晶体硅太阳能电池的丝网印刷技术详解

晶体硅太阳能电池的丝网印刷技术详解
晶体硅太阳能电池的丝网印刷技术详解

晶体硅太阳能电池的丝网印刷技术详解

生产晶体硅太阳能电池最关键的步骤之一是在硅片的正面和背面制造非常精细的电路,将光生电子导出电池。这个金属镀膜工艺通常由丝网印刷技术来完成——将含有金属的导电浆料透过丝网网孔压印在硅片上形成电路或电极。典型的晶体硅太阳能电池从头到尾整个生产工艺流程中需要进行多次丝网印刷步骤。通常,有两种不同的工艺分别用于电池正面(接触线和母线)和背面(电极/钝化和母线)的丝网印刷。【表1】

表1:晶体硅太阳能电池的制造需要进行多次丝网印刷步骤。应用材料公司Baccini产品可以帮助实现绿色框中的步骤。

多年来,太阳能丝网印刷设备在精度和自动化方面有了很大进步,具备了在微米级尺寸上重复进行多次印刷的能力。这一发展开创了全新的先进应用,如双重印刷和选择性发射极金属镀膜。Baccini公司在20世纪70年代在微电子领域开发了丝网印刷技术,并在20世纪80年代将这一技术扩展到太阳能金属镀膜领域。今天,Baccini公司已成为应用材料公司Baccini集团,以多项先进技术引领业界的发展。

基本的太阳能丝网印刷

印刷过程从硅片放置到印刷台上开始。非常精细的印刷丝网固定在网框上,放置在硅片上方;丝网封闭了某些区域而其它区域保持开放,以便导电浆料能够通过【图2】。硅片和丝网的距离要严格地控制(称为印刷间隙)。由于正面需要更加纤细的金属线,因此用于正面印刷的丝网其网格通常比用于背面印刷的要细小得多。

表2:印刷丝网上包含打开和闭合的区域,通过打开的区域,导电浆料可以被印刷到硅片上。

把适量的浆料放置于丝网之上,用刮刀涂抹浆料,使其均匀填充于网孔之中。刮刀在移动的过程中把浆料通过丝网网孔挤压到硅片上【图3】。这一过程的温度,压力,速度和其他变量都必须严格控制。

表3:在丝网一端放置导电浆料,用刮刀在将浆料涂抹于丝网,并从网孔中挤压到硅片上。

每次印刷步骤后,硅片被放入烘干炉,使导电浆料凝固。接着,硅片被送入另一个不同的印刷机,在其正面或背面印制更多的线路。所有印刷步骤完成后,将硅片放入高温炉里烧结。

硅片正面和背面的印刷

每块太阳能电池的正面和背面都有通过丝网印刷淀积的导线【图4】,它们的功能是不同的。正面的线路比背面的更细;有些制造商会先印刷背面的导

电线,然后将硅片翻过来再印刷正面的线路,从而最大程度地降低在加工过程中可能产生的损坏。在正面(面向太阳的一面),大多数晶体硅太阳能电池的设计都采用非常精细的电路(“手指线”)把有效区域采集到的光生电子传递到更大的采集导线——“母线”上,接着再传递到组件的电路系统中。正面的手指线要比背面的线路细得多(窄到80μm)。正因为如此,正面的印刷步骤需要更高的精度和准确性。

图4:印刷后硅片正面会有大小不同的导线,用来从有效区域采集电能。.

硅片的背面和正面的印刷要求是不同的,技术上也不那么严格。背面印刷的第一步工序是淀积一层以铝为基础的导电材料,而不是非常细的导电栅。同时,能够将没有捕捉到的光反射回电池上。这一层也能“钝化”太阳能电池,封闭多余分子路径,避免流动电子被这些空隙所捕捉。背面印刷的第二步是制造母线,和外部电路系统相连接【图5】。

图5:背面的母线通过焊接可以实现和外部的连接。

新一代丝网印刷的应用

如今晶体硅太阳能电池的平均转化效率是15%,业界的发展目标是将转化效率提高到20%以上,丝网印刷设备能够提供多种方法帮助实现这一目标。实现更高的转化效率可以从以下两个方面入手:电池工艺(创造出能够将光能转化为电能的有效区域)和金属镀膜(形成导电金属线)。

