软岩工程地质特性与研究

软岩工程地质特性与研究
软岩工程地质特性与研究

随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山、港口以及国防军事等领域都涉及软岩问题,而国家西部大开发的战略实施,大量的交通、能源与水利工程在西部的兴建,地下工程软弱围岩的稳定性和支护方法更已成为地下工程中迫切需要解决的问题。在我国天生桥、二滩、小浪底、乌江构皮滩、瀑布沟等大型水电工程中,均存在软弱岩体的流变性及围岩的稳定性问题;许多煤矿开采时间较长,由于资源开采深度的增加,使一些生产矿井软岩巷道大变形、大地压、难支护的工程问题更加突出;在软岩地区修建的桥隧工程中,围岩的稳定性同样是工程设计和施工中的重点和难点,且常常由于围岩地质条件多变,围岩、支护结构失稳事故时有发生,给人民生命财产造成巨大损失。

1 软岩的概念及其物理力学特征

1.1 软岩的概念

关于软岩的定义,总括起来,大体上可分为描述性定义、指标化定义和工程定义3类。1984年12月在昆明召开的煤矿矿山压力名词讨论会,将软岩界定为“强度低、孔隙度大、胶结程度差、受构造面切割及风化影响显著或含有大量膨胀性粘土矿物的松、散、软、弱岩层”,并从地质岩体分类的角度指出该类岩石的常见种类多为泥岩、页岩、粉砂岩和泥质矿岩,是天然形成的复杂的地质介质。这是一种典型的描述性定义方式。而到了1990年至1993年间,国际岩石力学学会逐步将软岩明确定义为单轴抗压强度( c)在0.5~25MPa之间的一类岩石。虽然此种包含具体指标的定义方式考虑了岩石的物理力学性质,但这种分类仍然属于从地质角度定义软岩的范畴,未考虑施工条件和使用环境的差异,将该定义用于工程实践中会出现一些矛盾。如地下硐室所处深度足够的浅,地应力水平足够的低,则单轴抗压强度小于25MPa的岩石也不会产生软岩的特征,工程实践中,采用比较经济的一般支护技术即可奏效;相反,单轴抗压强度大于25MPa的岩石,当其工程部位所处的深度足够的深、地应力水平足够的高,也可以产生软岩的大变形、大地压和难支护的现象。因此,地质软岩的定义用于工程实践时往往产生歧义。

近些年,工程软岩的概念被提了出来,它是指在工程力作用下能产生显著塑性变形的工程岩体。如果说目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,那么工程软岩的定义不仅重视软岩的强度特性,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。

工程软岩要满足的条件是:

][ ][U U ≥≥且σσ (1-1)

式中,σ为工程荷载,MPa ;[σ]为工程岩体强度,MPa ;U 为岩体变形,mm ;[U ]为允许变形,mm 。

此定义揭示了软岩的相对性实质,即取决于工程力与岩体强度的相互关系。其中,工程力包括重力、构造应力、渗透力、工程扰动力以及温度应力等等。而定义中的“显著塑性变形”则是指以塑性变形为主体,变形量超过了工程设计的允许变形值并影响了工程的正常使用。对同种岩体,在较低工程力的作用下,表现为硬岩的小变形特性,而在较高工程力作用下则可能表现为软岩的大变形特性。换句话说,当工程荷载相对于工程岩体(如泥页岩等)的强度足够小时,地质软岩不产生软岩显著塑性变形力学特征,不作为工程软岩,只有在工程力作用下发生了显著变形的地质软岩,才作为工程软岩。

1.2 软岩中遭遇的工程问题实例

近些年,在软岩中兴建地下工程,面临的工程地质问题多样,其影响也较为突出。在软岩地层中兴建地下工程,都会遇到塌方、大变形等问题,甚至在施工和运营期间造成人员伤亡、设备损失、工期延误、投资增加等恶劣影响。以下给出几个具体的实例:

1) 施工过程中塌方频繁。引大入秦盘道岭隧洞,特软岩隧洞长度12830m ,岩性为第三系半胶结状态砂岩,岩石单轴饱和抗压强度仅为0.2~0.8MPa 。,其中最大一次为冒顶塌方。东深供水工程的雁田隧洞,施工过程中发生3次冒顶塌方。珠海湾仔供水隧洞施工过程中发生过8次塌方、3次冒顶塌方。

2) 岩体结构松散,多含易膨胀粘土矿物。位于甘肃省金昌市的金川矿区是我国大型镍矿基地,矿区地质条件复杂。矿区的许多隧道位于层状碎裂与碎裂岩体中,是典型的破碎型软岩隧道,在基建和开采过程中曾发生严重变形和破坏。矿区岩体整体强度低,仅为岩石强度的10%以下,隧道开挖后,围岩迅速卸载,产生回弹和扩容,掘进工作面附近最初几天变形速率大,一般在4~6 mm/d ;岩块间裂隙中有粘土矿物,遇水膨胀产生膨胀地压并崩解,使岩体松散、离层和冒落。隧道开挖后自稳时间短,若支护不及时,岩体极易松散,发生片帮、冒顶。崔家沟隧道是梅七线上的一座越岭隧道,全长3 885 m ,洞身通过地层为三叠系泥质页岩、粉砂质页岩和砂页岩互层,岩体膨胀性显著。谢桥煤矿东风井,其井底车场及其附近的东一、东二隧道围岩属于极软岩,岩体强度底,胶结性能极差,裂隙很发育。由于岩体中膨胀性粘土矿物含量高达30%~60%,岩体亲水性强,浸水后很易膨胀、崩解或泥化。隧道掘出后不到半年,围岩变形量就达到100cm 以上,支护遭到严重破坏,致使隧道多处完全瘫痪,隧道持续高速流变,对水、应力扰动等极为敏感。隧道掘出一年后,顶板下沉、

巷帮位移速度仍达2~3 mm/d,底鼓速度仍达5 mm/d。隧道每隔3~6个月就需彻底翻修,每米隧道的年维修费高达2~3万元。

3)隧洞开挖后,围岩易发生塑性变形或挤入性变形。在软弱岩层或不良岩层中开挖隧洞或巷道,因围岩具有流变变形特性,隧洞开挖之后,由于地应力的作用围岩往往会向开挖空间缓慢的移动收敛,表现为,隧洞的侧墙逐步向内移动,底板缓慢隆起,拱顶挤压开裂等。例如70年代初在海平面以下的梅山铁矿坑道,由于泥岩膨胀变形导致支护破坏,变形破坏非常严重,后采用联合支护并进行二次衬砌才保证了其稳定。某运输巷道围岩属强风化粉质砂岩,埋深z =100 m,半径R0= 2 m,围岩容重dγ= 25 kN/m3。按原设计方案,巷道开挖后立即进行支护,不足半年大部分衬砌发生明显的破坏与变形。通过现场测试发现,围岩具有明显的流变特性。

4)地下水的软化作用显著。宜万铁路全线第二长隧,七大控制工程之一的堡镇隧道,穿越岩性主要为粉砂质页岩,泥质页岩,多软弱泥质夹层带,强度极低,且多处于高地应力环境,地下水发育,长期饱水对其力学性质具有较强的软化作用。

5)软弱围岩存在大变形及岩爆等工程地质问题。以南水北调西线一期工程为例,引水隧洞长达73km,最大埋深1100m,大变形和岩爆问题尤为突出。

2软岩地区兴建地下工程问题防治及其研究现状

1990年兴建的天生桥二级水电站引水隧洞,较早的借助了TBM(隧道掘进机)进行掘进施工,其后,此类大型施工设备被越来越广泛地应用于工程建设中,如1999年兴建的秦岭隧道等。通过在通过不良地质地段时选择适宜的辅助设备包括超前钻机、锚杆机、环梁安装器、砼喷射系统等,对工作人员进行安全技术等方面的培训,合理选择优化掘进参数,积极开展施工地质超前预报工作,必要时进行超前处理及进行临时支护,从而达到了安全施工的目的。

甘肃省湟水白川引水式水电站,设计引水流量171m3/s,最大水头27.05m,装机容量36MW,引水隧洞长4.128km,隧洞断面为马蹄形,隧洞围岩岩性为白垩系下统河口群碎屑岩类,该地层岩性软弱,强度低,模量低,特别是遇水后表面易软化、崩解,失水后易干缩开裂,开挖暴露时间长时岩体风化加剧,干湿效应显著。地质编录与预报对施工进度和投资起到了重要作用,为采用的新奥法施工提供了重要的信息,同时,在施工过程中重视围岩中地下水或施工用水对围岩浸泡的破坏,及时支护封闭以防围岩蠕变、松弛和崩解破坏。遵循“弱爆破、短进尺、强支护、快循环、早衬砌、勤排水、勤量测”的原则,最大限度杜绝了

