及时、准确地获得和控制全矿井通风环境技术参数,则是实现安全生产和提高生产效率的重要保障。 一个良好的矿井通风系统是保证矿井安全高效生产的前提与基础。矿井通风系统是由通风机装置、通风网络及各种通风设施等所组成的。而通风系统是否合理,与通风机装置的性能及与之匹配的井下网络系统有着密切的关系。要保证矿井通风系统处于良好的运行状态,就必须使矿井主要通风机在最佳工况点运行,就必须掌握全矿井井下通风网络中的各种通风基础技术参数。 全矿井通风阻力指的是由井筒、巷道及通风构筑物构成的通风网路所产生的通风总阻力,它是衡量矿井通风能力的重要指标,影响矿井通风阻力大小的因素很多,有井巷断面的大小、井巷支护状况、通风距离的长短、井下分区网络布置的合理性及风量调节方法的合理性等诸多因素。随着矿井开采过程的变化,矿井通风阻力的大小和分布也会发生变化。因此,经常了解和掌握矿井通风阻力大小和分布状况,是进行矿井通风科学管理、风量调节和通风设计的根本依据。所以,《规程》第119条明确规定:新井投产前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 通过矿井通风阻力测定,可以达到下列目的: (1)了解通风系统中阻力分布情况,发现通风阻力较大的区段和地

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。 在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: H f =λ×L/d×ρν2/2pa λ——摩擦阻力系数。 L——风道长度,m

d——圆形风管直径,非圆形管用当量直径; ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H f =α×LU/S3×Q2 =R f×Q2pa R f=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s R f——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→h f→R f 生产矿井:已测定的h f→R f→α,再由α→h f→R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

通风阻力测试报告

旺苍县嘉川新五煤业 有限公司新五煤矿 矿井通风阻力测定报告 二〇一八年五月

煤矿矿井通风阻力 测定报告 测定单位:中煤科工集团重庆设计研究院矿井名称:旺苍县嘉川新五煤业有限公司测定类别:矿井通风阻力测定 测定日期:2018年1月2日 通风阻力测定报告

测定人员签字表

测定仪器设备环境一览表 1.矿井概况

1.1 测定目的 1.1.1旺苍县嘉川新五煤业有限公司新五煤矿2017年12月22日延续了采矿许可证(证号C5100002011031120108678),2018年1月8日旺苍县煤炭工业管理局批准恢复生产。根据《煤矿安全规程》(2016年版)第156条规定:新井投产前必须进行1次矿井通风阻力测定,以后每3年至少进行1次。矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 我院受委托和旺苍县嘉川新五煤业有限公司新五煤矿联合编制《旺苍县嘉川新五煤业有限公司新五煤矿矿井通风阻力测定报告》,其目的是为矿山企业合理开发利用其矿产资源,并为矿井通风设计提供依据。 1.1.2矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于: ①了解矿井通风系统的阻力分布情况; ②为生产矿井通风系统优化和合理配风提供基础资料和参考; ③为矿井井下灾害防治和风量调节提供必要的基础资料; ④为保证矿井的正常生产和增产提效提供依据; ⑤为矿井通风能力核定提供基础依 矿井采用平硐开拓,共划分为一个水平,一个采区;即+800m 水平一采区。一采区轨道上山、行人上山均布置在距7号煤层底板的岩层中,回风上山布置在10号煤层中。主平硐为界西边为采区西翼、东边为采区西翼、+886设阶段运输平巷。 1.1.3交通位置及境界 新五煤矿位于旺苍县城297°方向,直距约10.5km的嘉川镇境内,矿区范围的地理座标为东经106°13′21″,北纬32°16′10″。区内交通方便,有广旺公路与广(元)乐(坝)铁路通过矿井南侧。矿区内有公路于广(元)~旺(苍)公路、广(元)~乐(坝)铁路