双重印刷

电池正面导电线路的一个负面效应是阴影:导线阻挡了少量阳光,使其无法进入电池的有效区域,从而降低了转化效率【图6】。为了将这种阴影效应降到最低,导线必须尽可能做到最窄。然而,为了保持足够的导电性,线条的高度必须增加,这样才能保持同样的横截面积。实现更细,更高导线横截面的解决方案就是将多条导线重叠印刷。这就意味着丝网印刷机必须能够高准确度、高重复性地印刷非常细小的线条——当前的标准线条小到80μm——相当于人类一根头发丝的平均厚度。

图6:导线阻挡光线,使其无法到达电池有效区域

现在大多数导线烧结后的尺寸是110-120μm宽,12-15μm高。这样尺寸的线条由于阴影效应带来的转化效率损失大约为1.29%。要减少这一损耗,导线宽度必须降低;同时,需要增加导线横截面的高度,以此优化导电性能。【图7】。导线横截面尺寸从110μm宽/12μm高转变为80μm宽/30μm高之后,潜在的转化效率绝对增益为0.5%。

图7:降低线条宽度减少了有效区域的阴影,从而提高潜在转化效率

应用材料公司Baccini的方法是用两台不同的印刷机将两种材料进行重叠印刷。这一最新的工艺在实际生产环境下实现了80μm宽、平均30μm高的导线横截面尺寸。这种方法减少了大约20%的阴影损失,相应的也降低了电阻系数。通过在现有生产线上增加一台额外的丝网印刷机和烘干炉,就能非常方便地以一种具有成本效益的方式实现多次印刷工艺。

导线双重印刷(和其它的先进印刷应用)最关键的一点在于对准精度,因为第二层印刷物必须非常精准地置于第一层之上。应用材料公司Baccini的最新研发成果使第二层印刷物的对齐精度达到+/‐15μm。这一技术采用了新型的高分辨率照相机和新的软件算法,具有自动调整程序,并可以在印刷初始阶段进行额外控制。此外,浆料配方和丝网设计必须经过仔细的共同优化,从而最大限度地实现丝网印刷的硬件和工艺效能。

选择性发射极

另外一个新兴的应用是选择性发射极技术——在丝网印刷的金属线下精确地制造一个重度掺杂的n+区域,以便进一步降低接触电阻,从而实现转化效率的提高。【图8】

图8:选择性发射极是一个直接位于金属线下的重度掺杂区域

制作这些发射极区域有好几种技术。每一种都要求高精度和高重复性的多重印刷步骤。此外,发射极区域必须略宽于上方的金属线:对于100μm宽的金属线来说,最优化的发射极区域宽度为150μm左右。很关键的一点是后续的金属线必须非常精确地直接放置在发射极区域之上,否则,就会失去它的效率优势。应用材料公司Baccini的丝网印刷技术在成熟度、对准精度、低成本和高速度方面都具有优势,是实现这种电池工艺的理想选择。

丝网印刷的生产力

随着太阳能光伏产业的生产规模越来越大、工艺步骤越来越多(以获取更高效率),很多问题——包括高产量和处理更薄硅片的能力等——变得越来越重要。

目前,晶体硅太阳能电池工厂的产量约为1500硅片/小时(每条生产线),业界的目标是在不久的将来实现至少3000硅片/小时。这需要使用非常先进的机械自动化技术以最小的破片率高速处理硅片。

这就意味在丝网印刷工艺中如丝网放置,浆料涂布和刮刀移动都需要以更快的速度进行,同时,线条的宽度和对齐方式必须保持原有精度甚至更加精确。

硅片越来越薄(因此更加易碎)的趋势推动了“软”处理技术的发展,以此保持低破片率和高良率。应用材料公司Baccini以其高速软处理技术和最低破片率成为享誉业界的领导者。拥有数十年经验的工程师团队正致力于开发多项技术创新,从而保持Baccini丝网印刷设备在超薄硅片处理领域的领导地位。