事故发生,保证了施工安全。

构皮滩水电站坝址区软岩分布范围较广。软岩段围岩不稳定或极不稳定,自稳时间短,成洞条件差。施工过程中,根据软岩特性与计算分析,提出了“短进尺、弱爆破、及时支护”的开挖与支护原则,在运用各种试验与监测手段查明软岩的特性、分布及变形规律的基础上,施工中采取分层开挖、多期支护等合理的开挖程序与工艺,以及支护措施,成功克服了软岩成洞条件差、安全风险大等工程难题。

西安黑河引水工程零号隧洞位于周至县境内的黑河出山口,即黑河引水工程自流渠的最上游。隧洞全长897 m。隧洞穿过地层中断层、褶皱和火成岩侵入等地质构造交相出现,地质产状约在10 m范围内就发生一次较大的变化,产状很不规律。隧洞穿过地层主要为泥质云母片岩,层厚一般在10 mm以下。该泥质云母片岩极易风干崩解,遇水膨胀泥化,稳定性极差。隧洞上部山坡比较平缓,局部岩石裸露,天然降水是其主要补给水源。隧洞上部还有一古滑坡,岩石破碎,含水量大,导水性强。受其影响,隧洞穿过地层富含地下水,最大涌水量达40 m3/h,给施工带来困难。经分析研究,采用了激光束导向测量,上导洞超前掘进,水泥卷封孔爆破,耙斗机上下装岩,双快硬锚喷支护,运输车侧洞调会,多工序平行作业,条带跳槽衬砌等措施,经过3个月抢险施工,于1996年2月底顺利贯通零号隧洞。

重庆轻轨新牌坊~郑家院子区间隧道(简称新郑区间)为重庆轻轨三号线一期工程,包括两条并行单洞单线隧道。在浅埋、上软下硬地层、软弱夹层岩柱等不良条件下,采用小净距隧道掘进——净距仅5.8 m和爆破减振技术,保证围岩与支护结构的稳定性、光爆良好效果和地下管线安全。

乌鹅隧道位于厦蓉高速贵州境,所处的工程地质条件较为复杂,隧道进口段埋深浅、风化强,泥质板岩部分全风化成黄褐色黏土,软硬相间,结合差,岩层倾向洞口,加上地下水丰富,极易坍塌失稳,对隧道施工安全提出了严峻的挑战。施工存在的主要工程地质问题是浅埋段软弱围岩、岩体破碎带、软弱夹层、地下水等。在施工期应用物探方法开展施工期超前地质预报,有针对性的对围岩地质条件进行探测,较好地预测了该隧道的围岩地质情况,保障了工程施工安全和质量。

这些工程的成功经验说明,在软岩地区兴建工程,只要认真对待、对地质条件充分调查、重视实验和现场观测、重视超前预报并及时开展分析,是可以在软岩中开展大规模工程实践的。以下分别从软岩的工程地质勘察、室内实验、现场观测、数值模拟试验等方面对国内外的研究情况做一概述。

2.1 不同种类软岩性质的研究

如前所述,软岩地区的工程实践,普遍遭遇到了岩性软弱强度低、开挖断面变形大、岩体遇水软化崩解等问题,给工程稳定性带来了极大挑战。为了使软岩地区的工程实践能够更为安全,实践中,首先要对软岩的工程地质特性进行辨识,特别是对软弱围岩的类别划分进行研究,并据此考虑施工中所应采用的开挖及支护型式以及其他控制围岩稳定的措施和方法。

从工程地质的角度,软岩具有跟一般硬岩明显不同的特性,传统的根据钻孔取芯所获得的信息进行岩体分类的方法虽然仍然可以使用,但,对软岩的分类,更为重要的是查明对其工程性质影响最为突出的因素,并据此按相应指标(如强度特性、泥质含量、结构面特点、塑性变形力学特点等)进行定性的分类。

已有的研究,按如强度特性、泥质含量、结构面特点、塑性变形力学特点等将软岩分为四大类——膨胀性软岩(也称低强度软岩)、高应力软岩、节理化软岩和复合型软岩,其分类依据及具体指标见表2-1。

表2-1软岩分类及其支护对策

2.1.1 膨胀性软岩的分级

膨胀性软岩(Swelling Soft Rock,简称S型),系指含有粘土高膨胀性矿物在较低应力水平(<25MPa)条件下即发生显著变形的低强度工程岩体。例如,通常软岩定义中所列举的软弱、松散的岩体,膨胀、流变、强风化的岩体以及指标化定义中所述的抗压强度小于25MPa的岩体,均属低应力软岩的范畴。

产生塑性变形的机理是片架状粘土矿物发生滑移和膨胀,是泥质岩类为主体的低强度工程岩体。由于低应力软岩的显著特征是含有大量粘土矿物而具有膨胀性,因此,根据低应力软岩的膨胀性大小可以分为:强膨胀性软岩(自由膨胀变形>15%)、中膨胀性软岩(自由膨胀变形10%~15%)和弱膨胀性软岩(自由膨胀变形<10%)。其矿物组合特征和饱和吸水率两个指标可分为三级,详见表2-2。

表2-2 膨胀性软岩分级

2.1.2 高应力软岩的分级

高应力软岩(High Stressed Soft Rock,简称H型),是指在较高应力水平(>25MPa)条件下才发生显著变形的中高强度的工程岩体。这种软岩的强度一般高于25MPa,其地质特征是泥质成分较少,但有一定含量,砂质成分较多,如泥质粉砂岩、泥质砂岩等。它们的工程特点是,在深度不大时,表现为硬岩的变形特征;当深度加大至一定深度以下,就表现为软岩的变形特性了。其塑性变形机理是处于高应力水平时,岩石骨架中的基质(粘土矿物)发生滑移和扩容,此后再接着发生缺陷或裂纹的扩容和滑移塑性变形。

根据高应力类型不同,高应力软岩可细分为自重高应力软岩和构造高应力软岩。前者的特点是与深度有关,与方向无关;而后者的特点是与深度无关,而与方向有关。根据应力水平分为三级,即高应力软岩、超高应力软岩和极高应力软岩,详见表2-3。

表2-3 高应力软岩分级

σ= 0.5~25MPa)而确定的。

高应力的界线值是根据国际岩石力学学会定义的软岩概念(

c

2.1.3 节理化软岩的分级

节理化软岩(Jointed Soft Rock,简称J型),系指含泥质成分很少(或几乎不含)的岩体,发育了多组节理,其中岩块的强度颇高,呈硬岩力学特性,但整个工程岩体在巷道工程力的作用下则发生显著的变形,呈现出软岩的特性,其塑性变形机理是在工程力作用下,结构面发生滑移和扩容变形。例如,我国许多煤矿的煤层巷道,煤块强度很高,节理发育很好,岩体强度较低,常发生显著变形,特别是发生非线性、非光滑的变形。此类软岩可根据节理化程度不同,细分为镶嵌节理化软岩、碎裂节理化软岩和散体节理化软岩。根据结构面组数和结构面间距两个指标将其细分为三级,即较破碎软岩、破碎软岩和极破碎软岩。详见表

2-4。

表2-4 节理化软岩的分级

表中k v=(V pm/V pr)2,V pm——节理岩体弹性波纵波速度,km/s;V pr——完整岩块弹性波纵波速度,km/s

2.1.4 复合型软岩

复合型软岩是指上述三种软岩类型的组合。即高应力-强膨胀复合型软岩,简称HS型软岩;高应力-节理化复合型软岩,简称HJ型软岩;高应力-节理化-膨胀性复合型软岩,简称HJS型软岩。

2.1.5 软岩工程分类及分级总表

软岩的工程分类和分级见表2-5。

表2-5 软岩工程分类与分级总表

σ—单轴抗压强度,MPa;

注1:ω0—干燥饱和吸水率;c

注2:S—绿泥石;I—伊利石;K—高岭石;M—蒙脱石;M/I—伊/蒙混层物。

2.2 软岩的物理力学特性研究

软岩之所以能产生显著塑性变形的原因,是因为软岩中的泥质成分(粘土矿物)和结构面成为了决定软岩工程力学特性的主要因素。一般说来,软岩具有可塑性、膨胀性、崩解性,流变性和易扰动性。而正是这些特殊的性质,导致软岩地区修建地下工程时面临如前所述诸多工程、地质问题。

2.2.1可塑性

可塑性是指软岩在工程力的作用下产生变形,去掉工程力之后这种变形不能恢复的性质。低应力软岩、高应力软岩和节理化软岩的可塑性机理不同,低应力软岩的可塑性是由软岩中泥质成分的亲水性所引起的,而节理化软岩是由所含的结构面扩展、扩容引起的,高应力软岩是泥质成分的亲水性和结构面扩容共同引起的。

低应力软岩一般是泥岩、泥页岩类,当和水充分作用时,可变成液态而流动。另一方面,水量逐渐减少,软岩变硬但刚开始开裂。评价低应力软岩的可塑性程度,一般用塑性指数这个术语。塑性指数是液限和塑限的含水量之差(I P=W L W P),表示了塑性的含水量范围。节理化软岩的可塑性变形是由于软岩中的缺陷和结构面扩容引起的,与粘土矿物成分吸水软化的机制没有关系。高应力软岩的可塑性变形机制比较复杂,前述两种机制可同时存在。