矿业有限公司矿井通风阻力测定报告

矿业有限公司矿井通风阻 力测定报告 报 告 书 二○一九年十二月

目录 目录 (1) 一.矿井概况 (1) 1.矿井概况及生产状况 (1) 2.矿井通风系统状况 (3) 二.阻力测定的目的和要求 (3) 1.目的 (3) 2.要求 (4) 三.测定准备工作 (5) 1.测线的选择 (6) 2.测点的布置 (6) 3.人员组织 (7) 四.测定方法与数据处理 (8) 1.测定方法 (8) 2.数据处理 (9) 五.测定数据与计算结果分析 (10) 1.矿井通风阻力及等积孔 (10) 2.通风阻力分布情况 (10) 3.通风系统分析及建议 (11) 六.计算结果汇总表 (13)

一.矿井概况 1.矿井概况及生产状况 ⑴.位置与交通 兴隆县平安矿业有限公司位于兴隆煤田的西部边缘,地处承德市兴隆县县城东北方距兴隆县县城20km,鹰手营子矿区西南7.5km,矿区中心地理坐标东经117°35′22″,北纬40°29′34″。 京承铁路从该矿矿区中部通过,东北1.5km为北马圈子车站,有铁路专用线直达本矿贮煤场,且有112线公路与之相连,交通十分便利(见1-1矿区交通位置图)。 图1-1 矿区交通位置图

⑵.地形 该矿井位于燕山山脉中段偏北地带,四面环山,均为太古界、元古界和古生界地层构成的高山。山峰在该矿以东为近东西走向,西部为北东—南西走向,平均海拔+700m,最高山峰海拔+859m。山峰陡峻,地形坡度大,山谷阶地发育,地形条件复杂,为壮年期山地。 ⑶.河流 柳河呈蛇曲型从矿区东部穿过,向北转东方向流去汇入滦河。其流量随季节变化,估水期流量很少,洪水期流量剧增。柳河水系对兴隆县平安矿业有限公司及原南马圈子井田煤炭资源的开发影响较大,特别是河床第四纪冲积物直接覆盖在煤系地层之上,是矿井涌水的主要来源。 ⑷.气候 本区属大陆性温带气候,冬季寒冷、夏季酷热,四季分明,每年的1月最冷,7月最热,最高气温36.6℃,最低气温-28.1℃。年平均相对湿度60%。全年多西南风,最大风速20m/s。冬季少雨雪,汛期在7、8、9三个月,年均降雨量700~450mm,日最大降水量为258mm/d,冬季冰冻期达134天,土层最大冻结深度达1.19m。 矿区历史最高洪水水位+507m。 平安矿业有限公司(原平安堡煤矿)始建于1958年,设计能力15万吨,采用斜井多水平分区式开拓,由于地质复杂,运输环节多,工作面大部分布置在270以上水平。现作业两个水平,+345水平,+420水平,进行布置四层复采开采。但经过50多年的回采,矿井现

矿井通风总阻力计算

华蓥市老岩湾煤业有限公司 矿井通风总阻力计算 沿着矿井通风容易时期和矿井通风困难时期的通风路线计算矿井通风总阻力。 通风摩擦阻力计算公式如下: h= 2 3 Q S P L a ??? 式中:h —— 通风摩擦阻力,Pa ; α—— 井巷摩擦阻力系数,N.S 2/m 4; L —— 井巷长度,m ; P —— 井巷净断面周长,m ; Q —— 通风井巷的风量,m 3/s ; S —— 井巷净断面面积,m 2; 通风局部阻力取同时期摩擦阻力的15%。 经计算,矿井通风容易时期采用中央分列式通风系统,其总阻力h 为573.99Pa ;矿井通风困难时期采用两翼对角式通风系统,其北风井和南平硐风井阻力分别为489.42Pa 、401.51Pa 。(详见矿井通风阻力计算表5-2-2、表5-2-3、表5-2-4)。 五、对矿井通风状况的评价 计算矿井的风阻和通风等积孔 a 、矿井通风容易时期采用中央分列式通风系统,矿井的总风阻R 易和矿井通风等积孔A 易 为: R 易 =h 易/ Q 易2 =573.99÷30.42 =0.62N 2S 2/m 8 A 易 =易易h Q /19.1 =1.19330.4÷99.573 =1.51m 2