结论

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

丝网印刷工艺流程及改良方案

丝网印刷工艺流程及改良方案 摘要 十二五”是我国能源发展的关键时期,在15%的约束目标和战略性新兴产业政策的激励下,我国光伏市场前景广阔。当被问及未来5年的装机规划时,梁志鹏表示,中国光伏产业缺少的不是一个数字,“即使我们规划年增长1~2吉瓦这样一个看似井喷的数字,但是放在整个中国能源行业或全球市场中,仍然是微不足道的。现在最重要的是通过技术进步和模式创新,进一步提高光伏产业的经济竞争力,这样中国光伏产业才能健康、持续地做大做强。”他以备受争议的光伏电站竞标方式为例解释说,国家是希望通过竞争的方式,促进光伏企业的优化升级和强强合作,希望在未来3~5年,出现一个具备低成本、高收益的产业链组合,为行业的大规模经济发展树立信心. 太阳电池生产工艺流程一般依次分为:前清洗——扩散——后清洗——PECVD——丝网印刷——烧结——测试分选. 硅片的丝网印刷是硅片最后最重要的道工序,直接影响着硅片的转换效率.从整个流程来看丝网印刷的印刷速度和质量都比较重要.首先要改良的还是控制碎片率给机器带的暂停和成本的增加。还有就是浆料的加法,比如丝印的第二道刷背电场的铝浆不能加太多,多了会漏少了会造成印刷不到。 关键词:太阳电池;丝网印刷;光伏;十二五

Screen printing processes and improved Schem Abstract: 1025 "is the key period of China energy development in 15% of constraints, goals and strategic emerging industrial policy, our pv under the excitation of market prospect. When asked about the next five years, LiangZhiPeng installed planning, said China pv industry do not lack a number," even if we planning an annual increase of 1 ~ 2 auspicious watts such a seemingly blowout of the Numbers, but on the whole China's energy industry or global market, is still insignificant. Now the most important is through technology progress and pattern innovation, further improve the photovoltaic industry competitiveness of the economy, so that Chinese pv industry to health and consistently bigger and stronger. "In his controversial photovoltaic power station for example explains bidding mode, the state is hope that through competitive way, promote the optimization and upgrading of photovoltaic enterprise with qiangqiang cooperation, hope in the next three to five years, the emergence of a have low cost, high income chain combination, to the industry's massive economic development build up confidence. Solar cell production process generally in turn divided into: former cleaning - diffusion - PECVD after cleaning - - screen printing - sintering - test satisfactions. The screen printing silicon wafer is the most important procedure last, the direct impact on wafers conversion efficiency from the whole process. See screen printing printing speed and quality are quite important. First to improved or control debris with suspension of the machine rate and increased costs. There is the addition, such as printing paste the second

几种商业化的高效晶体硅太阳能电池技术

高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1 引言 能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来 高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2 硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3 高效晶体硅太阳能电池技术 3.1 背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

太阳能电池丝网印刷常见问题及处理方法

丝网印刷常见问题及处理方法 漏浆: 检查方法:检查每一个台面同一处有无浆料(适合一、二、三道) 解决方法:根据在硅片上漏浆的位置,确定网版漏浆的位置,查看网版漏浆处的大小,如果漏洞不大,选择合适的胶带在网版下面将漏浆的位置粘住,试做一片,查看是否仍然漏浆,如果仍然漏浆,重新修补,如果不漏,可以继续使用。如果漏洞太大,无法用胶带修补的话,更换网版。第三道网版漏浆解决的方法:查看漏浆是否在删线上,如果不在可用封网浆修补,如果在删线上,直接把网版更换。注意事项:1在修补第一第二道网板时,在胶带粘帖位周围容易造成隐裂,观察确认后,方可生产.发现隐裂,立即更换网板. 2第三道网板使用封网浆,修补后,查看印刷质量.在封网浆周围是否有断线情况.如果发现有断线情况,用无尘布沾取少许清水,轻轻擦拭封网浆周围.在次使用封网浆修补网板时,注意时候有封网浆堵住副删线. 虚印 原因:1印刷参数没有调整. 2刮刀的不平整. 3原材料的问题,硅片厚薄不均. 4网板使用时间过长,造成网板的变形. 5台面不平整. 解决方法:1调整印刷参数,试着抬高丝网间距,加大印刷的压力和刮条深度。 2卸下刮刀,查看是否发生变形,更换刮刀. 3通过测量是否属于原材料的问题. 4更换网板,查看是否依然有这种情况产生. 5以上方法依然不能解决,通知工艺或设备处理. 注意事项:调整印刷参数后必须称重和查看是否出现隐裂,调整参数后的压力变大,容易产生隐裂. 更换刮刀时注意刮刀的平整和安装手法. 断线-3号机 产生原因:1由于长时间的印刷,网板内产生了干浆料. 2第二道台面留有铝浆,导致硅片制绒面粘有铝浆,在印刷第三道时,使铝浆堵住网板. 3杂务或细小的碎片,堵住网板. 处理方法:1浆网板内干浆料铲出,并用粘有松油醇的无尘布擦拭. 2更换②号机的台面纸,并用粘有松油醇的无尘布擦拭.