2.2.2 膨胀性

软岩在力的作用下或在水的作用下体积增大的现象,称为软岩的膨胀性。根据产生膨胀的机理,膨胀性可分为内部膨胀性、外部膨胀性和应力扩容膨胀性三种。内部膨胀是指水分子进入晶胞层间而发生的膨胀。外部膨胀性,是极化的水分子进入颗粒与颗粒之间而产生的膨胀性。扩容膨胀性,是软岩受力后其中的微裂隙扩展、贯通而产生的体积膨胀现象,故亦称应力扩容膨胀性。实际工程中,软岩的膨胀是综合机制。但对低应力软岩来讲,以内部膨胀和外部膨胀机制为主;对节理化软岩来讲,则以扩容机制为主;对高应力软岩来讲,诸种机制同时存在且均起重要作用。

2.2.3 易崩解性

低应力软岩和高应力软岩、节理化软岩的崩解机理是不同的。低应力软岩的崩解性是软岩中的粘土矿物集合体在与水作用时膨胀应力不均匀分布造成崩裂现象;高应力软岩和节理化软岩的崩解性则主要表现为在巷道工程力的作用下,由于裂隙发育的不均匀造成局部张应力集中引起的向临空面崩裂的现象。高应力软岩也存在着遇水崩解的现象,但不是控制性因素。

时梦熊等(1985)根据软岩崩解特征,将低应力软岩归结为四种崩解类型,如表2-6所示。

表2-6 低应力软岩崩解的四种模式[1]

高应力软岩和节理化软岩的崩解性,是由在高应力的作用下岩体中分布极不均匀的裂隙尖端发生应力集中而扩展、崩裂。在巷道开挖时常常形成高应力破坏对称台阶。

2.2.4 流变性

软岩是一种流变材料,具有流变特性的材料的力学性状和行为流变性是指物体受力变形过程与时间有关的变形性质。软岩的流变性包括弹性后效、流动、蠕变、松弛等,主要是结构面的闭合和滑移变形引起的。

(1)蠕变

蠕变性是指在恒定荷载作用下发生的流变性质,用蠕变方程和蠕变曲线来表示。在较高的应力水平下,蠕变曲线一般可分为三个阶段,如图2-1所示。

(a ) (b )

(a )——蠕变曲线三阶段;(b )——蠕变曲线三类型

图2-1 典型蠕变曲线

I 阶段—衰减蠕变。应变速率由大逐渐减小,蠕变曲线上凸。

II 阶段—等速蠕变。应变速率近似为常数或为0,蠕变曲线近似为直线。

III阶段—加速蠕变。应变速率逐渐增加,蠕变曲线下凹。

并不是任何材料在任何应力水平上都存在蠕变三阶段。同一材料,在不同应力水平上的蠕变阶段表现不同,可分为以下三种类型:

①稳定蠕变——在低应力水平下(σ=σc3),只有蠕变I阶段和II阶段,且II阶段为水平线,永远不出现正阶段那种变形迅速增大而导致破坏的现象;

②亚稳定蠕变——在中等应力水平下(σ=σc2>σc3),也只有蠕变I阶段和II阶段,但II阶段蠕变曲线为稍有上升的斜直线,在相当长的期限内不致出现III阶段;

③不稳定蠕变——在比较高的应力水平下(σ=σc1>σc2>σc3),连续出现蠕变I、II、III 阶段,变形在后期迅速增长而导致破坏。

(2)松弛

松弛性是指在保持恒定变形条件下,应力随时间延续而逐渐减小的性质。用松弛方程和松弛曲线表示(图2-2)。

图2-2 松弛特征曲线

松弛特性可划分为三种类型:

①立即松弛——变形保持恒定后,应力立即消失0,松弛曲线与σ轴重合,如上图ε6曲线。

②完全松弛——变形保持恒定后,应力逐渐消失,如图上ε5、ε4曲线。

③不完全松弛——变形保持恒定后,应力逐渐松弛,但最终不能完全消失,而趋于某一定值,如图ε3、ε2曲线。

此外,还有一种极端情况:变形保持恒定后应力始终不变,即不松弛,松弛曲线平行于t轴。在同一变形条件下,不同材料具有不同类型的松弛特性。同一材料,在不同变形条件下也可能表现为不同类型的松弛特性。

2.2.5 软岩的易扰动性

软岩的易扰动性系指由于软岩软弱、裂隙发育、吸水膨胀等特性,导致软岩抗外界环境

扰动的能力极差。对卸荷松动、施工震动、邻近巷道施工扰动极为敏感,而且具有吸湿膨胀软化、暴露后风化的特点。

2.2.6 软岩的残余抗剪强度

通过试验研究发现,软岩在发生剪切破裂后,破裂面在水胶合的作用下会重新产生一定的强度,这种现象称之为软岩的强度恢复。席福来等选取灰白色泥岩两组和白色泥质粉砂岩两组共12块进行抗剪强度直剪试验,抗剪强度参数如表1-2所示。

从表中可见,完整岩块时,粉砂岩抗剪强度高于泥岩很多。当将岩样多次剪切(一般七八次左右),强度逐步降低并且最后两次试验时其值相差无几,此时即得残余抗剪强度。残余强度比峰值强度大大降低,且粉砂岩比泥岩降低的幅度更大。

为了解强度恢复情况,将多次剪切后的岩样复位并加水饱和24h,再进行剪切试验。试验表明:由于水连接能力的恢复,岩块的残余强度有所恢复,且泥质粉砂岩的强度恢复幅度比泥岩要高。这就说明,泥质岩类为主要岩性的软岩巷道,在围岩出现某种破坏后,在一定的地下水作用条件下,会出现强度恢复现象,例如所谓的顶板破坏后再造现象。但应注意泥岩的第一次强度恢复试验后,再饱和24h,待到二次强度恢复值比第一次幅度小一些。这证明第一次水连接恢复后,再行扰动剪切,其恢复水连接能力有所降低。

表1-2 抗剪强度参数表

2.3影响软岩成洞稳定与安全的因素

软岩隧洞的稳定性不仅与软岩自身的特性、隧洞断面的几何特征等有关,而且还受施工

方法、支护结构的类型、支护的时机等因素影响。

2.3.1软岩工程地质条件

(1)岩体的力学强度。软岩的力学强度一般均较低,对隧洞而言,岩体力学强度越低,稳定性越差。

(2)岩体的结构类型。岩体工程性质的好坏,还取决于各种软弱结构面和其间的充填物以及它们本身的空间分布状态,包括结构面的组数、间距及岩体单位体积的节理数。它们直接影响围岩的完整性。岩体越破碎,稳定性越差。

(3)初始地应力。初始地应力越大,开挖卸荷作用越大,洞室越不稳定。构皮滩电站初始地应力较低,以自重应力为主。

(4)地下水。地下水不仅通过水力、物理及化学作用弱化围岩的工程性质,降低围岩强度,而且增加了围岩支护结构上的支承荷载,引起围岩变形或失稳破坏。岩体透水性及富水性愈强,地下水对其影响愈大。

2.3.2隧洞断面的几何特征

洞室的几何形状、跨度、矢跨比、覆跨比、洞室高度、相邻洞室之间的间距等均对洞室的稳定性有影响,以洞室跨度的影响最大。跨度越大,稳定性越差;矢跨比越小,隧洞顶越扁平,稳定性越差;覆跨比越小,覆盖层厚度越薄,支承岩体厚度越小,稳定性越差;洞室越高,侧墙的稳定性越差

2.3.3施工开挖方法与程序

开挖方式的不同,如机械式开挖(盾构法施工)或钻爆法施工对围岩的扰动程度不同,全断面开挖与分步开挖对围岩的影响亦不相同。分层、分区开挖通过局部多次卸荷作用使整体卸荷作用减小,有利于洞室稳定,全断面开挖则不利于洞室稳定;相邻洞室群采用错序开挖有利于洞室稳定。

2.3.4施工扰动的影响

在隧洞开挖过程中,爆破振动会影响围岩的稳定,甚至可能破坏已有的支护体系。因此,在施工过程中应严格控制爆破参数,减少爆破振动对围岩稳定的影响。

2.3.5支护结构类型

洞室的支护类型有柔性支护及刚性支护,不同支护结构类型的支护承载能力不同,其影响亦不同。

2.3.6支护时机的影响

由于软岩易软化、泥化,且强度低,易产生较大的变形,开挖曝露后应及时支护。及时

的初期支护能较快地加固开挖施工带来的松动损伤区,限制围岩的变形,且能防止粘土岩的风化、泥化。适时的二次衬砌能避免形变压力对衬砌的破坏作用,与初期支护一起共同提高洞室围岩的稳定性。