b 、矿井通风困难时期采用两翼对角式通风系统,其北风井的风阻R 1、通风等级孔A 1和南平硐风井的风阻R 2、通风等级孔A 2以及矿井的通风等积孔A 难为: R 1 =h 1/ Q 12 =489.42÷15.952 =1.92N 2S 2/m 8 A 1 =11/19.1h Q =1.19315.95÷42.489 =0.86m 2 R 2 =h 2/ Q 22 =401.51÷12.552 =2.55N 2S 2/m 8 A 2 =22/19.1h Q =1.19312.55÷51.401 =0.75 m 2 A 难= () 111 11121)(19.1Q Q h Q h Q Q Q +++? = () 55.1295.1551 .40155.1242.48995.15)55.1295.15(19.1+?+?+? =1.6(m 2) 式中: R 易-为矿井通风容易时期的矿井风阻,N 2S 2/m 8; A 易-为矿井通风容易时期的矿井通风等积孔,m 2; h 易―为通风容易时期的矿井通风阻力,Pa ; R 1-为北风井通风困难时期的矿井风阻,N 2S 2/m 8; A 1-为北风井通风困难时期的通风等积孔,m 2;

矿井通风阻力测定报告

矿井通风阻力测定报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

耒阳市马康煤业公司炭山煤矿矿井通风阻力测定报告 2018年3月 会审表 为了确保矿井安全生产,保证矿井通风正常,根据《煤矿安全规程》规定,我矿于2017年4月28日矿井通风系统风阻进行一次测定。 一、组织领导小组 组长:胡召祥 副组长:王德华

成员:尹小平(通风技术员)、刘爱明(生产副矿长)、曹国金(安全副矿长)、刘仁仕(采煤技术员)、雷群松(地质技术员)、欧学明(机电技术员)、候井德(掘进技术员) 1、概述 矿井通风系统现状生产布置及风量分配情况: 主(副)斜井→运输石门→运输巷→采煤工作面→回风巷→回风→回风斜井→引风道→地面。 2、通风阻力实际测定、计算及分析 、通风阻力测定的目的矿井通风阻力测定是矿井通风技术管理的一项重要内容,其主要目的在于 (1)了解矿井通风系统的阻力分布情况; (2)为生产矿井通风系统优化和合理配风提供基础资料和参数; (3)为矿井井下灾害防治和风流调节提供必要的基础资料; (4)为保证矿井的正常生产和增产提效提供依据; (5)为矿井通风能力核定提供基础参数。 、通风阻力测定的技术依据及方法 《矿井通风阻力测定方法》MT/T 440-1995MT/T440-1995 《煤矿安全规程》第119条规定:“新井投产前必须进行次通风阻力测定,以后每年至少次,矿井转入新水平生产或改变一翼通风系统后,必须重新进行矿井通风阻力测定。 采用基点法测定时两测点间的通风阻力计算 公式为:)+ Z1-Z2 g,(1)

式中:1、2――分段阻力, Pa;P1,P2――, Pa;――分段巷道起点和末点基点绝对静压, Pa;ρ1,ρ2――的空气密度,Kg/m3; V1,V2――的风速m/s; g――重力加速度m/s2; Z1,Z2――的标高,m。 式中:――空气密度,Kg/m3; ――干球温度,℃;? 一、概况 参照湖南省煤炭工业局《关于2011年度矿井瓦斯等级鉴定结果的批复》(湘煤行[2012]21号)文件,根据《矿山储量年报》和周边煤矿的瓦斯情况,确 定该矿为瓦斯矿井,设计采用矿井相对CH 4涌出量为t,相对CO 2 涌出量为t。 根据2010年湖南省煤安检验检测中心检验报告,检验结果是该矿井可采煤层无煤尘爆炸性,矿井可采煤层属不易自燃煤层。 矿井无地温异常现象;矿井最大班下井人数为60人。 二、矿井通风 1、矿井通风方式和通风方法 矿井通风方式为分区式,通风方法为机械抽出式 2、风井数目、位置及服务时间 风井为2个,分别有西风井和东风井。