丝网印刷制版工艺

丝网印刷制版工艺 丝网印刷制版是丝网印刷的基础,若制版质量不好就很难印刷出质量好的产品,印刷中出现的故障往往与制版工艺技术和制版中选用的材料不当有关,因此要想做出质量好的丝印版,必须根据制版工艺的要求,正确掌握制版技术,严格选用制版材料进行制版。 第一节丝网印刷对丝网的要求 丝网印刷制版、印刷工艺,对丝网的性能有如下几项基本要求: 1.抗张力大。抗张力强度是指丝网受拉力时,抵抗破坏(断裂)的能力。另外,丝网吸湿后的强度变化应小。 2.断裂伸长率小。伸长率是指丝网在一定张力下断裂时的伸长量与原长之比,以百分比表示。伸长率大,平面稳定性差,但丝网还要求一定张力(3%左右)下具有足够的弹性。 3.回弹性好。回弹性是指丝网拉伸一定长度(如伸长3%后),释去外力时,其长度回复能力,称伸长回复度,其值越大越好,回弹后,印后边缘清晰。 4.耐温湿度变化的稳定性好。 5.油墨的通过性能好。 6.对化学药品的耐抗性好。 7.具体目数见工程单。 第二节网框和绷网 一.网框材料的选择 一般选用LY12、LF2等硬质合金铝方管型材,尺寸选用宽20mm,厚20mm,四角用氩弧焊接或铆接加工而成。金属框架精度高,尺寸稳定。 二.丝网材料的选择 目前用得最多的是尼龙丝网和涤纶丝网。尼龙丝网耐热性较差,受热后易产生热塑性变形,使张力不均匀,影响网印质量。粘结绷网或丝网模版制作不宜高温烘烤。涤纶丝网耐热性较好,尺寸稳定,图形不因温度和湿度的变化产生较大的变动。为了保证网印图形精度最好选用单丝涤纶丝网。同时应选用丝网目数较高,丝径较细,网眼较小的丝网,丝网的颜色以黄色或棕黄色为好,以防产生晕影。 三.绷网 最好采用气动绷网机,绷网的质量要求如下: 1.绷网张力合适、均匀 (1)使用气动绷网在达到张力要求的时候一定要静置3-6小时再上绷网胶; (2)绷好的网最少要放置24小时以上,特别是做大货或机印的网,以保证各点应力均等,防止变形。网目越高的网版要求放置的时间越长,一般2-3天为宜。放置后网版张力稳定,名点的应力相等,以保证网版不变形,不易损坏。 2.经纬网丝保持垂直 3.防止松弛 四.丝网模版制版工艺 目前用得最多的是直接法制作丝网模版,在此制作工艺中注意上胶涂层的厚度合适、上浆均匀,严格控制干燥、曝光、显影等环节,方能得到高质量的丝网模板。

晶体硅太阳能电池的丝网印刷技术详解

晶体硅太阳能电池的丝网印刷技术详解 生产晶体硅太阳能电池最关键的步骤之一是在硅片的正面和背面制造非常精细的电路,将光生电子导出电池。这个金属镀膜工艺通常由丝网印刷技术来完成——将含有金属的导电浆料透过丝网网孔压印在硅片上形成电路或电极。典型的晶体硅太阳能电池从头到尾整个生产工艺流程中需要进行多次丝网印刷步骤。通常,有两种不同的工艺分别用于电池正面(接触线和母线)和背面(电极/钝化和母线)的丝网印刷。【表1】 表1:晶体硅太阳能电池的制造需要进行多次丝网印刷步骤。应用材料公司Baccini产品可以帮助实现绿色框中的步骤。 多年来,太阳能丝网印刷设备在精度和自动化方面有了很大进步,具备了在微米级尺寸上重复进行多次印刷的能力。这一发展开创了全新的先进应用,如双重印刷和选择性发射极金属镀膜。Baccini公司在20世纪70年代在微电子领域开发了丝网印刷技术,并在20世纪80年代将这一技术扩展到太阳能金属镀膜领域。今天,Baccini公司已成为应用材料公司Baccini集团,以多项先进技术引领业界的发展。 基本的太阳能丝网印刷 印刷过程从硅片放置到印刷台上开始。非常精细的印刷丝网固定在网框上,放置在硅片上方;丝网封闭了某些区域而其它区域保持开放,以便导电浆料能够通过【图2】。硅片和丝网的距离要严格地控制(称为印刷间隙)。由于正面需要更加纤细的金属线,因此用于正面印刷的丝网其网格通常比用于背面印刷的要细小得多。