影响岩石工程地质性质的因素

影响岩石工程地质性质的因素 矿物成分、结构、构造、水、风化作用 1.矿物成分 岩石是由矿物组成的,岩石的矿物成分对岩石的物理力学性质产生直接的影响。 例如,石英岩的抗压强度比大理岩的要高得多,这是因为石英的强度比方解石的强度高的缘故,由此可见,尽管岩类相同,结构和构造也相同,如果矿物成分不同,岩石的物理力学性质会有明显的差别。 对岩石的工程地质性质进行分析和评价时,更应该注意那些可能降低岩石强度的因素。 例如,花岗岩中的黑云母含量过高,石灰岩、砂岩中粘土类矿物的含量过高会直接降低岩石的强度和稳定性。 2.结构 结晶联结是由岩浆或溶液结晶或重结晶形成的。矿物的结晶颗粒靠直接接触产生的力牢固地联结在一起,结合力强,空隙度小,比胶结联结的岩石具有更高的强度和稳定性。 联结是矿物碎屑由胶结物联结在一起的,胶结联结的岩石,其强度和稳定性主要取决于胶结物的成分和胶结的形式,同时也受碎屑成分的影响,变化很大。 例如:粗粒花岗岩的抗压强度一般在120~140Mpa之间,而细粒花岗岩则可达200~250Mpa。 大理岩的抗压强度一般在100~120MPa之间,而坚固的石灰岩则可达250MPa 。 3.构造 构造对岩石物理力学性质的影响,主要是由矿物成分在岩石中分布的不均匀性和岩石结构的不连续性所决定的。 某些岩石具有的片状构造、板状构造、千枚状构造、片麻状构造以及流纹构造等,岩石的这些构造,使矿物成分在岩石中的分布极不均匀。一些强度低、易风化的矿物,多沿一定方向富集,或成条带状分布,或形成局部聚集体,从而使岩石的物理力学性质在局部发生很大变化。 4.水 实验证明,岩石饱水后强度降低。当岩石受到水的作用时,水就沿着岩石中可见和不可见的孔隙、裂隙侵入,浸湿岩石自由表面上的矿物颗粒,并继续沿着矿物颗粒间的接触面向深部侵入,削弱矿物颗粒间的联结,使岩石的强度受到影响。 如石灰岩和砂岩被水饱和后,其极限抗压强度会降低25%~45%左右。 5.风化 风化作用过程能使岩石的结构、构造和整体性遭到破坏,空隙度增大、容重减小,吸水性和透水性显著增高,强度和稳定性大为降低。随着化学过程的加强,则会使岩石中的某些矿物发生次生变化,从根本上改变岩石原有的工程地质性质。

岩土体工程地质类型及特征

一、岩土体工程地质类型及特征 岩土体工程地质类型的划分根据岩土体形成条件、结构、岩性、力学特性及工程地质特征的差别,可分为松散松软堆积层岩类、碳酸盐岩类及碎屑岩类3个岩体类型6个工程地质岩组。 (一)土体工程地质类型及物理力学特征 此岩类的划分根据其结构特征、力学性质及工程特性分为中偏高压缩粘性土类岩组和低压缩碎石土类岩组2个工程地质岩组。 1、中偏高压缩粘性土类岩组 (1)残坡积土(Q el+dl) 残坡积层主要分布于沿线丘陵沟谷坡脚一带,多为紫红色、棕红色粉砂质粘土或浅黄色、灰黄色砂土、亚粘土、粉土夹(含)碎石,沿线厚度不一。残坡积亚粘土天然含水量W18.8~24.00%,天然孔隙比e0.600~0.697,塑性指数Ip 8.4~12.6,液性指数I L0.46~0.60为软塑状,凝聚力C26.6~45.1Kpa,内摩擦角φ10.1~18.7度,压缩系数a0.25~0.40为中~偏高压缩土类。残坡积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 (2)冲洪积土(Q4al+pl) 冲洪积层主要分布于河床、河滩上,为灰色、浅灰色亚粘土、粘土及褐灰色细、粉砂土及砂砾卵石层,厚度不一。亚粘土天然含水量W21.7~26.50%,天然孔隙比e0.619~0.838,塑性指数Ip 8.4~14.6,液性指数I L0.46~0.87为可塑状,凝聚力C12.9~32.2Kpa,内摩擦角φ7.0~10.3度,压缩系数a0.31~0.47为中~偏高压缩土类。粘

土天然含水量W28.8~34.30%,天然孔隙比e0.838~0.978,塑性指数Ip 20.0~21.3,液性指数I L0.54~0.77为软塑状,凝聚力C22.6~54.7Kpa,内摩擦角φ10.0~10.3度,压缩系数a0.24~0.605为中~高压缩土类。 冲洪积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 2、低压缩碎石土类岩组 崩坡积土(Q4col+dl) 崩坡积层主要分布于斜坡边缘、高陡斜坡的坡脚处,碎块石成份与地层岩性有关,为黄灰、红褐色亚粘土夹块石、碎石。此类岩组颗粒级别差异大,密实度较高但不均一,透水性较好,为低压缩碎石土类岩组,工程地质问题主要表现为土石滑坡、塌方,不均匀沉降。 线路区段内土体工程地质类型及主要物理力学指标参见表6。 (二)岩体工程地质类型及物理力学特征 根据路线区岩层坚硬程度、抗风化能力、抗溶蚀能力和基本物理力学性 土体工程地质类型及主要物理力学指标表 表6

山东的主要地质构造特征及工程地质问题

山东的主要地质构造特征 及工程地质问题 工程地质学是研究建筑工程与地质构造关系的学科。山东的地质构造特征如何?本省主要工程地质问题有哪些?这就是这节课的主要内容。 一、山东的地质构造特征及工程地质分区 (一)山东的地质构造特征 1山东处在欧亚板块的东部活动大陆边缘 受太平洋板块向北西西扩张及印度洋~澳大利亚板块向北运移的影响,山东目前(以来)地应力:最大主应力σ1的轴向方位为70~80о、大小是; 最小主应力σ3的轴向方位为340~350o、大小是33..9 Mpa;σ1与σ3差应力值为 Mpa。 2.基岩区的地层褶皱不发育,地层多呈单斜构造;发育NNE、 NW、EW走向的主要断裂构造,其中的NNE向和NW断裂为活动断裂主要NNE向活动断裂:(1)沂沭断裂带,由四条大断层组成“两堑一垒”的构造格局;(2)聊考断裂带。 主要NW向活动断裂:(1)威海~烟台~渤海~天津断裂带;(2)诸城~益都(青州)~惠民断裂带;(3)骆马湖~微山湖断裂带。 证据:近代地震活动记录;第四纪岩土层被断裂错开、逆掩。

(二) 山东的工程地质分区 据基岩地层的出露情况、地貌特征和地壳稳定性分3个分区: 1.鲁中南中低山丘陵工程地质区: 其范围是:济南~淄博~潍坊以南、东平湖~南四湖一线东北、昌邑-大店大断层(沂沭断裂带最东侧的大断层)以西及济南~东阿~东平一线以东地区。是其北、南和西由平原环绕的以中低山丘陵为主的地区。 岩等变质岩;地壳上升,剥蚀、切割作用强烈,泰山、沂山、蒙山、俎徕山、鲁山、俎莱山等千米高程以上的中山主要分布在本区。地形地貌起伏变化大,常发育“崩滑流”(崩塌、滑坡、泥石流的简称)等不良工程地质现象”,东部~东南部是抗震、防震重点地区,该区周边发育厚度不等的黄土状地基土(湿陷等级为I 级(轻微)),临沂地区沂沭河两岸附近发育膨胀土。 σ1 σ1 σ1 σ 1 目前中国地应力方向 以东经100~105o 为界分东西两区。 强度上:西强东弱(西高东低) 方向上:西: NNE-SSW 为主,东:近E-W 。 鲁东低山丘陵工程 地质区 鲁西北平 原工程地 质区 鲁中南中 低山丘陵工程地质区 鲁西北平 原工程地 质区