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

矿井通风参数测定实验报告

目录 实验名称:矿井通风阻力测定 (2) 一、实验目的 (2) 二、实验内容 (3) 三、仪器设备 (3) 1、皮托管 (3) 2、各类压差计 (4) 3、空盒气压计 (6) 4、干湿球温度计 (6) 5、风表 (7) 四、实验原理方法 (7) 1、空盒气压计 (7) 2、干湿球温度计 (7) 3、点压力测定 (8) 4、平均风速测定 (10) 5、一段巷道通风阻力的测定 (11) 五、实验步骤 (12) 1. 测定矿井大气压力 (12) 2、测定矿井干湿温度 (12) 3、点压力测定步骤 (13) 4、平均风速测定步骤 (13) 5、一段巷道风阻测定步骤 (13) 六、实验结果处理 (14) 1、测算记录 (14) 2、计算空气密度 (15) 3、点压力测定结果 (15) 4、平均风速测定结果 (15) 七、实验注意事项 (16) 八、实验心得体会 (16)

实验名称:矿井通风阻力测定 一、实验目的 井巷的风阻是反映井巷通风特性的重要参数,通风阻力测定的主要内容是通过测定各种类型井巷的通风阻力和风量,以标定它们的标准风阻值和标准摩擦阻力系数值(指井下平均空气密度的对应值),将其编集成册,作为矿井通风技术管理的基本资料。有时为了分析问题,需要沿着某一路线连续测量各区段的通风阻力,以得出整个路线上通风阻力的分配情况。上述测量内容是做好生产矿井通风技术管理工作的基础,也是掌握生产矿井通风情况的重要手段。 通风阻力测定是生产矿井通风技术管理工作的重要内容之一,通过阻力测定可以达到下列目的: 1.提供现有矿井全部巷道的摩擦风阻R以及摩擦阻力系数α; 2. 了解现有通风系统中阻力分布情况,发现通风阻力较大的区段和地点,为了使通风系统更为经济合理,为下一步提出切合实际的改进意见提供依据。 3. 为矿井扩建、延深提供有关通风设计的实际资料,使风量调节有可靠的技术依据。 4. 对整个矿井进行风流状态模拟,进而对高瓦斯矿井以风定产起到辅助决策作用。 通过本次实验的开设,可以培养学生实事求是、一丝不苟、严格、严密的科学态度,树立辩证唯物主义观。通过让学生对实验数据进行整理和分析,培养学生发现问题、分析问题以及解决问题的能力。 本次实验具体目的为: 1、学习使用测定矿井通风风流状态参数的各类仪器仪表,熟悉它们的原理、结构; 2、加深在不同通风方式下,对全压、静压和速压及其相互关系的理解。 3、掌握某断面的平均风速的测定方法,并计算风量。

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例)同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: 2 H = λ×L/d ×ρν/2 Pa λ——摩擦阻力系数。 L ---- 风道长度,m d――圆形风管直径,非圆形管用当量直径;

空气密度,kg/m3 断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H = α ×LU∕S3×Q2 =R f ×Q2 Pa 3 R f=α× LU∕S3 α --- 摩擦阻力系数,单位kgf ?s2∕m4或N ? s7m4, kgf ?s7m4=9.8N ? s7m4 L、U――巷道长度、周长,单位m S—巷道断面积,m Q ---- 风量,单位m/s R ——摩擦风阻,对于已给定的井巷,L,U S都为已知数,故可把上式中的α, L, U, S归结为一个参数R,其单位为:kg∕m7或N ?s7m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→ h f → R f 生产矿井:已测定的h f → R f → α, 再由α→ h f → R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因, 使均匀流动在局部地区受到影响而破坏, 从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。 (2)、渐变 主要是由于沿流动方向出现减速增压现象, 在边壁附近产生涡漩。因为压差

相关文档
最新文档