表2:印刷丝网上包含打开和闭合的区域,通过打开的区域,导电浆料可以被印刷到硅片上。 把适量的浆料放置于丝网之上,用刮刀涂抹浆料,使其均匀填充于网孔之中。刮刀在移动的过程中把浆料通过丝网网孔挤压到硅片上【图3】。这一过程的温度,压力,速度和其他变量都必须严格控制。 表3:在丝网一端放置导电浆料,用刮刀在将浆料涂抹于丝网,并从网孔中挤压到硅片上。 每次印刷步骤后,硅片被放入烘干炉,使导电浆料凝固。接着,硅片被送入另一个不同的印刷机,在其正面或背面印制更多的线路。所有印刷步骤完成后,将硅片放入高温炉里烧结。 硅片正面和背面的印刷 每块太阳能电池的正面和背面都有通过丝网印刷淀积的导线【图4】,它们的功能是不同的。正面的线路比背面的更细;有些制造商会先印刷背面的导

晶硅太阳能电池片的制作过程

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为 70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 3、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。 4、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅,虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为:(1)可

硅太阳能电池的丝网印刷技术

硅太阳能电池的丝网印刷技术 1 引言 随着全球能源的日趋紧,太阳能以无污染、市场空间大等独有的优势受到世界各国的广泛重视,国际上众多大公司投入太阳能电池研发和生产行业。从太阳能获得电力,需通过太阳能电池进行光电变换来实现,硅太阳能电池是一种有效地吸收太阳能辐射并使之转化为电能的半导体电子器件,广泛应用于各种照明及发电系统中。 2 硅太阳能电池的生产工序 太阳能电池原理主要是以半导体材料硅为基体,利用扩散工艺在硅晶体中掺入杂质:当掺入硼、磷等杂质时,硅晶体中就会存在着一个空穴,形成n 型半导体;同样,掺入磷原子以后,硅晶体中就会有一个电子,形成p型半导体,p型半导体与n型半导体结合在一起形成pn结,当太照射硅晶体后,pn 结中n型半导体的空穴往p型区移动,而p型区中的电子往n型区移动,从而形成从n型区到p型区的电流,在pn结中形成电势差,这就形成了电源,见图1。

图2为硅太阳能电池生产的主要工序,从中可以看出丝网印刷是生产太阳能电池的重要工序,其印刷质量(厚度,宽度,膜厚一致性)影响电池片的技术指标。 3 工序对印刷电极的要求 3.1 背面银电极印刷(背银) 在电池片的正极面(p区)用银铝浆料印刷两条电极导线(宽约3~4mm)作为电池片的电极(图3)。

3.2 背面铝印刷(背铝) 在电池片的正极面采用铝浆料印刷整面(除背银电极外)。 3.3 正面银印刷(正银) 在电池片的正面(喷涂减反射膜的面)同时用银浆料印刷一排间隔均匀的栅线和两条电极(图4),在工艺上要求栅线间距约3mm、宽度约O.10~0.12mm: 4 印刷原理 图5为丝网印刷原理示意图,丝网印刷由五大要素构成,即丝网、刮刀、浆料、工作台以及基片。丝网印刷基本原理是:利用丝网图形部分网孔透浆料,非图文部分网孔不透浆料的基本原理进行印刷。印刷时在丝网一端倒入浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮板从图形部分的网孔中挤压到基片上。由于浆料的黏性作用而使印迹固