软岩工程地质特性与研究

随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山、港口以及国防军事等领域都涉及软岩问题,而国家西部大开发的战略实施,大量的交通、能源与水利工程在西部的兴建,地下工程软弱围岩的稳定性和支护方法更已成为地下工程中迫切需要解决的问题。在我国天生桥、二滩、小浪底、乌江构皮滩、瀑布沟等大型水电工程中,均存在软弱岩体的流变性及围岩的稳定性问题;许多煤矿开采时间较长,由于资源开采深度的增加,使一些生产矿井软岩巷道大变形、大地压、难支护的工程问题更加突出;在软岩地区修建的桥隧工程中,围岩的稳定性同样是工程设计和施工中的重点和难点,且常常由于围岩地质条件多变,围岩、支护结构失稳事故时有发生,给人民生命财产造成巨大损失。 1 软岩的概念及其物理力学特征 1.1 软岩的概念 关于软岩的定义,总括起来,大体上可分为描述性定义、指标化定义和工程定义3类。1984年12月在昆明召开的煤矿矿山压力名词讨论会,将软岩界定为“强度低、孔隙度大、胶结程度差、受构造面切割及风化影响显著或含有大量膨胀性粘土矿物的松、散、软、弱岩层”,并从地质岩体分类的角度指出该类岩石的常见种类多为泥岩、页岩、粉砂岩和泥质矿岩,是天然形成的复杂的地质介质。这是一种典型的描述性定义方式。而到了1990年至1993年间,国际岩石力学学会逐步将软岩明确定义为单轴抗压强度( c)在0.5~25MPa之间的一类岩石。虽然此种包含具体指标的定义方式考虑了岩石的物理力学性质,但这种分类仍然属于从地质角度定义软岩的范畴,未考虑施工条件和使用环境的差异,将该定义用于工程实践中会出现一些矛盾。如地下硐室所处深度足够的浅,地应力水平足够的低,则单轴抗压强度小于25MPa的岩石也不会产生软岩的特征,工程实践中,采用比较经济的一般支护技术即可奏效;相反,单轴抗压强度大于25MPa的岩石,当其工程部位所处的深度足够的深、地应力水平足够的高,也可以产生软岩的大变形、大地压和难支护的现象。因此,地质软岩的定义用于工程实践时往往产生歧义。 近些年,工程软岩的概念被提了出来,它是指在工程力作用下能产生显著塑性变形的工程岩体。如果说目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,那么工程软岩的定义不仅重视软岩的强度特性,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。 工程软岩要满足的条件是:

土的工程地质特征

土的工程地质特征 土是第四纪以来地壳表层的最新沉积物,未经胶结成岩,常称为松散土 一、土的分类 土的颗粒分组:《铁路工程岩石分类标准》 按颗粒级配,土分为碎石类土、砂类土、粉土、粘性土 按土的成因,土分为残积土、坡积土、冲积土、淤积土、风积土、崩积土等 特殊土是具有特殊的成分、状态、结构特征,而且具有特殊工程性质的土。 特殊土分为黄土、膨胀土、软土、冻土、红粘土、盐渍土、填土。 二、特殊土的工程性质 (一)黄土:是在干旱、半干旱气候条件下形成的第四纪的一种松散的特殊土。 黄土的特征: I. 颜色为淡黄、褐色或灰黄色; II. 粒度成分以粉土为主,约占有60%~70%,一般不含>0.25mm的颗粒; III. 含各种可溶盐,富含碳酸盐(CaCO3),可形成钙质结核(姜结石); IV. 孔隙多且大,结构疏松; V. 无层理,但有垂直节理和柱状节理。天然条件下能保持近于垂直的边坡; VI. 具有湿陷性。 具有(Ⅰ~Ⅴ)项特征的为标准黄土,只有其中部分特征的黄土叫黄土状土或黄土质土。 具有湿陷性的黄土为湿陷性黄土。 黄土的分布:黄土在世界上的分布面积达1300万km2,我国的黄土面积是世界上最大的,达64万km2,比法国和瑞士的面积总和还要大。黄土最厚处约410m左右,在兰州市七里河区西津村。在我国,西北、中原、华北、华东、东北等地均有分布,但主要集中在黄河的中游——陕、甘、宁、青及山西、河南一带,其厚度各不相同。陕甘地区多厚100~200m,薄处仅几公分。 黄土的分类: 1.按生成年代分类 老黄土下更新世Q1 (午城黄土) 中更新世Q2 (离石黄土) 新黄土上更新世Q3 (马兰黄土) 全新世Q41 、 新近堆积的黄土:全新世Q42 2.按生成过程分类:风积、坡积、残积、洪积、冲积等 3.按塑性指数IP分类 黄土质粘土IP>17 黄土质砂粘土7<IP≤17 黄土质粘砂土1<IP≤7 黄土质砂土IP≤1 4.按湿陷性分类 (1)湿陷性:自重湿陷性非自重湿陷性 (2)非湿陷性 划分自重湿陷性黄土和非自重湿陷性黄土,对工程建设有明显的现实意义。 在自重湿陷性黄土地区 修筑的渠道与渠道平行的裂缝;管道漏水后管道断裂; 路基受水后局部严重坍塌;地基土很大的裂缝或倾斜

土木工程地质_白志勇_第四章岩石及特殊土的工程性质

第四章 岩石及特殊土的工程性质 第一节 岩石的物理性质 一、密度和重度: 密度:单位体积的质量(ρ)。(g/cm 3) ??? ??饱和密度干密度/天然密度Ms/V V M 重度:单位体积的重量(γ)。(N/cm 3) 2m /s 1kg 1N ?=?=g ργ 二、颗粒密度和比重(相对密度) 颗粒密度:单位体积固位颗粒的质量(s ρ)。(g/cm 3) V M s s = ρ 比重(相对密度):单位体积固体颗粒的重力与4℃时同体积水的重力之比 (d s )。 w s s d ρρ= 三、孔隙度和孔隙比: 孔隙度:孔隙体积与岩石总体积之比(n )。 %100?= V V n n 孔隙比:孔隙体积与岩石中固体颗粒体积之比(e )。 s n V V e = 第二节 岩石的水理性质 一、吸水性:指岩石吸收水的性能。其吸水程度用吸水率表示。 吸水率:(常压条件下)吸入水量与干燥岩石质量之比。 %1001 1?= s w G G w 饱水率:(150个大气压下或真空)吸入水量与干燥岩石质量之比。 %1002 2?= s w G G W

饱水系数:岩石吸水率与饱水率之比。 21 W W K w = (9.0~5.0=w K ) 二、透水性:指岩石能透过水的能力。用渗透系数K 表示。(m/s ) 达西层流定律:F I K F dl dh K Q ??=?? = 渗透系数: I V F I Q K =?= 三、软化性:指岩石浸水后强度降低的性质。用软化系数K R 表示。 软化系数: 干燥单轴抗压强度。饱和单轴抗压强度。→→= R R K c R 一般软化系数75.0<R K 的岩石具软化性。 四、抗冻性:指岩石抵抗冻融破坏的能力。 强度损失率: 冻融前的强度冻融前后强度差 = l R 不抗冻的岩石 R L >25% 重量损失率: 冻融前的重量冻融前后重量差 = L G G L >2% K W > 五、可溶性:指岩石被水溶解的性能。 六、膨胀性:指岩石吸水后体积增大的性能。 七、崩解性:岩石(干燥)泡水后,因内部结构破坏而崩解的性能。 第三节 岩石的力学性质 一、变形:岩石受力后发生形状改变的现象。主要变形模量和泊松比表示。 ??? ? ?? ? ??? ?? ? ===50505001εσεσ εσ εσ=割线模量塑性模量弹性模量变形模量、变形:E E E E s s t T 2、泊松比:指横向应变⊥ε与纵向应变11ε之比。

工程地质勘察 总结

第七章工程地质勘察 第七章工程地质勘察 概述 工程地质测绘 工程地质勘探 工程地质勘察报告的主要内容 概述 工程地质测绘 工程地质勘探 工程地质勘察报告的主要内容 概述 一、工程地质勘察的目的与任务 二、工程地质勘察的一般要求 任务:① 查明建筑地区的工程地质条件,指出有利和不利条件; ② 选择地质条件优越的建筑场地; ③ 分析研究与建筑有关的工程地质问题,并作出定性和定量评价,为建筑物的设计和施工提供可靠的地质依据; ④ 根据建筑场地的工程地质条件,配合建筑物的设计与施工,提出有关建筑物的类型、结构、规模名及施工方法的合理建议,以及保证建筑物安全和正常运用所应注意的地质要求; ⑤ 为拟定改善和防治不良地质条件的措施方案提供地质依据; ⑥ 预测工程兴建后对地质环境的影响,制定保护地质环境的措施。 一、工程地质勘察的目的和任务 二、工程地质勘察的阶段 1.选址勘察阶段——可行性研究勘察阶段 勘察程序:是范围由大到小,研究程度由粗及细,由地表到地下,由定性评价至定量评价。并且应该严格遵守此原则。 勘察任务:初步查明拟建地区工程地质条件,论证区域稳定性,在较大的工作范围内选出几个较好的建筑地段。提出建筑地段的比较方案。 目的:为工程规划和技术可能性、经济合理性论证等方面提供地质资料,选定建筑场址 勘察任务:进一步查明建筑物影响范围内工程地质条件细节,提供定量指标,深入分析存在的各种工程地质问题,作出可靠的定量评价(通过大量的勘探、试验、实验室研究工作及长期起观测来完成)。一般可分为初步勘察和详细勘察两个阶段(精度要求不同) (2)初步勘察阶段 目的:在上一阶段指定的区域内选定工程地质条件最优越的建筑场地,确定建筑物的具体位置、结构型式、规模及各相关建筑物的布置方式等 (3)详细勘察阶段与施工勘察阶段 勘察任务:主要解决为编制各个建筑物及其各部分的施工详图所需要的地质资料。主要是根据需要做些补充勘探工作等,如灌浆试验,板桩试验、防止基坑涌水试验等。 目的:解决具体施工中的工程地质问题 三、工程地质勘察的方法 工程地质测绘

地下水和围压对软岩力学性质影响的试验研究

第26卷第11期岩石力学与工程学报V ol.26 No.11 2007年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2007 地下水和围压对软岩力学性质影响的试验研究 郭富利,张顶立,苏洁,肖丛苗 (北京交通大学隧道及地下工程教育部工程研究中心,北京 100044) 摘要:常规三轴压缩试验一直是认识岩石在复杂环境(如地下水丰富和高地应力)下力学性质的主要手段,因此, 利用XTR01–01型微机控制电液伺服岩石三轴试验仪研究在不同饱水时间和不同围压下软岩强度的变化规律, 就宜万铁路堡镇隧道高地应力大变形段中所揭示的黑色炭质页岩设计了不同饱水状态下的三轴试验方案,并进行 了三轴力学性质测试,描述了软岩在饱水时间为1个月的全应力–应变曲线特征,重点探讨了围压和饱水状态对 软岩强度的影响规律,详细分析了二者对软岩强度变化的作用机制及特点。最后,根据围岩动态演化规律,结合 试验研究结论,提出高地应力软弱围岩的支护原则。 关键词:岩石力学;饱水软岩;力学性质软化;三轴试验;支护原则 中图分类号:TU 452 文献标识码:A 文章编号:1000–6915(2007)11–2324–09 EXPERIMENTAL STUDY ON INFLUENCES OF GROUNDWATER AND CONFINING PRESSURE ON MECHANICAL BEHA VIORS OF SOFT ROCKS GUO Fuli,ZHANG Dingli,SU Jie,XIAO Congmiao (Tunnel and Underground Engineering Research Center of Ministry of Education,Beijing Jiaotong University,Beijing100044,China) Abstract:Baozhen tunnel is the only soft rock tunnel and the key project in the Yichang—Wanzhou Railway. The very complex geological environments,such as high earth stress,deep-buried rich groundwater,very weak and cracked rock masses and asymmetric pressure along the rock strata,make self-stability of the tunnel unfavorable. During tunnel construction,the high deformation rate,intense and long-time deformation are the basic characteristics. At the same time,the deformation shows asymmetrical features and uniformities. Through analyzing the causes of large deformation,it is deemed that groundwater and high earth stress are the critical factors causing large deformation. So using XTR01–01 microcomputer electro-hydraulic servo-controlled triaxial test instrument to study the change law of soft rock strength under different saturated time and confining pressure is significant to assure the design, construction and operation safety of tunnel. The mechanical behaviors of black macker that is widely distributed in Baozhen tunnel are discussed by designing a series of triaxial compressive tests under different saturated times;and research on variation laws of mechanical properties under different confining pressures and saturated times is carried out,describing complete stress-strain curve of macker(saturated time is 1 month) with different confining pressures. The variation laws along with confining pressure and saturated time are analyzed. In addition,the mechanism and relationship between confining pressure,saturated time and strength are researched. Finally,according to dynamic evolution law of adjacent rock,the supporting principles for large deformation in weak rock and high earth stress are put forward. Key words:rock mechanics;water-saturated soft rocks;softening of mechanical properties;triaxial test;supporting principles 收稿日期:2007–06–18;修回日期:2007–07–26 基金项目:国家高技术研究发展计划(863)项目(2006AA11Z119) 作者简介:郭富利(1976–),男,2003年毕业于太原理工大学采矿工程专业,现为博士研究生,主要从事岩石力学试验方面的研究工作。E-mail:guofuli1@https://www.360docs.net/doc/1815784449.html,

工程地质实习报告

防灾科技学院 实习报告书 专业土木工程 系别 报告题目土木工程地质实习 报告人班级 指导教师带队教师 实习时间2012.5-6月周末实习单位 教务处监制

一、实习目的 土木工程地质实习分为野外工程地质认识和室内资料分析两部分。野外工程地质认识内容包括基本地质现象和工程地质条件认识;室内资料分析包括野外资料成果整理和汇总、土质边坡稳定性分析计算和结构面统计分析。 通过本次实习,可使学生初步掌握地质学、工程地质学的野外工作方法和内容,加深对工程地质学中岩土体工程地质特性的认识,为后续专业课程学习奠定基础。通过实习还可以了解一些基本的工程地质软件的应用技术,提高学生的实际工作能力。 二、实习任务 (一)野外部分 北京市海淀区温泉镇、门头沟区军庄镇工程地质野外实训基地野外地质认识实习,时间一天;天津蓟县工程地质野外实训基地,时间一天。 (二)室内部分 学院机房野外地质实习成果整理和汇总、专门软件的使用,时间共计三天。 三、实习日志 5月6日,晴:我们先到北京市海淀区温泉村进行岩性认识,风化认识。接着来到了北京市门头沟军庄镇军庄火车站进行岩性认识,构造认识。经过一中午的休整,下午来到了妙峰山进行构造认识。 5月20日,阵雨:我们先是到了罗庄子镇杨庄水库进行地形认识,构造认识,工程地质讲解。休整以后来到了洪水庄进行工程地质讲解。 四、实习成果 (一)岩性的认识 1. 沉积岩:sediments 过去曾称水成岩。沉积岩是由成层沉积的松散沉积物固结而成的岩石。如碎屑岩(砾岩、砂岩、粉砂岩、风成岩、冰碛岩)是从来源区机械破碎的较老岩石的碎屑经过水或大气或冰的搬运及沉积形成的;化学岩(如岩盐或石膏)是从溶液中沉淀形成的,而生物岩(如某些石灰岩)是由动物及植物的遗体或其分泌物形成的。 军庄火车站的岩类中泥岩、砂岩、页岩、砾岩这几类都属于沉积岩。 泥岩:一种由泥巴及黏土固化而成的沉积岩,其成分与构造和页岩相似但较不易碎。一种层理或页理不明显的粘土岩。泥质岩是粒度<0.0039mm(即<4μm)主要由粘土矿物组成

工程地质学教学大纲

《工程地质学》课程教学大纲 【英文译名】:Engineering?Geology 【适用专业】:地质工程 【学分数】: 【总学时】:40 【实践学时】:8 一、本课程教学目的和课程性质 本课程是为地质工程专业本科开设的一门专业基础课,必修课。课程系统地讲授岩土工程地质性质及工程动力地质作用。系统概括了工程地质学最基本的原理和方法。在教学过程中适量安排一定时间的参观及试验。通过本课程教学,培养学生掌握工程地质学最基本的原理与方法,了解国内外工程地质学领域的研究动态,能从系统的、动态的角度认识人类工程活动与地质环境的相互关系,为今后研究与解决工程地质、水文地质、地震地质、环境地质等方面有关的工程问题奠定坚实的基础。 二、本课程的基本要求 通过本课程的学习,使学生掌握岩土的工程地质性质、工程动力地质作用等工程地质学最基本的原理和方法,并能初步应用工程地质学的基本原理分析工程地质问题,能运用力学原理进行工程地质问题的定量评价等。为学习后继课程以及从事工程地质工作和科学研究打下一定的基础。在教学过程中,应注意培养学生对工程地质问题分析中的地质思维逻辑,辩证唯物主义的科学思维方法和实事求是、严谨认真的工作作风。

三、本课程与其他课程的关系 本课程学习前必须学习《动力地质学》、《矿物学》、《岩石学》、《构造地质学》、《水文地质学》、《地层学》、《地貌及第四纪地质学》、《工程力学》等课程。 四、课程内容 绪论 一、工程地质学的研究对象与任务 二、工程地质学的研究内容、分科及其与其它学科的关系 三、工程地质学的发展历史 四、本课程的内容与学习方法 重点了解工程地质学的研究对象和任务,工程地质学的研究内容;了解工程地质学分科及其与其它学科的关系,工程地质学的发展历史。 重点:工程地质学、工程地质条件及工程地质问题的概念;工程地质学的意义 第一章土的物质组成与结构、构造 第一节土的粒度成分 粒径、粒组概念;粒组划分;粒度成分测定与表示;土按粒度成分分类; 第二节土的矿物成分 土中矿物成分类型;矿物成分与粒度成分的关系;粘土矿物的类型及其工程地质特征 第一节土中的水与气体