丝印标贴的制作及工艺流程

丝印标贴的制作及工艺流程 现在各式各样的标牌已广泛应用于电子产业和家用电器产品上,丝印标牌技术,是丝印技术应用的一个方面。现在各式各样的标牌已补广泛应用于电子产业和家用电器产品上,尤其是在各种标牌的表面采用了新装饰工艺之后,多次多彩的装饰效果展现在人们眼前,进步了商品的价值和竞争能力。它以精致典雅的形式,多次多彩的装饰效果展现在人们眼前,进步了商品的价值和竞争能力。 在标牌出产过程中,起决定性作用是丝网印版及承印物前处理的工艺技术和印刷要点及丝印油墨的选择。 一、丝印制板: 1、漆膜雕刻法: 是手工制版法的一种,较简朴。可印制一般不太精致的单色图案和文字。 (1)喷制刻版漆膜纸:将描图纸用浆糊粘在平整的木版上,用排笔把橡胶水1份(体积比),汽油1份调好,平均地涂在纸面上,干后喷涂软性清漆3—5次,每次喷涂后,在烘箱顶用40度~50度烘干,漆膜厚度喷至5~6毫米为宜,漆膜应光亮、平均、无气泡、无污点。 (2)雕刻图形:把漆膜纸贴在图形上,用刻刀、圆规刀、直尺按图形雕刻,轻轻地剔除漆膜。 (3)转贴:雕刻图形之后,便可以旧事先做好的丝网框上转贴了。方法是把刻好的漆膜放在网框下面压紧,用棉花沾少许稀料在上面轻轻复擦,至漆膜与丝网粘牢为止。干燥数分钟后,把描图纸揭掉。假如纸未全掉,可用棉花沾水擦净。空缺的部门用硝基漆涂一层,将丝网的网眼堵住。晾干后即可印刷。 2、碳素纸晒版法: 也是一种较简朴的手工制版法。 (1)裁感光纸:感光纸是一种混合物较厚地涂上上氧人钡原纸上制成的碳素纸,按图形的大小裁好备用。 (2)敏化:在500毫和20克重铬酸铵配制的溶液中浸泡3-5分钟,掏出碳素纸,把水分流干。 (3)曝光:把碳素纸平贴在清洁的玻璃上,胶膜向上,在上边笼盖阳图聚酯薄膜底版,用晒版机进行曝光,曝光时间8-12分钟。 (4)显影:曝光后在40~50度温水中浸泡数分钟,使胶膜和阳图版与氧化锌原纸天然脱离,用温水仔细显影至力形文字清楚为止。 (5)转贴:把制好的版放在予先绷好丝网的网框下面,在丝网上面笼盖几层报纸,压上玻璃板,以1-2公斤/平方厘米的重压,此时胶膜与丝网贴牢,取下重物和报纸,用电炉烘干胶膜,再取下原纸,胶膜图形即转到丝网上。仔细检查图形有无缺陷,合格后把图形附近的丝网上涂上一层硝基磁漆保护,把丝印印版装在印版台,以备印刷。此种制版法的合用范围与漆膜雕刻法相同。 3、感光制版法:丝印标牌(https://www.360docs.net/doc/1813837729.html,)所用的印牌精度要求较高,一般都采用提高前辈的直接、间接、直间三种感光制版法。 A、直接制版法: (1)岗框使用铝框,用不着绷网机动性绷网,气压在5-6公斤/平方厘米,使用缩醛胶粘网,绷松紧程度用张力丈量,张力5-7公斤,下沉尺寸应小于2毫米。 (2)清洗丝网:用洗衣粉、洗洁精、乙醇等作为洁洗剂,清洗丝网的两面,并用净水冲净,经热风干燥后待用。目的是使网能与感光胶更好粘合。 (3)刮斗(涂布斗、涂布器):涂布感光胶的刮斗可以用不锈钢制成,也可用有机玻璃板制成刮板。其长度一般略小于是丝网框内径(把长度不同的几种刮斗配成一套备用)B。刮斗的边沿必需薄而不刃,光滑挺直,不答应有凹凸、毛刺、伤痕等缺陷,以心影响制版质量。涂布丝网感光胶时,每涂三次烘干一遍,需连续作3-4遍,直到胶膜达到需要的厚度为止,再进行曝光。 (4)干燥箱的温度,较为理想的是用可调温度的干燥箱。感光胶的干燥温度,一般控制在40度左右,烘烤时间过长或温渡过高,都会影响感光层质量。