第4章各类土的工程地质特征

第四章各类土的工程地质特征 1、下列关于冻土的叙述,不正确的是( )。 A. 冻土包括多年冻土和季节性冻土 B. 冻土不具有流变性 C. 冻土为四相体 D.冻土具有融陷性 2、吸水膨胀,失水收缩的特殊粘性土是( )。 A.黄土 B.红土 C.膨胀土 D.冻土 3、下列关于膨胀土叙述不正确的是( )。 A. 天然状态下的膨胀土,多呈硬塑到坚硬状态 B. 膨胀土失水收缩 C. 膨胀土遇水膨胀 D. 膨胀土的胀缩不可逆 4、下列关于红粘土的叙述不正确的是( )。 A. 粘土是由碳酸盐类岩石经一系列地质作用形成的 B. 自地表以下,红粘土逐渐由坚硬过渡到软塑状态 C. 红粘土是由变质作用形成的 D. 红粘土中的裂隙发育 5、淤泥质土是由( )地质作用形成的。 A. 河流的地质作用 B.湖泊的地质作用 C. 洪流地质作用 D.风化作用 6、黄土经冲刷、搬运、沉积等地质作用形成的夹有砂、砾石并具层理的黄色土状沉积物称为( )。 A. 膨胀土 B.黄土状土 C. 非湿陷性黄土 D.湿陷性黄土 7、泥炭及淤泥质土是( )形成的。 A.河流的地质作用 B.湖泊的地质作用 C. 海洋地质作用 D.风化作用

8、盐渍土不具有( )。 A. 溶陷形 B.膨胀型 C. 腐蚀性 D.崩解性 9、盐渍土在浸水后强度明显( )。 A.提高 B.降低 C.不一定 D.一般 10、黄土的( )是黄土地区浸水后产生大量沉陷的重要原因。 A. 湿陷性 B. 崩解性 C. 潜蚀性 D. 易冲刷性 11、风成黄土是一种( )。 A.原生黄土 B.次生黄土 C.残积黄土 D.由风化作用形成的黄土 12、具有承载力低,沉降量大的土是( )。 A.黄土 B.软土 C.膨胀土 D.冻土 13、膨胀土遇水后膨胀,是因为膨胀土中含有较多的( )。 A.蒙脱石 B.高岭石 C.白云石 D.长石 14、多年冻土主要分布在我国的( )。 A.长江中下游 B.高纬度和高海拔地区 C.云贵高原 D.湖沼地带 15、冻土的冻胀融沉性是因为冻土中含有较多的( )。 A.易溶盐 B.水 C.孔隙 D.有机质

岩石物理力学性质试验规程 第23部分:岩石点荷载强度试验(标准状

I C S19.020 D00 中华人民共和国地质矿产行业标准 D Z/T0276.23 2015 代替D Y-94 岩石物理力学性质试验规程 第23部分:岩石点荷载强度试验 R e g u l a t i o n f o r t e s t i n g t h e p h y s i c a l a n dm e c h a n i c a l p r o p e r t i e s o f r o c k P a r t23:T e s t f o r d e t e r m i n i n g t h e p o i n t l o a d s t r e n g t ho f r o c k 2015-02-04发布2015-04-01实施中华人民共和国国土资源部发布

D Z/T0276.23 2015 前言 D Z/T0276‘岩石物理力学性质试验规程“分为31个部分: 第1部分:总则及一般规定; 第2部分:岩石含水率试验; 第3部分:岩石颗粒密度试验; 第4部分:岩石密度试验; 第5部分:岩石吸水性试验; 第6部分:岩石硬度试验; 第7部分:岩石光泽度试验; 第8部分:岩石抗冻试验; 第9部分:岩石耐崩解试验; 第10部分:岩石膨胀性试验; 第11部分:岩石溶蚀试验; 第12部分:岩石耐酸度和耐碱度试验; 第13部分:岩石比热试验; 第14部分:岩石热导率试验; 第15部分:岩石击穿电压和击穿强度试验; 第16部分:岩石体积电阻率和表面电阻率试验; 第17部分:岩石放射性比活度试验; 第18部分:岩石单轴抗压强度试验; 第19部分:岩石单轴压缩变形试验; 第20部分:岩石三轴压缩强度试验; 第21部分:岩石抗拉强度试验; 第22部分:岩石抗折强度试验; 第23部分:岩石点荷载强度试验; 第24部分:岩石声波速度测试; 第25部分:岩石抗剪强度试验; 第26部分:岩体变形试验(承压板法); 第27部分:岩体变形试验(钻孔变形法); 第28部分:岩体强度试验(直剪试验); 第29部分:岩体强度试验(承压板法); 第30部分:岩体锚杆载荷试验; 第31部分:岩体声波速度测试三 本部分为D Z/T0276的第23部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替D Y-94‘岩石物理力学性质试验规程20.点荷载强度试验“三本部分与D Y-94相比,主要技术变化如下: 增加了 术语和定义 原理 两章; 增加了软岩试验时D值的测量说明; Ⅰ

各类土的工程地质特性

第四章各类土的工程地质特性 一、一般土的工程地质特性 一般土按粒度成分特点,常分为巨粒土、粗粒土及细粒土三大类。 巨粒土和粗粒土为无粘性土,细粒土为粘性土。 粗粒土又分为砾类土和砂类土。 巨粒土和粗粒土的工程地质性质主要取决于粒度成分和土粒排列的松密情况,这些成分和结构特性直接决定着土的孔隙性、透水性、和力学性质。 细粒土的性质取决于粒间连结特性(稠度状态)和密实度,这些都与土中粘粒含量、矿物亲水性及水和土粒相互作用有关。 砾类土和砂类土为单粒结构;细粒土为团聚结构。 二、几种特殊土的工程地质特征 1、淤泥类土 淤泥类土是指在静水或水流缓慢的环境中沉积,有微生物参与作用的条件形成的,含较多有机质,疏松软弱(天然孔隙比大于1,含水率大于液限)的细粒土。孔隙比大于1.5的称为淤泥,小于1.5大于1的称为淤泥质土。 工程地质性质的基本特点: ①高孔隙比,高含水率,含水率大于液限 ②透水性极若 ③高压缩性 ④抗剪强度很低,且与加荷速度和排水固结条件有关。由于这类土饱水而结构疏松,所以 在振动等强烈扰动下其强度也会剧烈降低,甚至液化变为悬液。这种现象称为触变性。 同时还具有蠕变性。

淤泥类土的成分和结构是决定其工程地质性质的根本因素。有机物和粘粒含量越多,土的亲水性越强,则压缩性越高;孔隙比越大,含水率越高,压缩性越高,强度越低,灵敏度越大,性质越差。 2、黄土 黄土是一种特殊的第四纪陆相松散堆积物。颜色多呈黄色、淡黄色或褐黄色,颗粒组成以粉粒为主,粒度大小较均匀。天然剖面上垂直节理发育。被水浸润后显著沉陷(湿陷性)。 一般工程地质性质: ①密度小,孔隙率大 ②含水较少 ③塑性较弱 ④透水性较强 ⑤抗水性弱 ⑥压缩性中等,抗剪强度较高。 ⑦具有湿陷性(自重湿陷和非自重湿陷) 湿陷系数,自重湿陷系数 3、膨胀土 又称胀缩土,系指随含水量的增加而膨胀,随含水量的减少而收缩,具有明显膨胀和收缩特性的细粒土。 成分和结构特征: 粘粒含量高,一般35%以上。矿物成分以蒙脱石和伊利石为主,高岭石含量较少。 土体表层常出现各种纵横交错的裂隙和龟裂的现象,使土的完整性破坏,强度降低。

工程地质作业答案

工程地质形成性考核册参考答案 工程地质作业1 一、选择题1C 2A 3D 4C 5A 6A 7B 8B 9A 10D 11A 12C 13A 14A 15A 二、判断题1 √ 2 × 3 × 4 ×5× 6 √7×8 ×9 ×10 √ 三、简答题 1、简述工程地质学及其内容。 工程地质学是研究人类工程活动与地质环境相互作用的一门学科,是地质学的一个分支。它把地质科学的基础理论应用于土木工程实践,通过工程地质调查、勘探等方法,弄清建筑物的地质条件(环境),为土木工程建筑的规划、设计、施工提供可靠的地质资料,并预测和论证工程建筑和地质环境的相互作用,进而提出防治措施。 2、什么是工程地质条件 工程地质条件是指与工程建设有关的地质条件的总和,它包括土和岩石的工程性质、地质构造、地貌、水文地质、地质作用、自然地质现象和天然建筑材料等方面。 3、岩石坚硬程度分类的依据是什么? 岩石坚硬程度类型有哪些?岩石坚硬程度分类的依据是岩石的饱和单轴抗压强度岩石坚硬程度类型有:坚硬岩、软硬岩、较软岩、软岩和极软岩。 4、什么是地质作用?内外地质作用是怎么改造地球的? 在自然界中所发生的一切可以改变地球的物质组成、构造和地表形态的作用称为地质作用。内力地质作用通过地壳运动、地震作用、岩浆作用和变质作用改造地球;外力地质作用通过风化作用、剥蚀作用、搬运作用、沉积作用和成岩作用改造地球。 5、什么是变质岩?变质岩有哪些主要矿物、结构和构造? 常见变质岩的鉴别特征是什么?由变质作用形成的岩石称为变质岩。变质岩的矿物有两部分,一部分为岩浆岩和沉积岩所共有:石英、长石、云母等;另一部分为变质作用后所产生的特有变质矿物:红柱石、矽线石、蓝晶石等。变质岩的结构可分为变余结构、变晶结构和碎裂结构。变质岩的构造主要包括变余构造和变成构造。常见变质岩的鉴别特征是特有的变质矿物。 四、论述题 1、影响岩石工程地质的因素岩石工程地质性质的因素是多方面的,但归纳起来,主要有两个方面;一是岩石的地质特征,如岩石的矿物成分、结构、构造及成因等;另一个是岩石形成后所受外部因素的影响,如水的作用及风化作用等。 工程地质作业 2 一、选择题1B 2D 3D 4A 5C 6D 7A 8A 9B 10 A 11B 12B 13A 14A 15D 二、判断题1 √ 2 √ 3 × 4 ×5√ 6 ×7 ×8 √ 9 × 10 × 三、简答题 1.叙述张节理的主要特征。 答:张节理的主要特征是产状不很稳定,在平面上和剖面上的延展均不远;节理面粗糙不平,擦痕不发育,节理两壁裂开距离较大,且裂缝的宽度变化也较大,节理内常充填有呈脉状的方解石、石英,以及松散工已胶结的粘性土和岩屑等;张节理一般发育稀疏,节理间的距离较大,分布不均匀。 2.在野外如何测定岩石的产状? 答:岩石的产状要素用地质罗盘在岩层层面上直接测量。测量走向时,使罗盘的长边

岩石及其工程地质性质

岩石及其工程地质性质 主要内容:地球的内部构造、矿物的主要物理性质。三大类岩石的成因、矿物组成、结构、构造等特征及分类。岩石的主要物理、力学性质指标、风化岩石的特征。 要求:了解地球的内部构造,了解鉴别矿物的主要依据即矿物的主要物理性质及简单的化学性质等。了解三大类岩石的成因、成分、结构、构造特征并理解它们的含意以及它们与岩石的工程性质的关系。了解三大类岩石的亚类分类及常见岩石的主要特征。了解工程中常用的岩石的物理力学性质指标及含义。理解岩石风化分带的工程意义。 大地工程自调查、规划设计以至于施工的过程当中均涉及地质学有关的背景知识。本次讲座系以阐述正确的地质学观念为主,以期给予听讲者于大地工程与地质学上的应用能相辅相成。主讲人谢敬义先生长期担任台湾电力公司高级专业工程地质师、大学兼任教授及项目地质顾问,各种工程地质与灾变处理实务经验丰硕,相信能为此次讲座带来一趟深入且精彩的地质之旅。 本讲题内容分为三部份。第一部份先以地质学的发展过程,将希腊、罗马时代开始的古典地质思维历经中世纪、二十世纪以来的传统地质学概念,以迄于目前盛行的板块构造学说之由来等,透过类似历史故事的方式引发工程师的兴趣。第二部份则以上述地质学发展的架构说明地质学应用时的整体理念,以及与大地工程密切相关的地形学、构造地质学、地层学、矿物与岩石学上等应用的正确观念,并将以台湾的地形与地质特性为主轴,说明其与大地工程上的关系。最后则以谢先生个人所经历的工程地质案例综合讨论基础工程、坡地工程、大坝工程、隧道工程上实务之工程地质问题及解决对策。可以给工程师宏观的想法及视野,精采可期。 工程地质 摘要:工程地质学科目前正在经历着前所未有的挑战,工程地质专业处境尴尬,工程地质勘察的市场竞争也有真假之别,工程地质分析与研究的深度和广度严重不足,工程地质新技术新方法的应用尚有较大差距,工程地质在工程建设中留下的隐患具有长期性和隐伏性。工程地质面临的困境,向工程建设敲响了警钟,也向地质师们提出了更大的难题。 关键词:工程地质岩土工程 工程地质学科的争议 教科书对工程地质学的三种定义:①工程地质学是研究与工程有关的地质问题的科学; ②工程地质学是研究人类工程活动与地质环境相互作用的科学;③工程地质学是研究人类工程建设活动与自然地质环境相互作用和相互影响的一门地质科学。 从以上三种定义的实质中均不难看出,工程地质学强调的工程和地质的关系,研究的是人类工程活动与自然地质环境的相互作用。但是,近年来工程地质学科却正在经历着前所未有的挑战,工程地质学被异名为岩土工程学,工程地质勘察被称之为岩土工程勘察。工程界有此呼声,学术界有此呼应,一些大专院校也纷纷效仿,甚至工程地质这个专业在高校也被取消了。一时间,似乎工程地质已经成了守旧传统,岩土工程才是先进时髦的,才是可以适应市场经济并与国际接轨的。这是近年来分歧最大的争议。 这些年来工程地质勘察的不景气以及市场竞争的不规范化,工程地质勘察队伍增加了岩土工程的业务是完全必要的,但将岩土工程作为工程地质的救世主,则值得商榷了。 根据笔者的理解,岩土工程是一项工程应用技术,是针对地质体的工程缺陷实施的工程措施而进行的一系列设计和施工过程的总称。岩土工程的任务是“处理”地质体的工程缺陷,使之满足工程建筑物对地基的工程要求,因此又有“岩土工程处理技术”的别名,说明岩土工程的确是一项实实在在的工程技术。确立工程地质学是一门独立的学科,尽管也仅仅是本世

岩石及其工程地质性质

第2章岩石及其工程地质性质 【教学基本要求】 1.? 了解地球的内圈层构造,知道地球的外圈层。 2.? 了解地质作用。 3.理解矿物(晶体)的形态,矿物的颜色、透明度、光泽、硬度、解理及断口等物理性质,理解主要硅酸氧化物造岩矿物的室内鉴定特征。 4.理解岩浆岩、沉积岩、变质岩的成因、矿物成分、结构、构造、分类及代表性岩石的特征。了解岩浆岩5.理解岩石的物理性质、水理性质及其力学性质指标,掌握岩石的坚硬程度分类。 【学习重点】 1、地质作用的类型及其对地壳改造的作用。 2、常见造岩矿物的主要形态及其主要的物理性质。 3、岩浆岩、沉积岩、变质岩的主要矿物成分及其结构、构造。 4、岩石工程地质性质指标的基本概念及其意义。 【内容提要和学习指导】 2.1 地球的总体特性 地球是一个不标准的旋转椭球体,赤道半径(a)6378.14km,两极半径(b)6356.779km ,地球的扁平率()为 附近稍微凸出,极区稍微扁平,赤道与极地半径相差22km。 1、地球的圈层构造 地球具有一定的圈层构造,以地表为界分为外圈和内圈,外圈包括大气圈、水圈和生物圈;内圈通常分为地核。地壳是莫霍面以上固体地球的表层部分,平均厚度约为33km,大陆地壳厚度较大,大洋地壳厚度较;地下、古登堡面以上部分,厚度约2900km,是地球的主体部分,主要由固态物质组成;地核是地球内古登堡面以分,厚度为3500km。 2、地质作用 在自然界中所发生的一切可以改变固体地球的物质组成、构造和地表形态的作用称为地质作用。根据地质源,地质作用可分为内动力地质作用和外动力地质作用两大类。由地球内部能如地球的旋转能、重力能、放射热能等产生的地质应力所引起的地质作用即内动力地质作用,主要在地下深处进行,并可波及地表。内动力地地壳运动、地震作用、岩浆作用和变质作用。岩浆岩、变质岩等便是内动力地质作用的产物。由地球范围以外阳得辐射能、日月的引力能等为主要能源在地表或地表附近进行的地质作用,称为外动力地质作用。外力作用水、大气、生物以外部能为能源,改造雕塑地壳(主要是地壳表面)的过程,外力作用的主要类型有:风化作用搬运作用、沉积作用和成岩作用。 2.2 造岩矿物 岩石是在地质作用下产生的,由一种或多种矿物以一定的规律组成的自然集合体。他构成了地球的固体部石分为岩浆岩、沉积岩和变质岩三大类。由于岩石是由矿物组成的,所以要认识岩石,分析岩石在各种自然条进而对岩石及其组成的周围环境进行工程地质评价。就必须首先了解矿物。 矿物是天然形成的元素单质和无机化合物,其化学成分和物理性质相对均一和固定,一般为结晶质。自然都是在一定的地质环境中形成的,随后并因经受各种地质作用而不断的发生变化。每一种矿物只是在一定的物下才是相对稳定的,当外界条件改变到一定程度后,矿物原来的成分、内部构造和性质就会发生变化,形成新的 1、矿物的(肉眼)鉴定特征 矿物的形态和矿物的物理性质决定于其化学成分和晶体格架的特点。因此,是鉴别矿物的重要依据。1)指矿物单体及同种矿物集合体的形态。矿物集合体的形态取决于单体的形态和它们的集合方式。集合体按矿物晶肉然可辨认晶体颗粒的显晶矿物集合体和肉眼不能辨认的隐晶质或非晶质矿物集合体。显晶矿物集合体有规则

相关文档
最新文档