太阳能电池制造中的丝网印刷技术概述

太阳能电池制造中的丝网印刷技术概述 摘要太阳能电池连接技术的最重要的部分就在硅衬底金属化制造。这个方法是一项先进的印刷工艺,这个技术能够在很大程度上决定太阳能电池的能量转换效率。这项工艺被大规模用于太阳能电池的批量化生产,是第三代太阳能电池制造过程中最重要的环节。 关键词丝网印刷;晶体硅;电极;质量控制 太阳能电池是利用光电效应将光能转化成电能的装置。它是太阳能发电的基础和核心。目前,光伏电池生产有二个主要难题。第一,怎么增加太阳能电池的转换效率,以加大电池板组件一平方米范围内的发电量。第二,在加大投入成本之前,怎样通过现有技术使太阳能电池的制造力得到加强。丝网印刷技术在制造太阳能电池片背电场和正电极的生产中越来越成熟运用,逐渐变成了现在光伏电池生产的最为流行的技术。 1 太阳能电池丝网印刷 1.1 丝网印刷在光伏电池制造过程中的位置 制造晶体硅光伏电池的过程有印刷背电极、铝背场和正电极。电极印刷的好坏很大程度上决定了电池片性能的好坏。所以它是光伏电池制造过程的一个主要环节。利用丝网印刷技术,在硅片上印刷一种化学活性很高的金屬浆料,通过烘干将金属浆料固化,然后在高温状态下快速烧结。在具有化学活性的金属浆料作用下,金属和硅晶体生成了一个合金层,从而形成良好的接触以及铝背场。 1.2 丝网印刷技术 丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。浆料在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的黏性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程,得到印制的丝网图形。丝网印刷技术,是把包含金属的混合导电浆料通过网状孔压入,压在晶体硅片上生成新的电路和电极,并由光伏电池衍生出光电子。混有金属的浆液压在已经有P-N结的晶体硅片上,背面的银铝浆液单独压制,成为背电极,这样对构件的拼接有好处。二,压制的铝浆被大量掺入杂质,生成P+层。铝背场降低载体复合材料的使用量,以收敛带正电荷的粒子,来加大电压。三,印刷银浆对带正负电荷的粒子的收集有很大的好处,进而便于电极的生成。背电极是用银铝浆(或是银浆)印在电池片的背面(即在未涂布的表面上)的光伏电池板的电极。铝是P型杂质这一事实反映了背电场的功能。实际制造中所需的背场浆料以铝浆为主。背电极印刷对浆料的需求包括:背电极要是光伏电池的实际正电极,需要

晶体硅太阳能电池制作工艺概述

工业化电池工艺 太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是: [1]电池的制作工艺能够满足流水线作业; [2]能够大规模、现代化生产; [3]达到高效、低成本。 当然,其主要目标是降低太阳电池的生产成本。目前多晶硅电池的主要发展方向朝着大面积、薄衬底。例如,市场上可见到125×125mm2、150×150mm2甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下。效率得到大幅度的提高。日本京磁(Kyocera)公司150×150的电池小批量生产的光电转换效率达到%,该公司1998年的生产量达到。 (1)丝网印刷及其相关技术 多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。 a.发射区的形成 利用丝网印刷形成PN结,代替常规的管式炉扩散工艺。一般在多晶硅的正面印刷含磷的浆料、在反面印刷含铝的金属浆料。印刷完成后,扩散可在网带炉中完成(通常温度在900度),这样,印刷、烘干、扩散可形成连续性生产。丝网印刷扩散技术所形成的发射区通常表面浓度比较高,则表面光生载流子复合较大,为了克服这一缺点,工艺上采用了下面的选择发射区工艺技术,使电池的转换效率得到进一步的提高。 b.选择发射区工艺 在多晶硅电池的扩散工艺中,选择发射区技术分为局部腐蚀或两步扩散法。局部腐蚀为用干法(例如反应离子腐蚀)或化学腐蚀的方法,将金属电极之间区域的重扩散层腐蚀掉。最初,Solarex应用反应离子腐蚀的方法在同一台设备中,先用大反应功率腐蚀掉金属电极间的重掺杂层,再用小功率沉积一层氮化硅薄膜,该膜层发挥减反射和电池表面钝化的双重作用。在100cm2 的多晶上作出转换效率超过13%的电池。在同样面积上,应用两部扩散法,未作机械绒面的情况下转换效率达到16%。 c.背表面场的形成 背PN结通常由丝网印刷A浆料并在网带炉中热退火后形成,该工艺在形成背表面结的同时,对多晶硅中的杂质具有良好的吸除作用,铝吸杂过程一般在高温区段完成,测量结果表明吸杂作用可

相关文档
最新文档